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versions of Hölder’s inequality under certain specified conditions. At the end of the
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1. Introduction and main results

The discrete Hölder inequality states that if ak ≥ 0, bk ≥ 0, k = 1, 2, . . . , n,
p > 1, 1

p + 1
q = 1, then

n∑
k=1

akbk ≤
( n∑

k=1

apk

) 1
p
( n∑

k=1

bqk

) 1
q
.(1)

Correspondingly, the integral version of Hölder’s inequality can be formu-
lated as ∫ b

a
f(x)g(x)dx ≤

(∫ b

a
fp(x)dx

) 1
p
(∫ b

a
gq(x)dx

) 1
q
,(2)

where f(x) and g(x) are nonnegative integrable on [a, b], p > 1, 1
p + 1

q = 1.

Hölder’s inequality is one of the most important foundational inequality in
analysis, it also plays a key role in dealing with various problems of pure and
applied mathematics, see [1] for background information on Hölder’s inequality.
In the past more than 100 years, this classical inequality has been paid consid-
erable attention, there have been a large number of literature focusing on its
improvements, extensions and applications. For example, some refinements and
generalizations of Hölder’s inequality were established by Yang in the references
[2] and [3], respectively. A sharpened version was given by Hu [4]. A comple-
mentary version of sharpening Hölder’s inequality related to the work [4] was
provided by Wu [5]. A generalization of the result of Hu [4] was obtained by Wu
[6]. A further generalization and refinement of Hölder’s inequality was proposed
by Qiang and Hu in [7]. For more results regarding different improvements of
Hölder’s inequality can be found in monograph [8] and references therein.

In recent years, application of Schur convexity and majorization properties
to establish and improve various inequalities has been a hot research topic. For
details about the applications of Schur convexity of functions, we refer the reader
to the references [9-13].

In this paper, we provide a novel method to study the improvements and
variants of Hölder’s inequality. More specifically, we will construct some func-
tions associated with Hölder’s inequality, and then we use Schur convexity of
these functions to derive the refined versions of Hölder’s inequality under certain
specified conditions.

We denote the n-dimensional real vector by V = (v1, v2, . . . , vn), and let

Rn = {(v1, v2, . . . , vn) : vi ∈ R, i = 1, 2, . . . , n},

Rn
+ = {(v1, v2, . . . , vn) : vi ≥ 0, i = 1, 2, . . . , n}.

Our main results are as follows:
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Theorem 1.1. Let a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) ∈ Rn
+, and let p, q

be two non-zero real numbers

H1(a) =
( n∑

k=1

apk

) 1
p
( n∑

k=1

bqk

) 1
q
.

If p ≥ 1, then for fixed b, H1(a) is Schur-convex on Rn
+. If p ≤ 1, then for fixed

b, H1(a) is Schur-concave on Rn
+.

Theorem 1.2. Let a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) ∈ Rn
+, and let p, q

be two non-zero real numbers, An(a) =
1
n

∑n
k=1 ak,

H2(b) = n
1
p

( n∑
k=1

bqk

) 1
q
An(a).

If q ≥ 1, then for fixed a, H2(b) is Schur-convex on Rn
+. If q ≤ 1, then for fixed

a, H2(b) is Schur-concave on Rn
+.

Theorem 1.3. Let f(x), g(x) be two nonnegative and continuous functions on

I, let
∫ b
a f(x)g(x)dx ̸= 0,

∫ b
a (f(x))

pdx ̸= 0,
∫ b
a (g(x))

qdx ̸= 0, for any a, b ∈ I
(a ̸= b), p, q ∈ R, and let

(3) H3(a, b) =


( ∫ b

a (g(x))
qdx∫ b

a f(x)g(x)dx

)p( ∫ b
a (f(x))

pdx∫ b
a f(x)g(x)dx

)q
, a ̸= b,

[f(a)g(a)]pq−p−q, a = b.

Then, H3(a, b) is Schur-convex (Schur-concave) on I2 if and only if

q(fp(b) + fp(a))∫ b
a fp(x)dx

+
p(gq(b) + gq(a))∫ b

a gq(x)dx
≥ (≤)

(f(b)g(b) + f(a)g(a))(p+ q)∫ b
a f(x)g(x)dx

.(4)

2. Preliminaries

In this section, we introduce some essential definitions and lemmas.

Definition 2.1 ([14]). Let U = (u1, u2, . . . , un) and V = (v1, v2, . . . , vn) ∈ Rn.

(i) The vector U is said to be majorized by the vector V , symbolized as U ≺
V , if

∑ℓ
i=1 u[i] ≤

∑ℓ
i=1 v[i] for ℓ = 1, 2, . . . , n− 1 and

∑n
i=1 ui =

∑n
i=1 vi,

where u[1] ≥ u[2] · · · ≥ u[n] and v[1] ≥ v[2] · · · ≥ v[n] are rearrangements of
U and V in a descending order.

(ii) Let Ω ⊂ Rn, Ψ: Ω → R is said to be Schur-convex function on Ω if
U ≺ V on Ω implies Ψ(U) ≤ Ψ(V ), while Ψ is said to be Schur-
concave function on Ω if and only if −Ψ is Schur-convex function.
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Lemma 2.1 ([14]). Suppose that Ω ⊂ Rn is a convex set and has a nonempty
interior set Ω◦, suppose also that Ψ : Ω → R is continuous on Ω and differen-
tiable in Ω◦. Then Ψ is the Schur-convex (or Schur-concave) function, if and
only if it is symmetric on Ω and

(v1 − v2)

(
∂Ψ

∂v1
− ∂Ψ

∂v2

)
≥ 0 (or ≤ 0)

holds, for any V = (v1, v2, . . . , vn) ∈ Ω◦.

Lemma 2.2 ([15], Chebyshev inequality). Let ak ≥ 0, bk ≥ 0, k = 1, 2, . . . , n.

(i) If {ak} and {bk} (k = 1, 2, . . . , n) have opposite monotonicity, then

n∑
k=1

ak

n∑
k=1

bk ≥ n
n∑

k=1

akbk(5)

(ii) If {ak} and {bk} (k = 1, 2, . . . , n) have same monotonicity, then

n∑
k=1

ak

n∑
k=1

bk ≤ n

n∑
k=1

akbk(6)

Lemma 2.3 ([15], Hermite-Hadamard inequality). If f(x) is a convex function
on [a, b], then

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(x)dx ≤ f(a) + f(b)

2
(7)

If f(x) is a concave function on [a, b], then inequality (7) is reversed.

Lemma 2.4 ([16]). If a ≤ b, u(t) = tb+ (1− t)a, v(t) = ta+ (1− t)b, 0 ≤ t1 ≤
t2 ≤ 1

2 or 1
2 ≤ t2 ≤ t1 ≤ 1, then(a+ b

2
,
a+ b

2

)
≺ (u(t2), v(t2)) ≺ (u(t1), v(t1)) ≺ (a, b)(8)

Lemma 2.5 ([16]). Let a = (a1, a2, · · · , an) ∈ Rn
+, An(a) =

1
n

∑n
i=1 ai. Then

(9) u =
(
An(a), An(a), · · · , An(a)︸ ︷︷ ︸

n

)
≺ (a1, a2, · · · , an) = a.

3. Proof of main results

Proof of Theorem 1.1. It is obvious that H1(a) is symmetric about a1, a2, . . . , an
on Rn

+, without loss of generality, we may assume that a1 ≥ a2.
Differentiating H1(a) with respect to a1 and a2 respectively, we obtain

∂H1

∂a1
=
( n∑

k=1

apk

) 1
p
−1( n∑

k=1

bqk

) 1
q
ap−1
1 ,

∂H1

∂a2
=
( n∑

k=1

apk

) 1
p
−1( n∑

k=1

bqk

) 1
q
ap−1
2 .
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Hence, we have

∆1 := (a1 − a2)
(∂H1

∂a1
− ∂H1

∂a2

)
= (a1 − a2)

( n∑
k=1

apk

) 1
p
−1( n∑

k=1

bqk

) 1
q
(ap−1

1 − ap−1
2 ).

It is easy to see that ∆1 ≥ 0 for p ≥ 1, and ∆1 ≤ 0 for p ≤ 1. By Lemma
2.1, it follows that H1(a) is Schur-convex on Rn

+ for p ≥ 1, and H1(a) is Schur-
concave on Rn

+ for p ≤ 1. The proof of Theorem 1.1 is complete. □

Proof of Theorem 1.2. Using the same arguments as that described in the proof
of Theorem 1.1, we can easily carry out the proof of Theorem 1.2. □

Proof of Theorem 1.3. Note that

H3(a, b) =
( ∫ b

a (g(x))
qdx∫ b

a f(x)g(x)dx

)p( ∫ b
a (f(x))

pdx∫ b
a f(x)g(x)dx

)q
=

( ∫ b
a fp(x)dx

)q( ∫ b
a gq(x)dx

)p( ∫ b
a f(x)g(x)dx

)p+q .

Since H3(a, b) is symmetric about a, b on R2
+, we may assume that b ≥ a.

Differentiating H3(a) with respect to b and a respectively gives

∂H3

∂b
=
q
( ∫ b

a fp(x)dx
)q−1

fp(b)
( ∫ b

a gq(x)dx
)p( ∫ b

a f(x)g(x)dx
)p+q( ∫ b

a f(x)g(x)dx
)2(p+q)

+
p
( ∫ b

a gq(x)dx
)p−1

gq(b)
( ∫ b

a fp(x)dx
)q( ∫ b

a f(x)g(x)dx
)p+q( ∫ b

a f(x)g(x)dx
)2(p+q)

−
(p+ q)

( ∫ b
a f(x)g(x)dx

)p+q−1
f(b)g(b)

( ∫ b
a fp(x)dx

)q( ∫ b
a gq(x)dx

)p( ∫ b
a f(x)g(x)dx

)2(p+q)
,

∂H3

∂a
=−

q
( ∫ b

a fp(x)dx
)q−1

fp(a)
( ∫ b

a gq(x)dx
)p( ∫ b

a f(x)g(x)dx
)p+q( ∫ b

a f(x)g(x)dx
)2(p+q)

−
p
( ∫ b

a gq(x)dx
)p−1

gq(a)
( ∫ b

a fp(x)dx
)q( ∫ b

a f(x)g(x)dx
)p+q( ∫ b

a f(x)g(x)dx
)2(p+q)

+
(p+ q)

( ∫ b
a f(x)g(x)dx

)p+q−1
f(a)g(a)

( ∫ b
a fp(x)dx

)q( ∫ b
a gq(x)dx

)p( ∫ b
a f(x)g(x)dx

)2(p+q)
.

Thus, we have

∆2 :=(b− a)
(∂H3

∂b
− ∂H3

∂a

)
=

b− a( ∫ b
a f(x)g(x)dx

)2(p+q)

[
q
( ∫ b

a
fp(x)dx

)q−1( ∫ b

a
gq(x)dx

)p
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×
( ∫ b

a
f(x)g(x)dx

)p+q(
fp(b) + fp(a)

)
+ p
( ∫ b

a
gq(x)dx

)p−1

×
( ∫ b

a
fp(x)dx

)q( ∫ b

a
f(x)g(x)dx

)p+q(
gq(b) + gq(a)

)
− (p+ q)

×
( ∫ b

a
f(x)g(x)dx

)p+q−1( ∫ b

a
fp(x)dx

)q( ∫ b

a
gq(x)dx

)p(
f(b)g(b) + f(a)g(a)

)]

=
b− a( ∫ b

a f(x)g(x)dx
)2(p+q)

(∫ b

a
f(x)g(x)dx

)p+q−1(∫ b

a
fp(x)dx

)q−1

×
( ∫ b

a
gq(x)dx

)p−1
[( ∫ b

a
f(x)g(x)dx

)(
q

∫ b

a
gq(x)dx(fp(b) + fp(a))

+ p

∫ b

a
fp(x)dx(gq(b) + gq(a))

)
− (p+ q)

( ∫ b

a
fp(x)dx

∫ b

a
gq(x)dx

)
(f(b)g(b) + f(a)g(a))

]
.

Using the assumption condition of Theorem 1.3 and the non-negativity of

b− a( ∫ b
a f(x)g(x)dx

)2(p+q)

( ∫ b

a
f(x)g(x)dx

)p+q−1( ∫ b

a
fp(x)dx

)q−1( ∫ b

a
gq(x)dx

)p−1
,

we deduce that ∆2 ≥ (≤) 0 if and only if

( ∫ b

a
f(x)g(x)dx

)[
q

∫ b

a
gq(x)dx(fp(b) + fp(a)) + p

∫ b

a
fp(x)dx(gq(b) + gq(a))

]
≥ (≤)

( ∫ b

a
fp(x)dx

∫ b

a
gq(x)dx

)
(f(b)g(b) + f(a)g(a))(p+ q)

⇐⇒ q(fp(b) + fp(a))∫ b
a fp(x)dx

+
p(gq(b) + gq(a))∫ b

a gq(x)dx
≥ (≤)

(f(b)g(b) + f(a)g(a))(p+ q)∫ b
a f(x)g(x)dx

.

Hence, H3(a, b) is Schur-convex (Schur-concave) on I2 if and only if

q(fp(b) + fp(a))∫ b
a fp(x)dx

+
p(gq(b) + gq(a))∫ b

a gq(x)dx
≥ (≤)

(f(b)g(b) + f(a)g(a))(p+ q)∫ b
a f(x)g(x)dx

.

This completes the proof of Theorem 1.3. □

4. Some corollaries

In this section, we give some consequences of Theorem 1.3.

Corollary 4.1. Let f(x), g(x) be two nonnegative convex functions on I, f ′′g+

g′′f + 2f ′g′ ≤ 0, and let
∫ b
a f(x)g(x)dx ̸= 0,

∫ b
a (f(x))

pdx ̸= 0,
∫ b
a (g(x))

qdx ̸= 0,
for any a, b ∈ I (a ̸= b). If p ≥ 1, q ≥ 1, then H3(a, b) is Schur-convex on I2.
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Proof. Direct computation gives

(fp)′′ = pfp−2[(p− 1)(f ′)2 + ff ′′], (gq)′′ = qgq−2[(q − 1)(g′)2 + gg′′],

(fg)′′ = f ′′g + g′′f + 2f ′g′.

Since f(x), g(x) are convex function on I, p ≥ 1, q ≥ 1, we have (fp(x))′′ ≥ 0,
(gq(x))′′ ≥ 0 for x ∈ I, so fp(x), gq(x) are convex functions on I. In addition,
form the assumption f ′′g+g′′f+2f ′g′ ≤ 0, we conclude that f(x)g(x) is concave
function on I.

By using Lemma 2.3 (Hermite-Hadamard inequality), we obtain

q(fp(b) + fp(a))∫ b
a fp(x)dx

+
p(gq(b) + gq(a))∫ b

a gq(x)dx
− (f(b)g(b) + f(a)g(a))(p+ q)∫ b

a f(x)g(x)dx

≥ 2q

b− a
+

2p

b− a
− (f(b)g(b) + f(a)g(a))(p+ q)∫ b

a f(x)g(x)dx

= (p+ q)
[ 2

b− a
− (f(b)g(b) + f(a)g(a))∫ b

a f(x)g(x)dx

]
≥ 0.

We deduce from Theorem 1.3 that H3(a, b) is Schur-convex on I2. The proof
of Corollary 4.1 is complete.

Corollary 4.2. Let f(x), g(x) be two nonnegative and opposite monotonicity

concave functions, and let
∫ b
a f(x)g(x)dx ̸= 0,

∫ b
a (f(x))

pdx ̸= 0,
∫ b
a (g(x))

qdx ̸=
0, for any a, b ∈ I (a ̸= b). If p < 0, q < 0, then H3(a, b) is Schur-concave on
I2.

Proof. In light of

(fp)′′ = p[(p− 1)(f ′)2 + ff ′′]fp−2, (gq)′′ = q[(q − 1)(g′)2 + gg′′]gq−2,

(fg)′′ = f ′′g + g′′f + 2f ′g′,

we conclude that (fp(x))′′ ≥ 0, (gq(x))′′ ≥ 0, so fp(x) and gq(x) are convex
functions on I. Since f(x), g(x) are opposite monotonicity concave functions,
which implies that f(x)g(x) is concave function on I. By Hermite-Hadamard
inequality, we have

q(fp(b) + fp(a))∫ b
a fp(x)dx

+
p(gq(b) + gq(a))∫ b

a gq(x)dx
− (f(b)g(b) + f(a)g(a))(p+ q)∫ b

a f(x)g(x)dx

≤ 2q

b− a
+

2p

b− a
− (f(b)g(b) + f(a)g(a))(p+ q)∫ b

a f(x)g(x)dx

= (p+ q)
[ 2

b− a
− (f(b)g(b) + f(a)g(a))∫ b

a f(x)g(x)dx

]
≤ 0.

It follows from Theorem 1.3 that H3(a, b) is Schur-concave on I2. Corollary 4.2
is proved.
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Corollary 4.3. Let f(x), g(x) be two nonnegative and opposite monotonicity

concave functions, and let
∫ b
a f(x)g(x)dx ̸= 0,

∫ b
a (f(x))

pdx ̸= 0,
∫ b
a (g(x))

qdx ̸=
0, for any a, b ∈ I (a ̸= b). If p < 0, 0 < q ≤ 1 and p+ q ≥ 0, then H3(a, b) is
Schur-convex on I2.

Proof. In view of

(fp)′′ = p[(p− 1)(f ′)2 + ff ′′]fp−2, (gq)′′ = q[(q − 1)(g′)2 + gg′′]gq−2,

(fg)′′ = f ′′g + g′′f + 2f ′g′,

we deduce that fp(x) is convex function for p < 0, gq(x) is concave function
for 0 < q ≤ 1, f(x)g(x) is concave function on I. By using Hermite-Hadamard
inequality, we obtain

q(fp(b) + fp(a))∫ b
a fp(x)dx

+
p(gq(b) + gq(a))∫ b

a gq(x)dx
− (f(b)g(b) + f(a)g(a))(p+ q)∫ b

a f(x)g(x)dx

≥ 2q

b− a
+

2p

b− a
− (f(b)g(b) + f(a)g(a))(p+ q)∫ b

a f(x)g(x)dx

= (p+ q)
[ 2

b− a
− (f(b)g(b) + f(a)g(a))∫ b

a f(x)g(x)dx

]
≥ 0.

We deduce from Theorem 1.3 that H3(a, b) is Schur-convex on I2. Corollary 4.3
is proved.

5. Applications to inequalities of Hölder type

Firstly, we establish two discrete Hölder-type inequality involving power mean
and arithmetic mean.

Theorem 5.1. Let ak ≥ 0, bk ≥ 0, k = 1, 2, . . . , n, and let p, q be two non-zero
real numbers.

(i) If p ≥ 1, q ≥ 1, then( n∑
k=1

apk

) 1
p
( n∑

k=1

bqk

) 1
q ≥ n

1
p
+ 1

qAn(a)An(b);(10)

(ii) If p ≤ 1, q ≤ 1, then( n∑
k=1

apk

) 1
p
( n∑

k=1

bqk

) 1
q ≤ n

1
p
+ 1

qAn(a)An(b),(11)

where An(a) =
1
n

∑n
k=1 ak, An(b) =

1
n

∑n
k=1 bk.

Proof. (i) By Lemma 2.5, one has the majorization relationship

(a1, a2, · · · , an) ≻ (An(a), An(a), · · · , (An(a)) .
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From Theorem 1.1, we know that, for p ≥ 1, H1(a) is Schur-convex on Rn
+.

It follows from Definition 2.1 that H1(a) ≥ H1(An(a)) for p ≥ 1.
Hence( n∑

k=1

apk

) 1
p
( n∑

k=1

bqk

) 1
q ≥ (n(An(a))

p)
1
p

( n∑
k=1

bqk

) 1
q
= n

1
pAn(a)

( n∑
k=1

bqk

) 1
q
.

On the other hand, by Theorem 1.2, we obtain that, for q ≥ 1, H2(b) is
Schur-convex on Rn

+. Now, from the majorization relation

(b1, b2, · · · , bn) ≻
(
An(b), An(b), · · · , An(b)

)
,

we have H2(b) ≥ H2(An(b)) for q ≥ 1, that is

n
1
p

( n∑
k=1

bqk

) 1
q
An(a) ≥ n

1
pAn(a)(n(An(b))

q)
1
q = n

1
p
+ 1

qAn(a)An(b).

Hence, we get( n∑
k=1

apk

) 1
p
( n∑

k=1

bqk

) 1
q ≥ n

1
pAn(a)

( n∑
k=1

bqk

) 1
q ≥ n

1
p
+ 1

qAn(a)An(b),

which implies the required inequality (10).
(ii) By the same way as the proof of inequality (10), we can prove the in-

equality (11). This completes the proof of Theorem 5.1.

Nextly, we provide two refined versions of discrete Hölder-type inequality
under certain specified conditions.

Theorem 5.2. Let ak ≥ 0, bk ≥ 0, k = 1, 2, . . . , n, p, q be two non-zero real
numbers.

(i) If p > 1, 1
p + 1

q = 1 and {ak}, {bk} (k = 1, 2, . . . , n) have opposite
monotonicity, then( n∑

k=1

apk

) 1
p
( n∑

k=1

bqk

) 1
q ≥ nAn(a)An(b) ≥

n∑
k=1

akbk;(12)

(ii) If 0 < p < 1, 1
p + 1

q = 1 and {ak}, {bk} (k = 1, 2, . . . , n) have same
monotonicity, then( n∑

k=1

apk

) 1
p
( n∑

k=1

bqk

) 1
q ≤ nAn(a)An(b) ≤

n∑
k=1

akbk.(13)

Proof. (i) For p > 1 and 1
p + 1

q = 1, by utilizing Theorem 1.1, we have( n∑
k=1

apk

) 1
p
( n∑

k=1

bqk

) 1
q ≥ n

1
p
+ 1

qAn(a)An(b) = nAn(a)An(b).

Moreover, using Lemma 2.2 (Chebyshev inequality) gives
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nAn(a)An(b) =
∑n

k=1 ak
∑n

k=1 bk
n ≥

∑n
k=1 akbk.

Hence, we have( n∑
k=1

apk

) 1
p
( n∑

k=1

bqk

) 1
q ≥ nAn(a)An(b) ≥

n∑
k=1

akbk,

which implies the required inequality (12).
(ii) In the same way as the proof of inequality (12), we can verify the validity

of inequality (13). The proof of Theorem 5.2 is complete.

In Theorems 5.3, 5.4 and 5.5 below, we will give some refined versions of
integral Hölder-type inequality under certain specified conditions.

Theorem 5.3. Let f(x), g(x) be two integrable and nonnegative functions on
[a, b], and let p, q be two non-zero real numbers.

(i) If p > 1, 1
p + 1

q = 1 and f(x), g(x) have opposite monotonicity, then

( ∫ b

a
fp(x)dx

) 1
p
( ∫ b

a
gq(x)dx

) 1
q

≥ 1

b− a

∫ b

a
f(x)dx

∫ b

a
g(x)dx ≥

∫ b

a
f(x)g(x)dx.(14)

(ii) If 0 < p < 1, 1
p + 1

q = 1 and f(x), g(x) have same monotonicity, then

( ∫ b

a
fp(x)dx

) 1
p
( ∫ b

a
gq(x)dx

) 1
q

≤ 1

b− a

∫ b

a
f(x)dx

∫ b

a
g(x)dx ≤

∫ b

a
f(x)g(x)dx.(15)

Proof. (i) If p > 1, 1
p + 1

q = 1, ak ≥ 0, bk ≥ 0 and {ak}, {bk} (k = 1, 2, . . . , n)
have opposite monotonicity, then by Theorem 5.2, we obtain(b− a

n

n∑
k=1

fp
(
a+

k(b− a)

n

)) 1
p
(b− a

n

n∑
k=1

gq
(
a+

k(b− a)

n

)) 1
q

≥ 1

b− a

(
b− a

n

n∑
k=1

f
(
a+

k(b− a)

n

))(b− a

n

n∑
k=1

g
(
a+

k(b− a)

n

))

≥ b− a

n

n∑
k=1

f
(
a+

k(b− a)

n

)
g
(
a+

k(b− a)

n

)
.

Letting n → ∞ in both sides of the above inequalities, we obtain( ∫ b

a
fp(x)dx

) 1
p
( ∫ b

a
gq(x)dx

) 1
q ≥ 1

b− a

∫ b

a
f(x)dx

∫ b

a
g(x)dx ≥

∫ b

a
f(x)g(x)dx,

which is the desired inequality (14).
(ii) By the same way as the proof of inequality (14), one can prove the

inequality (15). This completes the proof of Theorem 5.3.
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Obviously, inequalities (12), (13), (14), (15) are the sharpened versions of
Hölder’s inequality under some specified conditions.

Theorem 5.4. Let f(x), g(x) be two nonnegative convex functions on I, f ′′g+

g′′f + 2f ′g′ ≤ 0, and let
∫ b
a f(x)g(x)dx ̸= 0,

∫ b
a (f(x))

pdx ̸= 0,
∫ b
a (g(x))

qdx ̸= 0,
for any a, b ∈ I (a ̸= b). If p > 1, 1

p + 1
q = 1, then

(i)

∫ b

a
f(x)g(x)dx ≤

∫ v(t)
u(t) f(x)g(x)dx( ∫ v(t)

u(t) f
p(x)dx

) 1
p
( ∫ v(t)

u(t) g
q(x)dx

) 1
q

×
(∫ b

a
fp(x)dx

) 1
p
(∫ b

a
gq(x)dx

) 1
q ≤

(∫ b

a
fp(x)dx

) 1
p
(∫ b

a
gq(x)dx

) 1
q
,(16)

where u(t) = tb+ (1− t)a, v(t) = ta+ (1− t)b, 0 ≤ t ≤ 1, t ̸= 1
2 .

(ii)
(∫ b

a
fp(x)dx

) 1
p
(∫ b

a
gq(x)dx

) 1
q ≥ 1

b− a

∫ b

a
f(x)dx

∫ b

a
g(x)dx

≥ f
(a+ b

2

)
g
(a+ b

2

)
(b− a) ≥

∫ b

a
f(x)g(x)dx.(17)

Proof. (i) Since p > 1 and 1
p + 1

q = 1, f(x), g(x) are nonnegative convex

functions with f ′′g + g′′f + 2f ′g′ ≤ 0 on I, it follows from Corollary 4.1 that
H3(a, b) is Schur-convex on I2. Additionally, from Lemma 2.4, one has, for
0 ≤ t ≤ 1, t ̸= 1

2 , the relation
(
a+b
2 , a+b

2

)
≺ (u(t), v(t)) ≺ (a, b). Hence, we obtain

H3(a, b) ≥ H3(u(t), v(t)) ≥ H3

(a+ b

2
,
a+ b

2

)
=
(
f
(a+ b

2

)
g
(a+ b

2

))pq−p−q
= 1,

which implies that( ∫ b
a fp(x)dx

)q( ∫ b
a gq(x)dx

)p( ∫ b
a f(x)g(x)dx

)p+q ≥

( ∫ v(t)
u(t) f

p(x)dx
)q( ∫ v(t)

u(t) g
q(x)dx

)p( ∫ v(t)
u(t) f(x)g(x)dx

)p+q
≥ 1

⇐⇒

( ∫ b

a
f(x)g(x)dx

)p+q

≤

( ∫ v(t)
u(t) f(x)g(x)dx

)p+q( ∫ v(t)
u(t) f

p(x)dx
)q( ∫ v(t)

u(t) g
q(x)dx

)p ( ∫ b

a
fp(x)dx

)q( ∫ b

a
gq(x)dx

)p
≤
( ∫ b

a
fp(x)dx

)q( ∫ b

a
gq(x)dx

)p
.
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It follows from 1
p + 1

q = 1 that p+ q = pq, taking the 1
pq power of two sides

in the above inequalities, we derive the desired inequality (16).

(ii) Using Hölder’s inequality (2) gives(
b− a

) 1
q

( ∫ b
a fp(x)dx

) 1
p ≥

∫ b
a f(x)dx,

(
b− a

) 1
p

( ∫ b
a gq(x)dx

) 1
q ≥

∫ b
a g(x)dx.

Hence, we have

(∫ b

a
fp(x)dx

) 1
p
(∫ b

a
gq(x)dx

) 1
q ≥ 1

b− a

∫ b

a
f(x)dx

∫ b

a
g(x)dx.

In addition, from the assumption conditions, we find that f(x), g(x) are convex
on I, f(x)g(x) is concave on I, thus we deduce from the Hermite-Hadamard
inequality that

1

b− a

∫ b

a
f(x)dx

∫ b

a
g(x)dx ≥ f

(a+ b

2

)
g
(a+ b

2

)
(b− a) ≥

∫ b

a
f(x)g(x)dx.

The proof of Theorem 5.4 is complete.

It is worth noting that inequalities (16) and (17) are the refined versions of
Hölder’s inequality under a specified condition.

Theorem 5.5. Let f(x), g(x) be two nonnegative and opposite monotonicity

concave functions, and let
∫ b
a f(x)g(x)dx ̸= 0,

∫ b
a (f(x))

pdx ̸= 0,
∫ b
a (g(x))

qdx ̸=
0, for any a, b ∈ I (a ̸= b). If p < 0, q < 0, then

(∫ b

a
fp(x)dx

) 1
p
(∫ b

a
gq(x)dx

) 1
q

≤
(
f
(a+ b

2

)
g
(a+ b

2

))1− 1
p
− 1

q
(∫ b

a
f(x)g(x)dx

) 1
p
+ 1

q
.(18)

Proof. By the aid of Corollary 4.2, we observe that H3(a, b) is Schur-concave
on I2, in addition, from Lemma 2.5, one has

(
a+b
2 , a+b

2

)
≺ (a, b). We thus have

H3(a, b) ≤ H3

(a+ b

2
,
a+ b

2

)
=
(
f
(a+ b

2

)
g
(a+ b

2

))pq−p−q

⇐⇒( ∫ b
a fp(x)dx

)q( ∫ b
a gq(x)dx

)p( ∫ b
a f(x)g(x)dx

)p+q ≤
(
f
(a+ b

2

)
g
(a+ b

2

))pq−p−q
,

taking the 1
pq power of the two-sides inequality above, we obtain the required

inequality (18). Theorem 5.5



IMPROVEMENTS OF HÖLDER’S INEQUALITY VIA SCHUR CONVEXITY ... 573

6. Applications to inequalities for special means

Let b > a > 0, the Stolarsky mean is defined as follows (see [12])

Lp(a, b) =

(
bp+1 − ap+1

(p+ 1)(b− a)

) 1
p

, p ̸= −1, 0.

The arithmetic mean, geometric mean and logarithmic mean are respectively
defined by

A(a, b) =
a+ b

2
, G(a, b) =

√
ab, L(a, b) =

b− a

log b− log a
.

Theorem 6.1. Let b > a > 0, 1
p + 1

q = 1.
(i) If p > 1, then

Lp(a, b) ≥ A(a, b)L(a, b)L−q(a, b) ≥ L−q(a, b).(19)

(ii) If 0 < p < 1, then

Lp(a, b) ≤ (A(a, b))2(Lq(a, b))
−1 ≤ (L2(a, b))

2(Lq(a, b))
−1.(20)

Proof. Note that( 1

b− a

∫ b

a
xpdx

) 1
p
=
( bp+1 − ap+1

(p+ 1)(b− a)

) 1
p
= Lp(a, b),

( 1

b− a

∫ b

a
x−qdx

) 1
q
=
( b−q+1 − a−q+1

(−q + 1)(b− a)

) 1
q
= (L−q(a, b))

−1.

(i) For p > 1, by Theorem 5.3, we have( 1

b− a

∫ b

a
fp(x)

) 1
p
( 1

b− a

∫ b

a
gq(x)dx

) 1
q

≥
( 1

b− a

)2 ∫ b

a
f(x)dx

∫ b

a
g(x)dx ≥ 1

b− a

∫ b

a
f(x)g(x)dx.

Taking f(x) = x, g(x) = x−1 in the above inequality, it follows that

Lp(a, b)(L−q(a, b))
−1 ≥ 1

(b− a)2

∫ b

a
xdx

∫ b

a
x−1dx ≥ 1

b− a

∫ b

a
dx,

that is
Lp(a, b) ≥ A(a, b)L(a, b)L−q(a, b) ≥ L−q(a, b).

(ii) For 0 < p < 1, by Theorem 5.3, we have( 1

b− a

∫ b

a
fp(x)

) 1
p
( 1

b− a

∫ b

a
gq(x)dx

) 1
q

≤
( 1

b− a

)2 ∫ b

a
f(x)dx

∫ b

a
g(x)dx ≤ 1

b− a

∫ b

a
f(x)g(x)dx.
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Taking f(x) = x, g(x) = x, we obtain

Lp(a, b) ≤ (A(a, b))2(Lq(a, b))
−1 ≤ (L2(a, b))

2(Lq(a, b))
−1.

The proof of Theorem 6.1 is complete.

Theorem 6.2. Let b > a > 0, u(t) = tb + (1 − t)a, v(t) = ta + (1 − t)b,
0 ≤ t ≤ 1, t ̸= 1

2 . If p > 1, 1
p + 1

q = 1, then

L−q(a, b) ≤
L−q(u(t), v(t))

Lp(u(t), v(t))
Lp(a, b) ≤ Lp(a, b).(21)

Proof. Using Theorem 5.4 with a substitution of f(x) = x, g(x) = x−1 in
inequality (16), we obtain∫ b

a
dx ≤

∫ v(t)
u(t) dx( ∫ v(t)

u(t) x
pdx
) 1

p
( ∫ v(t)

u(t) (x
−1)qdx

) 1
q

(∫ b

a
xpdx

) 1
p
(∫ b

a
(x−1)qdx

) 1
q

≤
(∫ b

a
xpdx

) 1
p
(∫ b

a
(x−1)qdx

) 1
q
,

that is

(b− a) ≤ (v(t)− u(t))(b− a)
1
p
+ 1

qLp(a, b)(L−q(a, b))
−1

(v(t)− u(t))
1
p
+ 1

qLp(u(t), v(t))(L−q(u(t), v(t)))−1

≤ (b− a)
1
p
+ 1

qLp(a, b)(L−q(a, b))
−1,

which leads to the desired inequality

L−q(a, b) ≤
L−q(u(t), v(t))

Lp(u(t), v(t))
Lp(a, b) ≤ Lp(a, b).

This completes the proof of Theorem 6.2.

7. Conclusion

In this work, we provided a new approach to refine Hölder’s inequality. Firstly,
we constructed some functions associated with Hölder’s inequality and verified
their Schur convexities, meanwhile, in Theorems 1.1 and 1.2, we proved the
Schur convexity of functions associated with discrete Hölder’s inequality, we de-
rived the Schur convexity of function connected to integral Hölder’s inequality
in Theorem 1.3. Nextly, with the help of the Schur convexity of functions, in
Theorem 5.1 we acquired two discrete Hölder-type inequality involving power
mean and arithmetic mean; in Theorem 5.2 we provided two refined versions of
discrete Hölder-type inequality; in Theorems 5.3, 5.4 and 5.5, we offered some
refined versions of integral Hölder-type inequality. Finally, we illustrated the
applications of the obtained Hölder-type inequalities, some novel comparison
inequalities for Stolarsky mean, arithmetic mean, geometric mean and logarith-
mic mean are derived respectively in Theorems 6.1 and 6.2.
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