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Abstract. In this article, we mainly focus on a new kind of filter on EQ-algebras. At
first, we introduce some new concepts of seminodes, nodes and nodal filters (n-filters,
for short) on EQ-algebras and investigate the relationships among them and some other
elements. Also, we investigate their lattice structures and obtain that the set SN (E) of
all seminodes on an EQ-algebra is a Hertz-algebra and a Heyting-algebra under some
conditions. Then, we discuss the properties of n-filters and show that there is a one-to-
one correspondence between nodal principle filter and node element in an idempotent
EQ-algebra. Furthermore, the relationships among it and other filters are presented.
It is proved that each obstinate filter or each (positive) implicative filter is an n-filter
under some conditions. At last, we introduce the algebraic structures and topological
structures of the set of all n-filters on EQ-algebras and prove that (NP (E), τ) is a
compact T0 space. Moreover, we set up the connections from the set NF (E) of all n-
filters on an EQ-algebra to other algebraic structures, like BCK-algebras, Hertz algebras
and so on.
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1. Introduction

As we all know, logic is not only an important tool in mathematics and in-
formation science, but also a basic technology. Non-classical logic consists of
fuzzy logic and multi-valued logic, they deal with uncertain information such as

*. Corresponding author



578 JIE QIONG SHI and XIAO LONG XIN

fuzziness and randomness. Therefore, all kinds of fuzzy logic algebras are widely
introduced and studied, such as residuated lattices, BL-algebras, MV-algebras,
which play a very important role in fuzzy logic algebra system. In [11], Goguen
put forward a new point of view, which is that the algebraic structure of many-
valued logic may be a residuated lattice satisfying some additional conditions.
This view has been widely recognized by scholars at home and abroad. However,
since the publication of Hájek’s book [12] in 1998, fuzzy logic has been developed
into different formal systems, and each one is based on a residuated lattice. With
the passage of time, propositional logic and first-order logic have been widely
developed. For this reason, in order to develop the higher-order fuzzy logic as
a correspondence of the classical higher-order logic. Novák and De Bates [17]
came out with a new algebra, which is called an EQ-algebra, for the first time.
An EQ-algebra has three operations, which are fuzzy equality, multiplication
and meet. By replacing the basic conjunction fuzzy equality with implication,
EQ-algebras open up a new filed for another development of many-valued fuzzy
logic and a possibility for developing a fuzzy logic with non commutative con-
nection but only one implication. Since then, EQ-algebras have been widely
concerned and many significant properties and conclusions have been proved
[1], [10], [14][17], [21], [26].

Filter theory is of great significance to study the completeness of differ-
ent logical systems and their matching logical algebras. Start with a logical
viewpoint, we can use the filters to represent the provable formula sets in rele-
vant reasoning systems. Also, the characters of filters is closely related to the
structure properties of algebras. Hence, there are numerous researches on filter
theory. In [17], Novák and De Bates introduced filters on EQ-algebra for the
first time. In [10], M. El-Zekey and V. Novák proposed the concepts of (prime)
prefilters on EQ-algebras. Moreover, their related properties were stated and
proved. And then, in [14], implicative and positive implicative prefilters (fil-
ters) in EQ-algebra were proposed by Liu and Zhang and they also represented
some related conclusions of them. Also, they discussed the properties of quo-
tient algebras, which is induced by the positive implicative filters. Furthermore,
they discussed the relationships between these two prefilters and concluded that
in good IEQ-algebras positive implicative prefilters and implicative prefilters
coincided.

Now, in this paper, we introduce a new kind of filter to EQ-algebras, which is
said to be a nodal filter. Originally, Balbes and Horn [2] put forward the concept
of nodes in a lattice. In [22], the definition of a nodal filter was introduced by
Varlet in the (implicative) semilattice. Afterward, T. Khorami and B. Saeid
[13] presented the concepts of nodes and nodal filters on BL-algebra and the
congruence relations induced by nodal filters on BL-algebra is stated and proved.
In [6], Bakhshi presented the concept of nodal filters in residuated lattices and
obtained that the set of all nodal filters forms a Heyting algebra. Namdar and
Borzooei [18] researched nodal filters theory in hoop algebras. Next, X. Xun
and X.L. Xin [24] introduced it in equality algebras. Now, we introduce this
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concept to EQ-algebras, here is the outline of this paper: In the next Section, we
recollect some basic definitions and properties of EQ-algebras. In Section 3, we
introduce the concepts of seminodes and nodes on EQ-algebras and investigate
the related properties of them. We obtain that the set SN (E) of all seminodes
is a Hertz-algebra and a Heyting-algebra under some conditions. Moreover, we
consider the relationships among seminodes, nodes and some other elements on
an EQ-algebra. In Section 4, we present the notion of nodal filter (for short, n-
filter) in an EQ-algebra and investigate their related properties. Furthermore,
we discuss the relationships between nodal filters and node elements, as well
as their relationships with other filters. In Section 5, we study the algebraic
structures of NF (E) and topological structures of NP (E) on EQ-algebras.

2. Preliminaries

In this section, we present some basic concepts and conclusions relevant to EQ-
algebras.

Definition 2.1 ([17]). An algebra E = (E,∧,⊗,∼, 1) of type (2, 2, 2, 0) is said
to be an EQ-algebra, if for all x, y, p, q ∈ E, it satisfies the following axioms:

(EQ1) < E,∧, 1 > is a commutative idempotent monoid.

(EQ2) < E,⊗, 1 > is a monoid and ⊗ is isotone w.r.t. ” ≤ ”, where x ≤ y is
defined as x ∧ y = x.

(EQ3) x ∼ x = 1.

(EQ4) ((x ∧ y) ∼ p)⊗ (q ∼ x) ≤ p ∼ (q ∧ y).

(EQ5) (x ∼ y)⊗ (p ∼ q) ≤ (x ∼ p) ∼ (y ∼ q).

(EQ6) (x ∧ y ∧ p) ∼ x ≤ (x ∧ y) ∼ x.

(EQ7) x⊗ y ≤ x ∼ y.

An EQ-algebra E is bounded if there exists an element 0 ∈ E such that
0 ≤ x, for all x ∈ E. And we define the unary operation: x′ = x → 0, for all
x ∈ E. If x2 = x, for all x ∈ E, then E is called an idempotent EQ-algebra. For
any x ∈ E, x is called:

(1) dense if x′ = 0.

(2) atom if x is the minimal element in E \ {0}.

(3) co-atom if x is the maximal element in E \ {1}.

(4) involutive if x′′ = x.

Definition 2.2 ([17]). Let E be an EQ-algebra and x, y, z ∈ E. Then, it is
called
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(1) good if x ∼ 1 = x for each x ∈ E.

(2) prelinear if 1 is the unique upper bound of the set {x → y, y → x} in E, for
all x, y ∈ E.

(3) residuated if for each x, y, z ∈ E, (x ⊙ y) ∧ z = (x ⊙ y) if and only if
x ∧ ((y ∧ z) ∼ y) = x.

(4) lattice-ordered if it has a lattice reduct.

(5) distributively lattice-ordered if the lattice reduct is distributive.

Proposition 2.3 ([9, 10, 17]). Let E = (E,∧,⊗,∼, 1) be an EQ-algebra, and
let x → y := (x ∧ y) ∼ x and x̄ = x ∼ 1. Then, for all x, y, w ∈ E the following
properties hold:

(1) x⊗ y ≤ x, y, x⊗ y ≤ x ∧ y.

(2) x ∼ y ≤ x → y, x ∼ y = y ∼ x.

(3) x ≤ x̄ ≤ y → x, 1̄ = 1.

(4) x → y ≤ (w → x) → (w → y), x → y ≤ (y → w) → (x → w).

(5) x → x ∧ y = x → y.

(6) if x ≤ y, then x ∼ y = y → x, w → x ≤ w → y and y → w ≤ x → w.

(7) x → y ≤ (x ∧ w) → (y ∧ w), w → (x ∧ y) ≤ (w → x) ∧ (w → y).

(8) if x ∨ y exists, then (x ∨ y) → w = (x → w) ∧ (y → w).

Proposition 2.4 ([9]). Let E = (E,∧,⊗,∼, 1) be an EQ-algebra. Then, E is
residuated iff E is good and x → y ≤ (x⊗ z) → (y ⊗ z), for all x, y, z ∈ E.

Definition 2.5 ([17]). Let E = (E,∧,⊗,∼, 1) be an EQ-algebra. Then, a subset
H of E is called a prefilter provided that, for all x, y, z ∈ E, the following
conditions hold:

(F1) 1 ∈ H.

(F2) If x, y ∈ H, then x⊗ y ∈ H.

(F3) If x, x → y ∈ H, then y ∈ H.

A prefilter H is called a filter provided that, for all x, y, z ∈ E, the following
condition holds:

(F4) If x → y ∈ H, then (x⊗ z) → (y ⊗ z) ∈ H.

The set of all filters of E is denoted by F(E).
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Theorem 2.6 ([16]). Let E be an EQ-algebra.

(1) For any ∅ ≠ X ⊆ E, the prefilter generated by X is written as ⟨X⟩ = {x ∈
E | x1 → (x2 → (x3 → · · · (xn → x) · · · )) = 1 for some xi ∈ X and n ≥ 1}.
If X = {a}, then the prefilter ⟨a⟩ generated by {a} is called a principal
prefilter.

(2) If E is residuated, then ⟨X⟩ is a filter.

(3) ⟨x⟩∩ ⟨y⟩ = ⟨x∨ y⟩, for all x, y ∈ E, where ⟨x⟩ denotes the principal prefilter
generated by x.

Definition 2.7 ([14]). Let H be a filter of an EQ-algebra. Then:

(1) H is called an implicative filter if z → ((x → y) → x) ∈ H and z ∈ H imply
x ∈ H for any x, y, z ∈ E.

(2) H is called a positive implicative filter if x → (y → z) ∈ H and x → y ∈ H,
then x → z ∈ H for any x, y, z ∈ E.

(3) H is called an obstinate filter of E if, for all x, y ∈ E, x, y /∈ H implies
x → y ∈ H and y → x ∈ H.

For any filter H of an EQ-algebra and x, y ∈ E, we define a relation ≈H on
E as follows:

x ≈H y iff x ∼ y ∈ H

In [17], we know that ≈H is a congruence relation on E. Define the factor algebra
E/H = (E/H,∧,⊙,∼H , 1) as follows: E/H = {[x] | x ∈ E}, the operation ∧ is
defined by [x]∧ [y] = [x∧y], and similarly for the other operations. The ordering
in E/H is defined by:

[x] ≤ [y] iff [x] ∧ [y] = [x] iff x ∧ y ≈H x iff x ∧ y ∼ x = x → y ∈ H

Definition 2.8 ([4]). An algebra (E,∧,→, 1) of type (2, 2, 0) is called a Hertz-
algebra provided that, for all x, y, w ∈ E, the following axioms hold:

(HE1) x → x = 1.

(HE2) y ∧ (x → y) = y.

(HE3) x ∧ (x → y) = x ∧ y.

(HE4) x → (y ∧ w) = (x → y) ∧ (x → w).

Definition 2.9 ([15]). A BCK-algebra (A,→, 1) is an algebra of type (2, 0),
which satisfies the following conditions for any x, y, w ∈ E:

(B1) (y → w) → ((w → x) → (y → x)) = 1.



582 JIE QIONG SHI and XIAO LONG XIN

(B2) y → ((y → x) → x) = 1.

(B3) x → x = 1.

(B4) x → 1 = 1.

(B5) If x → y = 1, y → x = 1, then x = y.

Definition 2.10 ([8]). An algebra (H,→, 1) of type (2, 0) is said to be a Hilbert
algebra, if for all x, y, w ∈ E, we have:

(HL1) x → (y → x) = 1.

(HL2) (x → (y → w)) → ((x → y) → (x → w)) = 1.

(HL3) If x → y = y → x = 1, then x = y.

Definition 2.11 ([3]). If (E,∨,∧, 1) is a lattice, which satisfies x ≤ y → z iff
x ∧ y ≤ z for any x, y, z ∈ E, then the algebra (E,∨,∧,→, 1) is said to be a
Heyting-algebra.

Definition 2.12 ([19, 20]). If (L,∨,∧, 0, 1) is a distributive lattice satisfying
0′ = 1, 1′ = 0, and (x ∧ y)′′ = x′′ ∧ y′′, (x ∨ y)′ = x′ ∧ y′ and x

′′′
= x′ hold for

any x, y ∈ L. Then, the algebra (L,∨,∧,′ , 0, 1) of type (2, 2, 1, 0, 0) is said to be
a semi-De Morgan algebra.

3. Seminodes and nodes on EQ-algebras

In this section, we present the concepts of seminodes and nodes on EQ-algebras
and study their related properties. Moreover, we consider the relationships
among seminodes, nodes and some other elements on an EQ-algebra.

Definition 3.1. Let E be an EQ-algebra and x ∈ E. Then, x is called a:

(1) seminode, if the set {x → y, y → x} has a unique upper bound 1, for all
y ∈ E;

(2) node, if either x ≤ y or y ≤ x for any y ∈ E.

Let us denote the set of all seminodes of an EQ-algebra by SN (E) and the
set of all nodes of an EQ-algebra by ND(E). Since 1 ∈ SN (E) and 1 ∈ ND(E),
it readily follows that SN (E) and ND(E) are nonempty.

Example 3.2 ([5]). (1) Assume that E = {0, u, v, w, 1} with 0 < u < v < w <
1. Then, one can check that (E,∧,⊗,∼, 1) is an EQ-algebra, where the two
operations ⊗ and ∼ are given by:
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⊗ 0 u v w 1
0 0 0 0 0 0
u 0 0 0 0 u
v 0 0 0 0 v
w 0 0 u u w
1 0 u v w 1

∼ 0 u v w 1
0 1 w v v 0
u w 1 w w u
v v w 1 w v
w v w w 1 w
1 0 u v w 1

Obviously, SN (E) = ND(E) = {0, u, v, w, 1}. But the element u is not a
co-atom and dense element, w is not a dense element and a atom and v is not
a dense element. Moreover, the involutive elements are {0, v, 1}.

(2) Suppose that E = {0, u, v, p, q, 1} with 0 < u < v < p, q < 1. Then,
(E,∧,⊗,∼, 1) is an EQ-algebra, where the operations ⊗ and ∼ are given by the
next tables:

⊗ 0 u v p q 1
0 0 0 0 0 0 0
u 0 0 0 u 0 u
v 0 0 v v v v
p 0 u v p v p
q 0 0 v v q q
1 0 u v p q 1

∼ 0 u v p q 1
0 1 q u 0 0 0
u q 1 u u u u
v u u 1 q p v
p 0 u q 1 v p
q 0 u p v 1 q
1 0 u v p q 1

One can check that SN (E) = {0, u, v, p, q, 1} and ND(E) = {0, u, v, 1}.
Although p and q are not node elements, they are dense elements and co-atoms.
In addition, the involutive elements are {0, 1}.

(3) Let E = {0, u, v, p, q, 1} satisfies 0 < u, v < p < q < 1. Then, (E,∧,⊗,∼
, 1) is an EQ-algebra with respect to the following operations ⊗ and ∼:

⊗ 0 u v p q 1
0 0 0 0 0 0 0
u 0 0 0 0 u u
v 0 0 0 0 v v
p 0 0 0 0 p p
q 0 u v p q q
1 0 u v p q 1

∼ 0 u v p q 1
0 1 p p p 0 0
u p 1 p p u u
v p p 1 p v v
p p p p 1 p p
q 0 u v p 1 1
1 0 u v p 1 1

It is apparent that SN (E) = {0, u, v, p, q, 1} and ND(E) = {0, p, q, 1}. Al-
though u and v are atoms, they are not dense elements and nodes. Moreover, 0
and p are involutive elements, but they are not atoms and dense elements.

According to the above example, we see immediately that seminodes and
nodes are different from dense elements, (co-)atoms and involutive elements in
an EQ-algebra. In addition, they have the following properties:

Remark 3.3. Suppose (E,∧,⊗,∼, 1) is an EQ-algebra.

(1) If E is a chain, then each element of E is a node.
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(2) If E has at most one node u, then u = 1. Therefore, it is neither an atom
nor a co-atom.

(3) Each node of E is a seminode of E. But the converse is not true. In
fact, by definitions of nodes and seminodes, we can easily check that each
node is a seminode. Also, by Example 3.2 (3), we know that u and v
are seminodes, but not nodes. Therefore, we conclude that a seminode
element is more general than a node.

In general EQ-algebra, we can only obtain that (q1 ∧ q2) → q3 ≥ (q1 →
q3) ∨ (q2 → q3) and q1 → (q2 ∧ q3) ≤ (q1 → q2) ∧ (q1 → q3) hold. But when we
define q1, q2, q3 in the set SN (E), we shall prove the equations hold.

Proposition 3.4. Let E be a lattice-ordered EQ-algebra. Then, the following
hold, for all q1, q2 ∈ SN (E) and q3 ∈ E:

(1) (q1 ∧ q2) → q3 = (q1 → q3) ∨ (q2 → q3).

(2) q1 → (q2 ∧ q3) = (q1 → q2) ∧ (q1 → q3).

Proof. (1) From the Proposition 2.3 (5) and (4), we get q1 → q2 = q1 →
(q1 ∧ q2) ≤ ((q1 ∧ q2) → q3) → (q1 → q3) ≤ ((q1 ∧ q2) → q3) → ((q1 →
q3)∨ (q2 → q3)). Similarly, we obtain that q2 → q1 ≤ ((q1 ∧ q2) → q3) → ((q1 →
q3) ∨ (q2 → q3)). Since q1 ∈ SN (E), it implies that (q1 → q2) ∨ (q2 → q1) = 1,
and so ((q1 ∧ q2) → q3) → ((q1 → q3) ∨ (q2 → q3)) = 1. Thus, we obtain
((q1 ∧ q2) → q3) ≤ ((q1 → q3)∨ (q2 → q3)). In addition, because q1 ∧ q2 ≤ q1, q2,
we have q1 → q3, q2 → q3 ≤ (q1 ∧ q2) → q3. Thus, it readily follows that
(q1 → q3) ∨ (q2 → q3) ≤ (q1 ∧ q2) → q3. Therefore, we see immediately that
(q1 ∧ q2) → q3 = (q1 → q3) ∨ (q2 → q3).

(2) By Proposition 2.3 (5) and (4), we obtain q2 → q3 = q2 → (q2 ∧ q3) ≤
(q1 → q2) → (q1 → (q2 ∧ q3)) ≤ ((q1 → q2) ∧ (q1 → q3)) → (q1 → (q2 ∧ q3)).
Analogously, q3 → q2 ≤ ((q1 → q2) ∧ (q1 → q3)) → (q1 → (q2 ∧ q3)) holds.
Since q2 ∈ SN (E), we obtain (q2 → q3) ∨ (q3 → q2) = 1, and then ((q1 →
q2)∧ (q1 → q3)) → (q1 → (q2 ∧ q3)) = 1. Thus, it follows that (q1 → q2)∧ (q1 →
q3) ≤ q1 → (q2 ∧ q3). In addition, since q2 ∧ q3 ≤ q2, q3, it readily implies
q1 → (q2∧q3) ≤ q1 → q2, q1 → q3, and so q1 → (q2∧q3) ≤ (q1 → q2)∧ (q1 → q3).
Therefore, it readily follows q1 → (q2 ∧ q3) = (q1 → q2) ∧ (q1 → q3).

Theorem 3.5. Let E be a lattice-latticed EQ-algebra. Then, the following con-
clusions hold:

(1) Denote BL(E) = {u ∈ E | u∨m = 1, u∧m = 0 for some m ∈ E}. Then,
ND(E) ∩BL(E) = {0, 1}.

(2) If E is distributive, then (SN (E),∧,∨) is a distributive lattice.

(3) (ND(E),∨,∧) is a distributive lattice, too.
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Proof. (1) It is clear that {0, 1} ⊆ ND(E) ∩ BL(E). Conversely, for any
u ∈ ND(E)∩BL(E), we have u ∈ ND(E) and u ∈ BL(E). From u ∈ ND(E),
we know that either u ≤ m or m ≤ u for any m ∈ E. Moreover, it follows from
u ∈ BL(E) that u ∨m = 1 and u ∧m = 0 for some m ∈ E, which implies that
u ∨m = m, u ∧m = u or u ∨m = u, u ∧m = m. Hence, u = 0 or u = 1, and
so u ∈ {0, 1}. Therefore, we obtain ND(E) ∩BL(E) = {0, 1}.

(2) Firstly, we prove ((u ∧ m) → w) ∨ (w → (u ∧ m)) = 1 for any w ∈ E
and u,m ∈ SN (E). In fact, by Proposition 3.4, we have ((u∧m) → w)∨ (w →
(u ∧m)) = ((u → w) ∨ (m → w)) ∨ ((w → u) ∧ (w → m)) = [(u → w) ∨ (m →
w)∨(w → u)]∧ [(u → w)∨(m → w)∨(w → m)] ≥ [(u → w)∨(w → u)]∧ [(m →
w) ∨ (w → m)] = 1. Thus, it readily follows that u ∧m ∈ SN (E).

Now, we shall prove that ((u∨m) → w)∨ (w → (u∨m)) = 1 for any w ∈ E.
Indeed, by Proposition 2.3 (8), we obtain ((u ∨ m) → w) ∨ (w → (u ∨ m))
= ((u → w)∧ (m → w))∨ (w → (u∨m)) = ((u → w)∨ (w → (u∨m)))∧ ((m →
w) ∨ (w → (u ∨ m))) ≥ [(u → w) ∨ (w → u)] ∧ [(m → w) ∨ (w → m)] = 1
Therefore, we get that u ∨m ∈ SN (E), and so (SN (E),∧,∨) is a distributive
lattice.

(3) Let u,m ∈ ND(E). It suffices to show that u ∨ m, u ∧ m ∈ ND(E).
Assume that w ∈ E. If w ≤ u,m, then w ≤ u ∧ m. And, if u ≤ w ≤ m or
m ≤ w ≤ u, then u ∧m ≤ u ≤ w or u ∧m ≤ m ≤ w. Thus u ∧m ∈ ND(E).
Analogously, u ∨ m ∈ ND(E) also holds. Therefore, (ND(E),∨,∧, 0, 1) is a
lattice. By definition of ND(E), we see immediately that it is a distributive
lattice.

Theorem 3.6. Let E be an EQ-algebra. If for any x, y ∈ SN (E), x∧(x → y) =
x∧y holds and SN (E) is closed with the operator →. Then, (SN (E),∧,∨,→, 1)
is a Hertz-algebra and a Heyting-algebra.

Proof. Firstly, we prove that it is a Hertz-algebra. Obviously, (HE1) holds. By
Proposition 2.3 (3), we know that (HE2) holds. By hypothesis, the (HE3) is
valid. Moreover, from Proposition 3.4 (2), it implies that (HE4) holds. Hence,
(SN (E),∧,∨,→, 1) is a Hertz-algebra.

Now, we show that it is a Heyting-algebra. For any x, y, w ∈ SN (E), if
x ≤ y → w, then x∧y ≤ y∧ (y → w) = y∧w ≤ w, i.e. x∧y ≤ w. Conversely, if
x∧ y ≤ w, then it follows that x ≤ y → x = 1∧ (y → x) = (y → y)∧ (y → x) =
y → (y∧x) ≤ y → w by Proposition 2.3 (3) and Proposition 3.4 (2). Therefore,
the conclusion holds.

4. Nodal filters on EQ-algebras

In this section, we introduce the notion of an nodal filter on EQ-algebras and give
the equivalent characterization of it. Furthermore, the relationships between
nodal filters and node elements, as well as between nodal filters and other filters
are discussed.
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Definition 4.1. Let H be a filter of an EQ-algebra. If H is a node in poset
(F(E),⊆), then it is said to be an nodal filter (for short, n-filter).

Let us denote the set of all n-filters of E by NF (E) in the sequel.

Example 4.2 ([16]). Let E = {0, u, v, p, q, 1} such that 0 < u, v < p < 1,
0 < v < q < 1. Then, (E,∧,⊗,∼, 1) is an EQ-algebra, where the operations ⊗
and ∼ are given by the following tables:

⊗ 0 u v p q 1
0 0 0 0 0 0 0
u 0 u 0 u 0 u
v 0 0 0 0 v v
p 0 u 0 u v p
q 0 0 v v q q
1 0 u v p q 1

∼ 0 u v p q 1
0 1 q p v u 0
u q 1 v p 0 u
v p v 1 q p v
p v p q 1 v p
q u 0 p v 1 q
1 0 u v p q 1

It is easy for us to check that F(E) = {{1}, {q, 1}, {u, p, 1}, {u, v, p, q, 1}, E},
but NF(E) = {{1}, {u, v, p, q, 1}, E}.

Example 4.3 ([7]). Suppose that E = {0, u, v, p, q, 1} with 0 < u < v, p <
q < 1. Then, we can verify that (E,∧,⊗,∼, 1) is an EQ-algebra, where the
operations ⊗ and ∼ are given by the next tables:

⊗ 0 u v p q 1
0 0 0 0 0 0 0
u 0 0 0 0 0 u
v 0 0 0 0 0 v
p 0 0 0 0 0 p
q 0 0 0 0 q q
1 0 u v p q 1

∼ 0 u v p q 1
0 1 1 u u u u
u 1 1 u u u u
v u u 1 p p p
p u u p 1 p p
q u u p p 1 q
1 u u p p q 1

Obviously, F(E) = {{1}, {q, 1}, {v, q, 1}, {u, p, q, 1}, {u, v, p, q, 1}, E}, butNF (E)
= {{1}, {q, 1}, {u, v, p, q, 1}, E}.

From the above Examples, we see immediately that n−filters are distinct
from filters of EQ-algebras.

Theorem 4.4. Let H be a filter of an idempotent and good EQ-algebra. Then,
H is an n-filter if and only if u ∈ H and v /∈ H imply v < u for any u, v ∈ E.

Proof. (⇒) Assume that u ∈ H and v /∈ H for any u, v ∈ E. Then, it follows
from H is an n-filter that ⟨u⟩ ⊆ H and H ⊆ ⟨v⟩, which implies u ∈ ⟨v⟩. Hence,
vn ≤ u for some n ∈ N . Moreover, by assumption, we get v = vn. If v = u,
then v ∈ H, which is a contradiction. Hence, it readily follows that v < u.

(⇐) Suppose that v < u, for all u ∈ H and v /∈ H. If there exists a filter J
such that H and J are incomparable. Then, u ∈ H \ J and v ∈ J \H for some
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u, v ∈ E. Now, since J is a filter and v < u, it implies that u ∈ J , which is
impossible. Hence, either H ⊆ J or J ⊆ H for any filter J of E . Therefore, we
obtain that H is an n-filter.

Corollary 4.5. If E is linearly ordered, then each filter is an n-filter.

Proof. For any filter H such that u ∈ H and v /∈ H. Since u ∈ ND(E), we get
v < u. Indeed, if u ≤ v, then v ∈ H as H is a filter. Hence, by the Theorem
above, we obtain that H is an n-filter.

Proposition 4.6. Let H be a filter of a good EQ-algebra. If u ∈ H is a node,
then H is an n-filter. Especially, the filter ⟨u⟩ generated by u is also an n-filter.

Proof. Assume H is a filter of E and v /∈ H. If u ∈ ND(E), then either u ≤ v
or v ≤ u. If u ≤ v, then v ∈ H, which is a contradiction. Thus, it readily follows
that v < u. By Theorem 4.4, we obtain that H is an n-filter.

Remark 4.7. In Example 4.2, we obtain that {u, v, p, q, 1} is an n-filter of E ,
but v /∈ ND(E), which implies that the converse of Proposition 4.6 may not
hold, in general.

Proposition 4.8. Let E be an idempotent and good EQ-algebra.

(1) If ⟨u⟩ ∈ NF (E), then u ∈ ND(E).

(2) If E has n node elements, then it has at least n n-filters.

Proof. (1) For any v ∈ E, then either v ∈ ⟨u⟩ or v /∈ ⟨u⟩. If v /∈ ⟨u⟩, then we
obtain that v < u by Theorem 4.4. If v ∈ ⟨u⟩, then un = u ≤ v for some n ∈ N .
Hence, u is a node element.

(2) Let u ∈ ND(E). Then, it follows that ⟨u⟩ is a nodal filter by Proposition
4.6. Now, assume u and v are two nodes of E. If ⟨u⟩ = ⟨v⟩, then u ∈ ⟨v⟩ and
v ∈ ⟨u⟩. Since u2 = u and v2 = v, we obtain u ≥ v and v ≥ u, which implies
that u = v. Therefore, we see immediately that it has at least n n-filters.

Combining Proposition 4.6 and Proposition 4.8, we know that there is a
one-to-one correspondence between nodal principle filters and node elements in
an idempotent EQ-algebra.

Proposition 4.9. Suppose that H is an n-filter of a residuated EQ-algebra.
Then, for any u ∈ ND(E), H(u) = ⟨H ∪ {u}⟩ is an n-filter.

Proof. If u ∈ H, then H(u) = H. Thus, it readily implies that H(u) is an
n-filter of E . By the above Proposition, we obtain that ⟨u⟩ is an n-filter. Now,
suppose that J ∈ F(E) and J ⊈ H(u). Note that if J ⊆ H or J ⊆ ⟨u⟩, then
J ⊆ H(u), which is contradiction. Hence, we get H, ⟨u⟩ ⊆ J . If v ∈ H(u), then
u →n v ∈ H ⊆ J for some n ∈ N . Thus, we know that v ∈ J as J is a filter.
Hence, H(u) ⊆ J , which readily follows that H(u) is an n-filter.
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Example 4.10. In Example 4.2, we know that H = {1} is an n-filter. And,
one can check that p /∈ ND(E) and H(p) = {u, p, 1} /∈ NF (E). Moreover,
J = {q, 1} /∈ NF (E) but J(v) = H(v) = E ∈ NF (E). That is to say, the
converse of Proposition 4.9 may not hold, in general.

Proposition 4.11. Assume that E1 and E2 are two idempotent and good EQ-
algebras and g : E1 → E2 is a homomorphism.

(1) If g is injective and H ∈ NF (E2), then g−1(H) = {a ∈ E1 | g(a) ∈ H} ∈
NF (E1).

(2) If g is surjective and H ∈ NF (E1), then g(H) ∈ NF (E2).

Proof. (1) Firstly, we show that g−1(H) is a filter. Since g(1E1) = 1E2 ∈ H,
we get 1E1 ∈ g−1(H), i.e. (F1) holds. For any a, b ∈ g−1(H), it implies that
g(a), g(b) ∈ H. And, becauseH ∈ NF (E2), we obtain g(a⊗b) = g(a)⊗g(b) ∈ H,
which implies (a ⊗ b) ∈ g−1(H), i.e. (F2) holds. For any a, b ∈ E1, assume
a, a → b ∈ g−1(H). Then, g(a), g(a → b) ∈ H, i.e. g(a), g(a) → g(b) ∈ H.
Thus, g(b) ∈ H and so b ∈ g−1(H), i.e. (F3) holds. Let a → b ∈ g−1(H).
Then, g(a) → g(b) = g(a → b) ∈ H, which readily follows that (g(a)⊗ g(c)) →
(g(b) ⊗ g(c)) ∈ H, where c ∈ E1 and g(c) ∈ H, i.e. g((a ⊗ c) → (b ⊗ c)) ∈ H.
Hence (a⊗c) → (b⊗c) ∈ g−1(H), i.e. (F4) holds. Therefore, we see immediately
that g−1(H) is a filter.

Now, we shall prove that g−1(H) is an n-filter. Let a ∈ g−1(H) and b /∈
g−1(H). Then, g(a) ∈ H and g(b) /∈ H. Since H is an n-filter and a2 = a
holds, for all a ∈ E1, we have g(b) < g(a) by Theorem 4.4, which implies
that g(b → a) = g(b) → g(a) = 1E2 . Moreover, since g(1E1) = 1E2 and g is
injective, we obtain that b → a = 1E1 and so b ≤ a. If b = a, then g(b) = g(a),
which generates a contradiction, and so b < a. Now, by Theorem 4.4, we see
immediately that g−1(H) is an n-filter.

(2) Analogously, we show that g(H) is a filter firstly. Since 1E2 = g(1E1) ∈
g(H), it implies that (F1) holds. Let a, b ∈ g(H). Since g is surjective, there
exist a1, b1 ∈ H such that g(a1) = a, g(b1) = b. Hence a ⊗ b = g(a1) ⊗ g(b1) =
g(a1 ⊗ b1) ∈ g(H), i.e. (F2) holds. Now, let a, a → b ∈ g(H), i.e. g(a1),
g(a1) → g(b1) = g(a1 → b1) ∈ g(H). Thus, we get a1, a1 → b1 ∈ H, and so
b1 ∈ H. Hence, we obtain that b = g(b1) ∈ g(H), i.e. (F3) holds. Moreover, let
a → b ∈ g(H). Then, g(a1) → g(b1) = g(a1 → b1) ∈ g(H), i.e. a1 → b1 ∈ H.
Hence, (a1 ⊗ c1) → (b1 ⊗ c1) ∈ H, where c1 ∈ E1, and so (g(a1) ⊗ g(c1)) →
(g(b1) ⊗ g(c1)) = g((a1 ⊗ c1) → (b1 ⊗ c1)) ∈ H, i.e. (F4) holds. Therefore, we
see immediately that g(H) is a filter.

Now, we prove g(H) is an n-filter. Let a ∈ g(H) and b /∈ g(H). Since g is
surjective, there exists a1 ∈ H such that g(a1) = a. But there is no b1 ∈ H
such that g(b1) = b. Moreover, because b1 /∈ H, then we get b1 < a1 and
so b1 → a1 = 1. Thus, it implies g(b1) → g(a1) = 1, i.e. g(b1) ≤ g(a1). If
g(b1) = g(a1), i.e. a = b, which is a contradiction. Hence, g(b1) < g(a1), i.e.
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b < a. Therefore, we see immediately that g(H) is an n-filter by Theorem
4.4.

In what follows, we will prove the relationships among n-filters, (positive)
implicative filters, prime filters and obstinate filters, in genaral. Futhermore, we
discuss the relationships among them.

Definition 4.12 ([10]). Let H be a proper filter of an EQ-algebra. Then, H is
called prime if x → y ∈ H or y → x ∈ H for any x, y ∈ E.

Example 4.13. (1) In Example 4.2, we obtain that H1 = {1} is an n-filter.
Now, since p ∨ q = 1 ∈ {1}, but p, q /∈ {1}, we obtain that it is not a prime
filter. Moreover, H2 = {u, p, 1} /∈ NF (E), but it is a implicative filter and a
prime filter. Furthermore, H3 = {q, 1} is a obstinate filter, but H3 /∈ NF (E).

(2) In Example 4.3, although H3 = {1} ∈ NF (E), it is not a positive
implicative filter as p → (1 → v) = 1 ∈ {1}, p → 1 = 1 ∈ {1}, but p → v = u ∈
{1}. Also, H2 = {u, p, q, 1} is a positive implicative and obstinate filter, but it
is not an n-filter.

Lemma 4.14. Let H be a filter of a prelinear and lattice-orderd EQ-algebra.
Then, H is a prime filter iff for any x, y ∈ E, x ∨ y ∈ H implies x ∈ H or
y ∈ H.

Proof. (⇒) Let x → y ∈ H and x ∨ y ∈ H. Since (x ∨ y) ≤ (x → y) → y, we
have (x → y) → y ∈ H, and so y ∈ H. As to another case, we can immediately
obtain that x ∈ H.

(⇐) Let x, y ∈ E. Since (x → y) ∨ (y → x) = 1 ∈ H, we have x → y ∈ H
or y → x ∈ H by assumption. Therefore, it readily follows that H is a prime
filter.

Proposition 4.15. Each non principal n-filter H is a prime filter of a prelinear
EQ-algebra.

Proof. Suppose there are x, y ∈ E satisfying x ∨ y ∈ H but x /∈ H, y /∈ H.
Then, we know that ⟨x ∨ y⟩ ⊆ H, ⟨x⟩ ⊈ H and ⟨y⟩ ⊈ H. And, by the fact that
H is a nodal filter, it follows that H ⊆ ⟨x⟩ and H ⊆ ⟨y⟩. Thus, by Theorem 2.6
(3), we obtain H ⊆ ⟨x⟩∩⟨y⟩ = ⟨x∨y⟩. For this reason, we get that H = ⟨x∨y⟩,
which is a contradiction. Hence, we obtain that x ∈ H or y ∈ H, and so H is a
prime filter.

Proposition 4.16. Let H be an obstinate filter of a bounded EQ-algebra. If
(x⊗ y′) ≤ y for any x, y ∈ E, then H is an n-filter.

Proof. Assume H is not an n-filter. Then, we get J ⊈ H and H ⊈ J for some
J ∈ F(E). Thus, there are u, v ∈ E such that u ∈ H/J and v ∈ J/H. It follows
from H is an obstinate filter that v′ = v → 0 ∈ H, and so u⊗v′ ∈ H. Moreover,
since (u ⊗ v′) ≤ v, we get v ∈ H, which generates a contradiction. Hence, we
see immediately that H is an n-filter.
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Proposition 4.17. Suppose H is an implicative filter of a good EQ-algebra. If
d is a dense element for any d ∈ E, then H is an n-filter.

Proof. Suppose H is not an n-filter. Firstly, we show that d′′ → d ∈ H for any
d ∈ E. Since d′ → 0 ≤ d′ → d, we have d′′ → (d′ → d) = 1 ∈ H. And, because
d ≤ d′′ → d, we get d′ → d ≤ (d′′ → d)′ → d. Thus d′′ → (d′ → d) ≤ d′′ →
[(d′′ → d)′ → d] ∈ H, which implies that 1 → [(d′′ → d)′ → (d′′ → d)] = (d′′ →
d)′ → (d′′ → d) = d′′ → [(d′′ → d)′ → d] ∈ H. By definition of an implicative
filter, we know that d′′ → d ∈ H.

Assume H is not an n-filter of E . Then, J ⊈ H and H ⊈ J for some
J ∈ F(E). Thus, v ∈ J/H for some v ∈ E. By the conclusion above, we obtain
that v′′ → v ∈ H. Since v is a dense element, we have v′′ → v = v ∈ H, which
generates a contradiction. Hence, we see immediately that H is an n-filter.

Proposition 4.18. Assume H is a positive implicative filter of a residuated
EQ-algebra. If y → (x ⊙ y) = x → y holds for any x, y ∈ E, then H is an
n-filter.

Proof. Assume that H is not an n-filter. Firstly, we shall prove that for any
x ∈ E, x → x2 ∈ H. Since x → (x → x2) = x2 → x2 = 1 ∈ H and
x → x = 1 ∈ H. Then, by definition of a positive implicative filter, we get
x → x2 ∈ H. If H is not an n-filter, then there is J ∈ F(E) satisfying J ⊈ H
and H ⊈ J . Moreover, assume x ∈ H/J and y ∈ J/H. By the conclusion
above, it follows that y → y2 ∈ H. Then, x ⊗ (y → y2) ∈ H. And, because
x⊗ (y → y2) ≤ y → (x⊗ y2) ≤ y → (x⊗ y) = x → y, we have x → y ∈ H, and
so y ∈ H, which is a contradiction. Hence, we obtain that H is an n-filter.

Proposition 4.19. Let H be a non principal n-filter of an EQ-algebra E. Then,
(E/H,∧,⊙,∼H , 1) is linearly ordered.

Proof. Let x/H, y/H ∈ E/H and x/H ≰ y/H. Then, we can obtain that
x → y /∈ H. Moreover, because H is a non principal n-filter, then from Theorem
4.15 that we get H is a prime filter. Hence, it readily follows that y → x ∈ H,
and so [y] ≤ [x]. Thus, we see immediately that E/H is a chain.

Lemma 4.20 ([9]). Assume θ is a congruence relation on a separated EQ-
algebra. Then, F = [1]θ = {a ∈ E | aθ1} is a filter.

Theorem 4.21. Assume E is an EQ-algebra. Then, [1]θ is an n-filter iff θ is a
node of Con(E), where Con(E) denotes the set of all congruence relation of E.

Proof. Note that the mapping θ 7→ Fθ of Con(E) on to NF (E) is an isomor-
phism and Fθ is an n-filter iff it is a node of NF (E).
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5. The structures of the set of all nodal filters on EQ-algebras

In this section, we study the algebraic properties NF (E) and topological prop-
erties of NP (E) on EQ-algebras.

Let O, J ∈ NF (E). Define five operations as follows:

O ⊓ J := O ∩ J,O ⊔ J := ⟨O ∪ J⟩, O → J := {a ∈ E | O ∩ ⟨a⟩ ⊆ J},
O ⊗ J := {o⊗ j | o ∈ O, j ∈ J}, O′ := O → {1}.

Proposition 5.1. Let E be an EQ-algebra. Then, for any O, J ∈ NF (E), the
following properties hold:

(1) O ⊓ J , O ⊔ J ∈ NF (E).

(2) O → J ∈ NF (E).

(3) O ⊗ J ∈ NF (E) and O ⊗ J = O ∪ J .

Proof. (1) For any K ∈ F(E). If O, J ⊆ K, then O ⊔ J = ⟨O ∪ J⟩ ⊆ K. And,
if K ⊆ O, J , we have K ⊆ O ⊆ ⟨O ∪ J⟩ = O ⊔ J . Now, if O ⊆ K ⊆ J or
J ⊆ K ⊆ O, we obtain that K ⊆ ⟨O ∪ J⟩ = O ⊔ J . Thus, it readily follows that
O ⊔ J ∈ NF (E). Analogously, we can prove that O ⊓ J ∈ NF (E) hold.

(2) If O = J , we can get that O → J = E ∈ NF (E). Now, if O ̸= J .
Suppose that O ⊆ J . Then, O ∩ ⟨a⟩ ⊆ O ⊆ J for any a ∈ E, which implies
that O → J = E. If J ⊆ O, we shall prove that O → J = J . In fact, for
any a ∈ O → J , if a ∈ J , then O → J ⊆ J . And, if a /∈ J and a ∈ O, we
get ⟨a⟩ ⊆ O. Thus, ⟨a⟩ = O ∩ ⟨a⟩ ⊆ J , which is a contradiction. Suppose that
a /∈ J and a /∈ O. Then, we have O ⊆ ⟨a⟩, which means O = O ∩ ⟨a⟩ ⊆ J .
Moreover, because J ⊆ O, we get that O = J , which is a contradiction. Hence,
O → J ⊆ J . Conversely, for any a ∈ J , we can easily get ⟨a⟩ ⊆ J , which implies
O ∩ ⟨a⟩ ⊆ ⟨a⟩ ⊆ J , that is a ∈ O → J . Hence J ⊆ O → J , and so O → J = J .

(3) If O ⊆ J , then O ⊗ J = {o⊗ j | o ∈ O, j ∈ J} = J ∈ NF (E). Similarly,
if J ⊆ O, then O⊗J = O ∈ NF (E). In any cases, O⊗J = O or J holds. Thus,
we see immediately that O ⊗ J = O ∪ J .

Remark 5.2. In particular, we know that H ′ := H → {1} ∈ NF (E) for any
H ∈ NF (E).

Proposition 5.3. Let E be an EQ-algebra. Then, for any O, J,K ∈ NF (E),
the following properties hold:

(1) E → O = O, O → O = E, O → E = E, {1} → O = E.
(2) O′ = {1}, O′′ = E, for O ̸= {1}.
(3) O → J ′ = J → O′ for O, J ̸= {1}.
(4) O ⊆ J implies J → K ⊆ O → K, K → O ⊆ K → J .
(5) O ⊆ J iff O → J = E.
(6) O ⊆ J → O and O, J ⊆ O ⊗ (O → J).
(7) O ⊗ (J ⊗K) = (O ⊗ J)⊗K.
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Proof. (1) By definition, we have E → O = {a ∈ E | E ∩ ⟨a⟩ ⊆ O} = {a ∈ E |
⟨a⟩ ⊆ O} = O. Similarly, we can prove other equations hold.

(2) By definition, it readily implies O′ = O → {1} = {a ∈ E | O∩⟨a⟩ ⊆ {1}}.
Now, let a ∈ O′ and a ̸= 1. If a ∈ O, then O ∩ ⟨a⟩ = ⟨a⟩ ⊈ {1}, which is a
contradiction. Thus a = 1, and so O′ = O → {1} = {1}. Furthermore, by (1),
we see immediately that O′′ = O′ → {1} = {1} → {1} = E.

(3) By (2), we get that O′ = J ′ = {1}. Then, O → J ′ = O → {1} =
O′ = {1}. Similarly, we can obtain J → O′ = {1}. Hence, we obtain that
O → J ′ = J → O′.

(4) For any a ∈ J → K, we get J ∩ ⟨a⟩ ⊆ K. And, since O ⊆ J , it readily
follows that O∩⟨a⟩ ⊆ J∩⟨a⟩ ⊆ K. Thus a ∈ O → K. That is J → K ⊆ O → K.
Analogously, we can obtain that K → O ⊆ K → J .

(5) By definition, we know that O ⊆ J iff ⟨a⟩ ∩ O ⊆ J holds for any a ∈ E
iff O → J = E.

(6) By the proof of Proposition 5.1, we obtain that if J ⊆ O, then O⊗ (O →
J) = O ⊗ J = O and J → O = E. And, if O ⊆ J , then O ⊗ (O → J) = E and
J → O = J . Therefore, in any case, we have O ⊆ J → O and O, J ⊆ O⊗ (O →
J).

(7) The proof is clear.

Proposition 5.4. Let E be an EQ-algebra. Then, (NF (E),⊔,⊓) is a bounded
distributive lattice.

Proof. By Proposition 5.1 (1), we know that (NF (E),⊔,⊓) is a lattice. Next we
shall show that O∩⟨J∪K⟩ = ⟨⟨O∩J⟩∪⟨O∩K⟩⟩ holds for any O, J,K ∈ NF (E).
Let us consider the following six cases:

Case 1. Assume O ⊆ J ⊆ K. Then, O ∩ ⟨J ∪K⟩ = O ∩K = O = ⟨O ∪ O⟩ =
⟨⟨O ∩ J⟩ ∪ ⟨O ∩K⟩⟩.

Case 2. Assume O ⊆ K ⊆ J . Then, O ∩ ⟨J ∪K⟩ = O ∩ J = O = ⟨O ∪ O⟩ =
⟨⟨O ∩ J⟩ ∪ ⟨O ∩K⟩⟩.

Case 3. Assume K ⊆ O ⊆ J . Then, O ∩ ⟨J ∪K⟩ = O ∩ J = O = ⟨O ∪K⟩ =
⟨⟨O ∩ J⟩ ∪ ⟨O ∩K⟩⟩.

Case 4. Assume K ⊆ J ⊆ O. Then, O ∩ ⟨J ∪ K⟩ = O ∩ J = J = ⟨J ∪ K⟩ =
⟨⟨O ∩ J⟩ ∪ ⟨O ∩K⟩⟩.

Case 5. Assume J ⊆ K ⊆ O. Then, O ∩ ⟨J ∪K⟩ = O ∩K = K = ⟨J ∪K⟩ =
⟨⟨O ∩ J⟩ ∪ ⟨O ∩K⟩⟩.

Case 6. Assume J ⊆ O ⊆ K. Then, O ∩ ⟨J ∪K⟩ = O ∩K = O = ⟨J ∪ O⟩ =
⟨⟨O ∩ J⟩ ∪ ⟨O ∩K⟩⟩.

Hence, we obtain that (NF (E),⊔,⊓) is a bounded distributive lattice.

Theorem 5.5. Assume that E is an EQ-algebra. Then, (NF (E),⊓,→, E) is a
Hertz-algebra.
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Proof. It is apparent that (HE1) is valid. By Proposition 5.3 (6), we know that
(HE2) holds. For (HE3), if O ⊆ J , then O ⊓ (O → J) = O ⊓ E = O = O ⊓ J .
And, if J ⊆ O, then O ⊓ (O → J) = O ⊓ J . Hence, it implies that (HE3) holds.
Now, we prove that (HE4) is valid and we consider the following scenarios:

Case 1. Suppose that O ⊆ J ⊆ K. Then, O → (J ⊓ K) = O → J = E =
E ⊓ E = (O → J) ⊓ (O → K).

Case 2. If O ⊆ K ⊆ J , it follows that O → (J ⊓K) = O → K = E = E ⊓ E =
(O → J) ⊓ (O → K).

Case 3. If J ⊆ O ⊆ K, we conclude that O → (J ⊓K) = O → J = J = J ⊓E =
(O → J) ⊓ (O → K).

Case 4. Suppose J ⊆ K ⊆ O, we obtain that O → (J ⊓ K) = O → J = J =
J ⊓K = (O → J) ⊓ (O → K).

Case 5. If K ⊆ O ⊆ J , it implies that O → (J ⊓K) = O → K = K = E ⊓K =
(O → J) ⊓ (O → K).

Case 6. If K ⊆ J ⊆ O, we have O → (J ⊓K) = O → K = K = J ⊓K = (O →
J) ⊓ (O → K).

Hence, (HE4) holds. Therefore, we obtain that (NF (E),⊓,→, E) is a Hertz-
algebra.

Theorem 5.6. Let E be an EQ-algebra. Then, the following properties hold:

(1) (NF (E),⊗, {1}) is a commutative monoid.

(2) (NF (E),→, E) is a Hilbert algebra.

(3) (NF (E),⊔,⊓,→, E) is a Heyting algebra.

(4) (NF (E),→, E) is a BCK-algebra.

Proof. (1) If O ⊆ J , then O ⊗ J = J = J ⊗ O. And, if J ⊆ O, we get
O ⊗ J = O = J ⊗ H. Moreover, because O ⊗ {1} = O = {1} ⊗ O, we see
immediately that (NF (E),⊗, {1}) is a commutative monoid.

(2) Firstly, we show that (HL1) is valid. If O ⊆ J , then we obtain O →
(J → O) = O → O = E by Proposition 5.1 and Proposition 5.3 (1). Similarly,
if J ⊆ O, it follows that O → (J → O) = O → E = E. Hence, we conclude that
(HL1) holds.

Next, we shall prove that (HL2). If O ⊆ J ⊆ K, then [O → (J → K)] →
[(O → J) → (O → K)] = (O → E) → (E → E) = E → E = E. And, if
O ⊆ K ⊆ J , then [O → (J → K)] → [(O → J) → (O → K)] = (O → K) →
(E → E) = E. Moreover, if K ⊆ O ⊆ J or K ⊆ J ⊆ O or J ⊆ K ⊆ O or
J ⊆ O ⊆ K, we can prove it in a similar way. Thus, we obtain that (HL2) holds.

Finally, by Proposition 5.3 (5), we can easily check that (HL3) holds. There-
fore, (NF (E),→, E) is a Hilbert algebra.
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(3) By Proposition 5.4, we know that (NF (E),⊔,⊓) is a bounded distribu-
tive lattice. Now, for any O, J,K ∈ NF (E), we shall prove that O ∩K ⊆ J iff
K ⊆ O → J . Let us take the following six cases into account:

Case 1. If O ⊆ J ⊆ K, then O ∩K = O ⊆ J iff K ⊆ E = O → J .

Case 2. If O ⊆ K ⊆ J , then O ∩K = O ⊆ J iff K ⊆ E = O → J .

Case 3. If K ⊆ O ⊆ J , then O ∩K = K ⊆ J iff K ⊆ E = O → J .

Case 4. If K ⊆ J ⊆ O, then O ∩K = K ⊆ J iff K ⊆ E = O → J .

Case 5. If J ⊆ O ⊆ K, then O ∩K = O ⊈ J iff K ⊈ J = O → J .

Case 6. If J ⊆ K ⊆ O, then O ∩K = K ⊈ J iff K ⊈ J = O → J .

Hence, we obtain that (NF (E),⊔,⊓,→, E) is a Heyting algebra.

(4) Firstly, we show that (B1) holds. Let us consider the following six sce-
narios:

Case 1. Assume O ⊆ J ⊆ K. Then, (J → K) → [(K → O) → (J → O)] =
E → (O → O) = E → E = E.

Case 2. If O ⊆ K ⊆ J , then (J → K) → [(K → O) → (J → O)] = K → (O →
O) = K → E = E.

Case 3. If K ⊆ O ⊆ J , then (J → K) → [(K → O) → (J → O)] = K → (E →
O) = K → O = E.

Case 4. Suppose K ⊆ J ⊆ O, then (J → K) → [(K → O) → (J → O)] = K →
(E → E) = K → E = E.

Case 5. If J ⊆ K ⊆ O, then (J → K) → [(K → O) → (J → O)] = E → (E →
E) = E.

Case 6. If J ⊆ O ⊆ K, then (J → K) → [(K → O) → (J → O)] = E → (O →
E) = E.

Hence, we obtain that (B1) holds.

As for (B2), if O ⊆ J , then it implies that J → ((J → O) → O) = J →
(O → O) = J → E = E by Proposition 5.3 (1). Similarly, if J ⊆ O, we can get
that J → ((J → O) → O) = J → (E → O) = J → O = E. Hence, we conclude
that (B2) holds. Moreover, from Proposition 5.3 (1) and (5), we can easily check
that (B3), (B4) and (B5) hold. Therefore, we obtain that (NF (E),→, E) is a
BCK-algebra.

Theorem 5.7. Suppose that E is an EQ-algebra. If for any {1} ̸= O, J ∈
NF (E), O∩J ̸= {1}, then (NF (E),⊔,⊓,′ , {1}, E) is a semi-De Morgan algebra.

Proof. Similar to above, it follows that it is a bounded distributive lattice by
Theorem 5.4. Now, for any O, J ∈ NF (E), we shall show that (O⊔J)′ = O′⊓J ′,
(O ⊓ J)′′ = O′′ ⊓ J ′′ and O′ = O

′′′
. If O = J = {1}, since O′ = E and J ′ = E,

we get (O⊔J)′ = ⟨O∪J⟩ → {1} = {1} → {1} = E = E∩E = O′∩J ′ = O′⊓J ′,
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(O ⊓ J)′′ = ((O ⊓ J)′)′ = E′ = {1} = {1} ∩ {1} = O′′ ∩ J ′′ = O′′ ⊓ J ′′ and
O

′′′
= E = O′. Now, assume O = {1} and J ̸= {1}. Because O′ = E, it follows

that (O ⊔ J)′ = ⟨O ∪ J⟩ → {1} = J → {1} = J ′ = J ′ ∩ E = J ′ ∩ O′ = J ′ ⊓ O′

and (O⊓J)′′ = O′′ = {1} = {1}∩J ′′ = O′′∩J ′′ = O′′⊓J ′′ and O′ = E = O
′′′
by

Proposition 5.3 (2). Finally, assume O ̸= {1} and J ̸= {1}. Since O′ = J ′ = {1},
we obtain (O ⊔ J)′ = ⟨O ∪ J⟩ → {1} = {1} = {1} ∩ {1} = O′ ∩ J ′ = O′ ⊓ J ′,
(O ⊓ J)′′ = ((O ⊓ J) → {1})′ = {1}′ = E = E ∩ E = O′′ ∩ J ′′ = O′′ ⊓ J ′′ and
O

′′′
= {1}′′ = E′ = {1} = O′. Hence, the conclusion holds.

In the following, some topological properties of NF (E) will be stated and
proved. By Proposition 4.15, we know that each non principal nodal filter is
prime. Let us call this kind of filter nodal prime filter and denote the set of all
nodal prime filters by NP (E) .

Proposition 5.8. Suppose H is a prime filter of an EQ-algebra.

(1) If H1 is a proper filter with H ⊆ H1, then H1 is a prime filter.

(2) If {Hi | i ∈ I} ⊆ F(E) satisfying H ⊆
⋂

i∈I Hi, then {Hi | i ∈ I} is a
chain.

Proof. (1) It follows from H is a prime that either a → b ∈ H ⊆ H1 or
b → a ∈ H ⊆ H1 for any a, b ∈ E. Thus, we obtain that H1 is a prime filter.

(2) Let H1, H2 ∈ {Hi | i ∈ I}. When H1 = E or H2 = E, the proof is
obvious. Now, let H1 ̸= E, H2 ̸= E and H1 ⊈ H2, H2 ⊈ H1. Then, u ∈ H1 \H2

and v ∈ H2 \ H1 for some u, v ∈ E. Since H ⊆
⋂

i∈I Hi ⊆ H1 ∩ H2, we know
that H1 ∩H2 is prime. Moreover, since ⟨u⟩ ∈ H1 and ⟨v⟩ ∈ H2, it follows that
⟨u⟩ ∩ ⟨v⟩ ⊆ H1 ∩ H2, and so u ∈ ⟨u⟩ ⊆ H1 ∩ H2 or v ∈ ⟨v⟩ ⊆ H1 ∩ H2, which
generates a contradiction. Therefore, H1 ⊆ H2 or H2 ⊆ H1, it turns out that
{Hi | i ∈ I} is a chain.

Theorem 5.9. Let H be a filter of an EQ-algebra and ∅ ≠ I ⊆ E with I∩H = ∅.
Then, there is a prime filter J satisfying H ⊆ J and I ∩ J = ∅.

Proof. Denote Γ = {K ∈ N (F ) | H ⊆ K and I ∩ K = ∅}. It follows from
H ∈ Γ that Γ is non-empty. Assume {Ki | i ∈ I} ⊆ Γ is a chain. Then,
J =

⋃
i∈I Ki is a maximal element in Γ by Zorn’s Lemma, and so we shall show

that J is a filter. Obviously, 1 ∈ J . For any u ∈ J and u ≤ v, we get u ∈ Ki1

for some i1 ∈ I. And, since Ki1 is a filter, we obtain that v ∈ Ki1 ⊆ J . Suppose
that x, y ∈ J . Then, there are i, j ∈ I such that x ∈ Ki, y ∈ Kj . If Ki ⊆ Kj ,
then we get x⊗ y ∈ Ki ⊆ J . Otherwise, we obtain that x⊗ y ∈ Kj ⊆ J . Now,
for any u → v ∈ J , there exists i2 ∈ I such that u → v ∈ Ki2 . Thus, it follows
from Ki2 is a filter that u ⊙ w → v ⊙ w ∈ Ki2 ⊆ J for any w ∈ E. Hence, we
obtain that J is a filter. By Proposition 5.8, we know that J is a prime filter.
Therefore, we see immediately that J is what we want.
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Corollary 5.10. Let H be a filter of an EQ-algebra and x /∈ H. Then, there is
a prime filter J satisfying H ⊆ J and x /∈ J .

For any A ⊆ E, denote T (A) = {H ∈ NP (E) | A ⊈ H}. Next, we will
present the properties of T (A) and the topology space induced by it.

Proposition 5.11. Let E be an EQ-algebra. Then, for any M,N ⊆ E, the
following properties hold:

(1) If M ⊆ N , then T (M) ⊆ T (N).

(2) T ({0}) = NP (E), T (∅) = ∅.

(3) If ⟨M⟩ = E, then T (M) = NP (E).

(4) T (M) = T (⟨M⟩).

(5) T (M) = T (N) iff ⟨M⟩ = ⟨N⟩.

(6) T (M) ∩ T (N) = T (⟨M⟩ ∩ ⟨N⟩).

(7) Let {Mi | i ∈ I} ⊆ E. Then, T (
⋃

i∈I Mi) =
⋃

i∈I T (Mi).

Proof. (1) For any H ∈ T (M), we get M ⊈ H. And, by assumption, it follows
that N ⊈ H, which means H ∈ T (N). Thus, we obtain that T (M) ⊆ T (N).

(2) Let H ∈ NP (E). Since H is a prime filter, it implies that H is proper,
which means 0 ∈ H, that is {0} ⊆ H. Thus, we obtain that H ∈ T ({0}), and it
readily follows that T ({0}) = NP (E). Obviously, T (∅) = ∅ holds.

(3) If ⟨M⟩ = E, we know that E is the smallest filter containing M by
definition. Then, for any H ∈ NP (E), it readily follows that M ⊈ H. Thus
H ∈ T (M) holds, and then NP (E) ⊆ T (M). Hence, we obtain that T (M) =
NP (E).

(4) Since M ⊆ ⟨M⟩, we get T (M) ⊆ T (⟨M⟩) by (1). Conversely, let H ∈
T (⟨M⟩). Then, ⟨M⟩ ⊈ H. If M ⊆ H, it follows from the definition of ⟨M⟩ that
⟨M⟩ ⊆ H, which generates a contradiction. Hence, M ⊈ H, and so H ∈ T (M).
Therefore, we see immediately that T (M) = T (⟨M⟩).

(5) Assume ⟨M⟩ = ⟨N⟩. Then, we get T (⟨M⟩) = T (⟨N⟩), and so T (M) =
T (N) by (4). Conversely, let T (M) = T (N). If ⟨M⟩ ≠ ⟨N⟩, then we obtain
that there is a prime filter H satisfying ⟨M⟩ ⊆ H and ⟨N⟩ ⊈ H by Proposition
5.9. Thus, H /∈ T (M) and H ∈ T (N), which contradict to T (M) = T (N).
Therefore, ⟨M⟩ = ⟨N⟩ holds.

(6) By (4), it suffices to show that T (⟨M⟩) ∩ T (⟨N⟩) = T (⟨M⟩ ∩ ⟨N⟩).
Obviously, ⟨M⟩∩ ⟨N⟩ ⊆ ⟨M⟩, ⟨N⟩, which implies that T (⟨M⟩∩ ⟨N⟩) ⊆ T (⟨M⟩),
T (⟨N⟩), and so T (⟨M⟩ ∩ ⟨N⟩) ⊆ T (⟨M⟩) ∩ T (⟨N⟩). Conversely, for any H ∈
T (⟨M⟩) ∩ T (⟨N⟩), we obtain that ⟨M⟩ ⊈ H and ⟨N⟩ ⊈ H. Hence, there are
a ∈ ⟨M⟩ and b ∈ ⟨N⟩ satisfying a /∈ H and b /∈ H. Now, we show that
⟨M⟩ ∩ ⟨N⟩ ⊈ H. Otherwise, it follows from a ∨ b ∈ ⟨M⟩ ∩ ⟨N⟩ that a ∨ b ∈ H.
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By the fact that H is prime, we obtain that a ∈ H or b ∈ H, which generates a
contradiction. Hence, it follows that ⟨M⟩∩⟨N⟩ ⊈ H, and so H ∈ T (⟨M⟩∩⟨N⟩).

(7) Since Mi ⊆
⋃

i∈I Mi for any i ∈ I, we get T (Mi) ⊆ T (
⋃

i∈I Mi) for any
i ∈ I, that is

⋃
i∈I T (Mi) ⊆ T (

⋃
i∈I Mi). Conversely, assume H ∈ T (

⋃
i∈I Mi),

we have
⋃

i∈I Mi ⊈ H by definition. Hence, there is Mi1 satisfying H ∈ T (Mi1),
and so Mi1 ⊈ H. It follows that

⋃
i∈I Mi1 ⊈ H and H ∈ T (

⋃
i∈I Mi). Hence,

we obtain that T (
⋃

i∈I Mi) =
⋃

i∈I T (Mi).

Proposition 5.12. Let H,J be two filters of an EQ-algebra. Then, the equa-
tions T (H ⊔ J) = T (H) ∪ T (J) and T (H ∩ J) = T (H) ∩ T (J) hold.

Proof. Let K ∈ T (H) ∪ T (J). Then, H ⊈ K or J ⊈ K. Now, because
H,J ⊆ H ⊔ J , we get H ⊔ J ⊈ K, that is K ∈ T (H ⊔ J). Conversely, for any
K ∈ T (H ⊔ J), it readily implies that H ⊔ J ⊈ K. Assume that H ⊆ K and
J ⊆ K. Then, H ⊔ J ⊆ K, which is a contradiction. Thus, we get H ⊈ K
or J ⊈ K, it follows that K ∈ T (H) or K ∈ T (J), that is K ∈ T (H) ∪ T (J).
Hence, T (H ⊔ J) = T (H) ∪ T (J) holds.

Now, we prove that T (H ∩J) = T (H)∩T (J) holds. Obviously, T (H ∩J) ⊆
T (H) ∩ T (J) is valid. Conversely, for any K ∈ T (H) ∩ T (J), it implies that
H ⊈ K and J ⊈ K. Thus, u ∈ H and u /∈ K for some u ∈ E. If K ⊈ T (H ∩J),
we get H ∩ J ⊆ K, and then u ∨ v ∈ H ∩ J ⊆ K for some v ∈ J . Moreover,
since K is prime and u /∈ K, it follows that v ∈ K, and so J ⊆ K, which is a
contradiction. Hence, K ∈ T (H∩J), which implies T (H∩J) = T (H)∩T (J).

Especially, if A = {u}, then we denote T (u) = {H ∈ NP (E) | u /∈ H}.
Analogously, we have the following properties:

Proposition 5.13. Assume E is an EQ-algebra. Then, for any x, y ⊆ E, the
following properties hold:

(1) If x ≤ y, then T (y) ≤ T (x).

(2) T (0) = NP (E), T (1) = ∅.

(3) If ⟨x⟩ = E, then T (x) = NP (E).

(4) T (x) = T (⟨x⟩).

Proposition 5.14. Let E be an EQ-algebra. Then, for any x, y ⊆ E, the
following properties hold:

(1)
⋃

x∈E T (x) = NP (E).

(2) If x ∨ y exists, then T (x) ∩ T (y) = T (x ∨ y).

(3) T (x) ∪ T (y) = T (x ∧ y) = T (x⊗ y).
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Proof. (1) It follows from Proposition 5.11 (2).
(2) Let H ∈ T (x) ∩ T (y). Then, we have H ∈ T (x) and H ∈ T (y), which

implies x /∈ H, y /∈ H. If x ∨ y ∈ H, then by the fact that H is prime, we get
x ∈ H or y ∈ H, which generates a contradiction. Thus, we get x ∨ y /∈ H,
which means H ∈ T (x ∨ y). Hence, it follows that T (x) ∩ T (y) ⊆ T (x ∨ y).
Conversely, for any H ∈ T (x∨ y), it implies that x∨ y /∈ H. If x ∈ H or y ∈ H,
then we get x ∨ y ∈ H by x, y ≤ x ∨ y, which generates a contradiction. Hence,
it follows that x /∈ H and y /∈ H, that is H ∈ T (x) and H ∈ T (y), and so
H ∈ T (x) ∩ T (y). Therefore, we obtain that T (x) ∩ T (y) = T (x ∨ y).

(3) For any H ∈ T (x) ∪ T (y), it implies that H ∈ T (x) or H ∈ T (y), which
means x /∈ H or y /∈ H. Now, since H is a filter, we get x ∧ y /∈ H, that is
H ∈ T (x∧y), and so T (x)∪T (y) ⊆ T (x∧y). Conversely, for any H ∈ T (x∧y),
we have x ∧ y /∈ H. If x, y ∈ H, then x ⊗ y ∈ H, and so x ∧ y ∈ H, which
generates a contradiction. Hence, x /∈ H or y /∈ H, that is H ∈ T (x) ∪ T (y).
Therefore, T (x) ∪ T (y) = T (x ∧ y). Analogously, T (x) ∪ T (y) = T (x ⊗ y) also
holds.

Let E be an EQ-algebra and τ = {T (M) | M ⊆ E}. Then, by the above
Proposition, we have:

(1) ∅, NP (E) ∈ τ .

(2) If T (M), T (N) ∈ τ , then T (M) ∩ T (N) ∈ τ .

(3) If {T (Mi) | i ∈ I} ⊆ τ , then
⋃

i∈I T (Mi) ∈ τ .

Hence, τ is a topology on NP (E) and (NP (E), τ) is a topological space of nodal
prime filters.

Proposition 5.15. Assume that E is an EQ-algebra. Then, {T (m) | m ∈ E}
is a topological base of (NP (E), τ).

Proof. Let T (M) ∈ τ . Then, we get T (M) = T (
⋃

i∈I mi) =
⋃

i∈I T (mi),
that is to say each element in τ can be expressed by the union of elements in
subset of {T (m) | m ∈ E}. Hence, {T (m) | m ∈ E} is a topological base of
(NP (E), τ).

Proposition 5.16. Suppose that E is an EQ-algebra. Then, (NP (E), τ) is a
compact T0 space.

Proof. Firstly, we show that T (u) is compact set in (NP (E), τ) for any u ∈ E.
By definition of compact, we shall prove that each open covering of T (u) has
a finite open covering. Assume T (u) =

⋃
i∈I T (ui) = T (

⋃
i∈I ui). Then, from

Proposition 5.11 (5), we obtain that ⟨u⟩ = ⟨
⋃

i∈I ui⟩, and so u ∈ ⟨
⋃

i∈I ui⟩.
Hence, there are finite ui1 , ui2 , · · · , uin satisfying ui1 ⊗ui2 ⊗· · ·⊗uin ≤ u, which
implies T (u) ≤ T (ui1 ⊗ ui2 ⊗ · · · ⊗ uin) = T (ui1) ∪ T (ui2) ∪ · · · ∪ T (uin) ⊆⋃

i∈I T (ui) = T (u). Therefore, it follows that (NP (E), τ) is compact.
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Next, we show that (NP (E), τ) is a T0 space. Assume that H,J ∈ NP (E)
with H ̸= J . Then, we get H ⊈ J or J ⊈ H. If H ⊈ J , then there exists a such
that a ∈ H but a /∈ J . Let U = T (a). Then, it implies that J ∈ U and H ⊈ U .
If J ⊈ H, the proof is similar. Hence, the conclusion holds.

6. Conclusion

In this article, we presented the definitions of seminodes, nodes and nodal filters
in EQ-algebras and their related properties are stated and proved. At first, we
exemplify that the seminodes and nodes are different with other specific ele-
ments and show that the set ND(E) is a distributive lattice and the set SN (E)
is a Hertz-algebra and a Heyting-algebra under some conditions. Then, we in-
troduced the concept of n-filters, we studied it with the help of node elements
and obtained that there is a one-to-one correspondence between nodal princi-
ple filters and node elements in an idempotent EQ-algebra. Furthermore, the
relationships among it and other filters were given. It was turned out that each
obstinate filter and each (positive) implicative filter is an n-filter under some
conditions. Finally, we investigated the algebraic structures of NF (E) and topo-
logical structures of NP (E) on EQ-algebras and set up the connections from the
set NF (E) of all nodal filters in an EQ-algebra E to other algebraic structures,
like BCK−algebras, Hertz algebras and so on. In addition, we concluded that
(NP (E), τ) is a compact T0 space.
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Séerie, 21 (1966), 1-54.

[9] M. El-Zekey, Representable good EQ-algebra, Soft Computing, 14 (2010),
1011-1023.

[10] M. El-Zekey, V. Novák, R. Mesiar, On good EQ-algebras, Fuzzy Sets and
System, 178 (2011), 1-23.

[11] J.A. Goguen, The logic of inexact concepts, Synthese, 19 (1968), 325-373.
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