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1. Introduction

Generalized open sets play a vital role in General Topology and are now the
research topics of many topologists worldwide. N. Levine [6] in 1863, intro-
duced the notion of semi-open sets and T.M. Nour [10] in 1998 presented the
concept of semi-closure, semi-interior, semi-frontier and semi-exterior. Njastad
[9] presented the notion of α-open sets and Caldas [4] further developed the
topological properties of α-open sets [11]. One of the generalized forms of open
sets is the pre-open set which is given by Mashhour et. al. [8] in 1983. It gave
an inspiration to Youngbae Jun et. al. [5] to further generalized the properties
of pre-open set. Abd El-Monsef et. al. [1] gave the concept of β-open sets
and β-continuity in topological spaces. The concept of nearly open set played a
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significant role in expansions of some advance theories of topological structures
such as fuzzy set theory, soft rough set theory, probability theory and are widely
research these days due to its wide application.

In this paper, we investigate the fundamental properties of β-limit points,
β-derived sets, β-closure of a set, β-interior points, β-border, β-frontier and β-
exterior with numerous examples. Moreover, the relation between the properties
and existing properties are studied.

2. Preliminaries

Throughout this paper, (X, τ) (or simply X) means topological space. For A ⊆
X, closure of A is denoted by Cl(A) and interior of A is denoted Int(A).

Definition 2.1. Let X be a topological space, then A ⊆ X is called:

(a) semi-open [6] if A ⊆ Cl(Int(A));

(b) α-open [9] if A ⊆ Int(Cl(Int(A)));

(c) pre-open [8] if A ⊆ Int(Cl(A));

(d) β-open [1] if A ⊆ Cl(Int(Cl(A))).

The complement of β-open(resp.α-open, semi-open, pre-open) set is called
β-closed set(resp.α-closed set, semi-closed set, pre-closed set). The intersection
of all β-closed sets(resp.α-closed sets, semi-closed sets, pre-closed sets) in X
containing a subset A in X is called β-closure(resp. α-closure, semi-closure,
pre-closure) and is denoted by Clβ(A)(resp.Clα(A), sCl(A), Clp(A)). It is well
known fact that the set B ⊆ X is β-closed iff B = Clβ(A).

We denote the family of β-open(resp. α-open, pre-open) sets by τβ(resp.
τα, τp). But τβ need not be a topology which is explained in Example 3.3.

Example 2.1. (a) Consider a topology τ = {X, ∅, {a}, {b}, {a, b}, {b, c}} on set
X = {a, b, c}. Then the family of β-open sets, α-open sets and pre-open sets
are equal with topology τ on X i.e. τβ = τα = τ = τp.

(b) Consider a topology τ = {X, ∅, {a}, {b}, {a, b}} on a set X = {a, b, c}.
Then, τβ = {X, ∅, {a}, {b}, {a, b}, {a, c}, {b, c}} and τα = τ = τp.

3. Applications of β-open sets

Definition 3.1. Let B be a subset of a topological space (X, τ). A point b ∈ B
is said to be β-limit point of B if ∀A ∈ τβ containing b, A ∩B \ {b} ≠ ∅.

The set of β-limit points of B is called β-derived set of B and is denoted
by Dβ(B). Note that Dp(B) [5], Dα(B) [4] and D(B) denotes derived set of
pre-open set, α-open set and derived set of B respectively.

Example 3.1. (a) Let (X, τ) be the topological space which is described in
Example 2.1[a]. Let A = {a, b}. Then, Dβ(A) = {c} = Dp(A) = Dα(A) =
D(A).
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(b) Let (X, τ) be the topological space which is described in Example 2.1[b].
Let A = {a, b}. Then, Dp(A) = Dα(A) = D(A) = {c} = Dβ(A).

Theorem 3.1. Let B be a subset of X and b ∈ X. Then the following are
equivalent:

(i) For b ∈ A and ∀A ∈ τβ, B ∩A ̸= ∅.
(ii) b ∈ Clβ(B).

Proof. If b /∈ Clβ(B), then there exist β-closed set C such that B ⊆ C and
b /∈ C. Hence, X \C is β-open set containing b and B ∩X \C ⊆ B ∩X \B = ∅,
which is a contradiction to (i). Hence, (i) ⇒ (ii).

(ii) ⇒ (i) is straightforward.

Corollary 3.1. For any subset B of X, we have Dβ(B) ⊆ Clβ(B).

Proof. Suppose b ∈ Dβ(B), then there exists a β-open set A such that A∩B \
{b} ≠ ∅ which implies A ∩B ̸= ∅. Hence, b ∈ Clβ(B).

Theorem 3.2. For any subset B of X, Clβ(B) = B ∪Dβ(B).

Proof. Let b ∈ Clβ(B). Assume that b /∈ B and let G ∈ τβ with b ∈ G. Then
G∩B \{b} ≠ ∅ and so b ∈ Dβ(B). Hence, Clβ(B) ⊆ B∪Dβ(B). For the reverse
inclusion, B ⊆ Clβ(B) and by Corollary 3.1, B ∪Dβ(B) ⊆ Clβ(B). Hence, the
proof.

Corollary 3.2. A subset B is β-closed set iff it contains the set of β-limit
points.

Lemma 3.1. If {Ai : i ∈ ∆} is a family of β-open sets in X, then
⋃

i∈∆Ai is
a β-open set in X, where ∆ is any index set.

Proof. Straightforward

Example 3.2. Let X = {a, b, c, d} with topology τ = {X, ∅, {a}, {b} {a, b}}.
Then, τβ = τ ∪ {{a, c}, {a, d}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {b, c, d}, {a, c, d}}.

So, {a, d} ∩ {b, d} = {d} /∈ τβ which means that the intersection of two
β-open set is not β-open in general.

Remark 3.1. For any topology τ on a set X, τβ may not be topology on X.

Example 3.3. Let X = {a, b, c, d} be a set with topology τ = {X, ∅, {a}, {b},
{a, b}, {a, b, d}, {a, b, c}}. Then, τβ = τ ∪ {{a, c}, {a, d}, {b, c}, {b, d}, {a, c, d},
{b, c, d}}. Clearly τβ is not a topology as {b, c}, {a, c} ∈ τβ but {b, c} ∩ {a, c} =
{c} /∈ τβ. Another reason for τβ not being topology is explained in Example 3.5.

Theorem 3.3. Let B1 and B2 be subsets of X. If B1 ∈ τβ and τβ is a topology
on X, then B1 ∩ Clβ(B2) ⊆ Clβ(B1 ∩B2).
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Proof. Let b ∈ B1 ∩ Clβ(B2). Then, b ∈ B1 and b ∈ Clβ(B2) = B2 ∪Dβ(B2).
If b ∈ B2, then b ∈ B1 ∩B2 ⊆ Clβ(B1 ∩B2). If b /∈ B2, then b ∈ Dβ(B2) and for
all β-open set G containing b, G ∩ B2 ̸= ∅. Since B1 ∈ τβ, so G ∩ B1 is also a
β-open set containing b.

Hence, G∩(B1∩B2) = (G∩B1)∩B2 ̸= ∅ and consequently b ∈ Dβ(B1∩B2) ⊆
Clβ(B1 ∩B2). Therefore, B1 ∩ Clβ(B2) ⊆ Clβ(B1 ∩B2).

The converse of the above theorem is not true in general as seen in the
following example.

Example 3.4. Let X = {a, b, c, d} and τ = {X, ∅, {c}, {c, d}, {a, b, c}} be a
topology on X and τβ = τ ∪{{a, c}, {b, c}, {b, c, d}, {a, c, d}} is a topology on X.
Let B1 = {c, d}, B2 = {b, c} ∈ τβ and B1 ∩ B2 = {c}. Then, B1 ∩ Clβ(B2) =
{c, d} ∩X = {c, d} and Clβ(B1 ∩ B2) = X. Therefore, converse is not true in
general.

Example 3.5. Let (X, τ) be the topological space and τβ be same as described
in Example 3.3. Let B1 = {b, c, d}, B2 = {a, b, c} and B1 ∩ B2 = {b, c}. Then,
B1 ∩Clβ(B2) = {b, c, d} and Clβ(B1 ∩B2) = {b, c}. Therefore, B1 ∩Clβ(B2) =
{b, c, d} ⊈ {c, d} = Clβ(B1 ∩B2), which implies τβ is not a topology.

Corollary 3.3. If B1 is β-closed in Theorem 3.3, then equality holds i.e. B1 ∩
Clβ(B2) = Clβ(B1 ∩B2).

Proof. The first implication B1 ∩Clβ(B2) ⊆ Clβ(B1 ∩B2) is same as in Theo-
rem 3.3. For the other way, Clβ(B1) = B1 since B1 is β-closed so, Clβ(B1∩B2) ⊆
Clβ(B1) ∩ Clβ(B2) = B1 ∩ Clβ(B2), which is the desired result.

Theorem 3.4 (Properties of β-Derived set). For any subset B1 and B2 of
topological space (X, τ), the following assertions hold:

1. If B1 ⊆ B2, then Dβ(B1) ⊆ Dβ(B2).

2. Dβ(B1) ∪Dβ(B2) ⊆ Dβ(B1 ∪B2) and Dβ(B1 ∩B2) ⊆ Dβ(B1) ∩Dβ(B2).

3. Dβ(Dβ(B)) \B ⊆ Dβ(B).

4. Dβ(B ∪Dβ(B)) ⊆ B ∪Dβ(B).

Proof. 1. Let b ∈ Dβ(B1). Then U ∩ B1 \ {b} ≠ ∅, for any β-open set U
containing b. Since B1 ⊆ B2, U ∩B2 \ {b} ≠ ∅, which implies b ∈ Dβ(B2).

2. Follows directly from (1).
3. Let b ∈ Dβ(Dβ(B)) \ B, then U ∩ Dβ(B) \ {b} ̸= ∅, for any β-open set

U containing b. Let c ∈ U ∩Dβ(B) \ {b}. Then, c ∈ U and c ∈ Dβ(B) which
implies U ∩B \ {c} ≠ ∅. Let d ∈ U ∩B \ {c}. Thus, d ̸= b, for d ∈ B and b /∈ B.
Hence, U ∩B \ {b} ≠ ∅. Hence, b ∈ Dβ(B).

4. Let b ∈ Dβ(B ∪Dβ(B)). If b ∈ B, the result is obvious. Suppose b /∈ B,
then G∩(B∪Dβ(B))\{b} ≠ ∅, for all G ∈ τβ with b ∈ G. Hence, G∩B\{b} ≠ ∅
or G ∩Dβ(B) \ {b} ≠ ∅. This implies b ∈ Dβ(B) for the first case.
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If G ∩Dβ(B) \ {b} ̸= ∅, then b ∈ Dβ(Dβ(B)). Since, b /∈ B, it follows from
(3) that b ∈ Dβ(Dβ(B)) \B ⊆ Dβ(B). Hence, the proof.

Example 3.6. Let X = {a, b, c, d, e} with

τ = {X, ∅, {a}, {c, d}, {a, c, d}, {b, c, d, e}}.

Then, τβ = {X, ∅, {a}, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {c, e}, {d, e},
{a, b, c}, {a, c, d}, {a, d, e}, {a, b, d}, {a, c, e}, {b, c, d}, {b, c, e}, {b, d, e}, {c, d, e},
{a, b, c, d}, {a, b, c, e}, {a, c, d, e}, {a, b, d, e}, {b, c, d, e}}. Consider B1 = {a, c}
and B2 = {d, e}. Then, Dβ(B1) = ∅ = Dβ(B2) and so Dβ(B1) ∪Dβ(B2) = ∅ ⊂
Dβ(B1∪B2) = {b, e}. Hence, converse is not true in the case of Theorem 3.4(2).

Example 3.7. Let X = {a, b, c, d} be a set with topology τ = {X, ∅, {c}, {c, d},
{a, b, c}}. Then, τβ = {X, ∅, {c}, {a, c}, {b, c}, {c, d}, {a, b, c}, {b, c, d}, {a, c, d}}.
Let B = {a, b, c} be a subset of X. Then, Dβ(B) = {a, b, d} and so Dβ(Dβ(B)) =
∅, which implies converse of part (3) of the Theorem 3.4 need not be true in
general. Similarly, B ∪Dβ(B) = {a, b, c, d} and so Dβ(B ∪Dβ(B)) = {a, b, d}.
Hence, B ∪Dβ(B) ⊈ Dβ(B ∪Dβ(B)) which implies the converse of part (4) of
the above theorem is not true in general.

Definition 3.2. Let A be a subset of a topological space X. A point p ∈ A is
called pre-interior point [5] of A if there exists a pre-open set P containing p
such that P ⊆ A. The set of all pre-interior points of A is known as pre-interior
points of A and it is denoted by Intp(B)

Definition 3.3. Let B be a subset of a topological space X. A point b ∈ B is
called β-interior point of B if there exists a β-open set G containing b such that
G ⊆ B. The set of all β-interior points of B is called β-interior points of B and
is denoted by Intβ(B).

Theorem 3.5. Let B be a subset of X. Then, every pre-interior point of B is
β-interior point of B, i.e. Intp(B) ⊆ Intβ(B).

Proof. Let b ∈ Intp(B). Then, there exist pre-open set P containing b such
that P ⊆ B. Every pre-open set is β-open, thus we get a β-open set P containing
b such that P ⊆ B. It follows that b ∈ Intβ(B).

The converse of this theorem is not true in general given by following exam-
ple.

Example 3.8. LetX={a, b, c, d, e} with topology τ={X, ∅, {b}, {d, e}, {b, d, e}}.
Then, τp=τ∪{{d}, {e}, {b, d}, {b, e}, {a, b, d}, {a, b, e}, {b, c, d}, {b, c, e}, {a, b, c, d},
{a, b, c, e}, {a, b, d, e}, {b, c, d, e}} and τβ = τp∪{{a, b}, {a, d}, {a, e}, {b, c}, {c, d},
{c, e}, {d, e}, {a, b, c}, {a, c, d}, {a, d, e}, {a, c, e}, {c, d, e}, {a, c, d, e}}.

(i) Consider a subset B = {a, c, d}. Then, we have Intp(B) = {d} and
Intβ(B) = {a, c, d}.
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(ii) Consider a subset B = {a, c, d, e}. Then, we have Intp(B) = {d, e} and
Intβ(B) = {a, c, d, e}.

(iii) Consider a subset B = {a, b}. Then, we have Intp(B) = {b} and
Intβ(B) = {a, b}.

Theorem 3.6 (Properties of β-interior). For subsets B, B1, B2 of a topological
space X, the following hold:

(1) Intβ(B) is the largest β-open set contained in B.
(2) B is β-open iff B = Intβ(B).
(3) Intβ(Intβ(B)) = Intβ(B).
(4) Intβ(B) = B \Dβ(X \B).
(5) X \ Intβ(B) = Clβ(X \B).
(6) Intβ(X \B) = X \ Clβ(B).
(7) If B1 ⊆ B2, then Intβ(B1) ⊆ Intβ(B2).
(8) Intβ(B1) ∪ Intβ(B2) ⊆ Intβ(B1 ∪B2).
(9) Intβ(B1 ∩B2) ⊆ Intβ(B1) ∩ Intβ(B2).

Proof. (1), (2) are straightforward.
(3) Trivially by (1) and (2).
(4) If b ∈ B \ Dβ(X \ B), then b /∈ Dβ(X \ B) which implies there exists

β-open set U containing b such that U ∩ (X \ B) = ∅. Hence, b ∈ U ⊆ B
and b ∈ Intβ(B). On the other hand, if b ∈ Intβ(B) ⊆ B and Intβ(B) is
β-open set and Intβ(B) ∩ (X \ B) = ∅. Hence, b /∈ Dβ(X \ B). Therefore,
Intβ(B) = B \Dβ(X \B).

(5) Using Theorem 3.2 and above part,

X \ Intβ(B) = X \ (B \Dβ(X \B))

= (X \B) ∪Dβ(X \B)

= Clβ(X \B).

Hence, the proof.
(6) We have,

Intβ(X \B) = (X \B) \Dβ(B)

= (X \B) ∩ (Dβ(B))c

= (X \B) ∩ (X \Dβ(B))

= X \ (B ∪Dβ(B))

= X \ Clβ(B).

Hence, the proof.
(7) Let b ∈ Intβ(B1). Then, by definition, there exists β-open set U such

that b ∈ U ⊆ B1. Since B1 ⊆ B2 implies b ∈ U ⊆ B2. Hence, b ∈ Intβ(B2).
Hence, the proof.

(8) Since B1 ⊆ B1 ∪ B2 therefore, Intβ(B1) ⊆ B1 ⊆ B1 ∪ B2. Similarly,
Intβ(B2) ⊆ B2 ⊆ B1 ∪ B2. We have, Intβ(B1) ∪ Intβ(B2) ⊆ B1 ∪ B2. Now,
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Intβ(B1) ∪ Intβ(B2) is β-open subset of B1 ∪ B2. As Intβ(B1 ∪ B2) is largest
β-open subset of B1∪B2, we have Intβ(B1)∪Intβ(B2) ⊆ Intβ(B1∪B2). Hence,
the proof.

(9) is same as in (8).
Converse of (7), (8) and (9) is not true in general as seen in the following

example.

Example 3.9. 1. Consider a set X = {a, b, c, d, e} with same topology τ =
{∅, X, {a}, {c, d}, {a, c, d}, {b, c, d, e}} and τβ as in Example 3.6. Let B1 =
{a, b, e} and B2 = {a, c, e} be a subset of X. Then Intβ(B1) = {a} and
Intβ(B2) = {a, c, e} which implies Intβ(B1) ⊆ Intβ(B2) while B1 ⊈ B2.
Again, let B1 = {b, e} and B2 = {c, d} be a subset ofX, then Intβ(B1) = ∅
and Intβ(B2) = {c, d}. Hence Intβ(B1 ∪ B2) = {b, c, d, e} ⊈ {c, d} =
Intβ(B1) ∪ Intβ(B2).

2. LetX = {a, b, c, d} be a set with topology τ={X, ∅, {a}, {b}, {a, b}, {a, b, d},
{a, b, c}}. Then τβ = τ ∪ {{a, c}, {a, d}, {b, c}, {b, d}, {a, c, d}, {b, c, d}} as
in Example 3.3. Consider a subset B1 = {b, c} and B2 = {a, c, d} of X.
Then Intβ(B1) ∩ Intβ(B2) = {c} while Intβ(B1 ∩ B2) = ∅ which proves
that Intβ(B1) ∩ Intβ(B2) ⊈ Intβ(B1 ∩B2).

Definition 3.4 ([5]). For any subset A of X, the set

bp(A) = A \ Intp(A)

is called the pre-border of A, and the set

Frp(A) = Clp(A) \ Intp(A)

is called the pre-frontier of A.

Definition 3.5. For any subset B of X, the set,

bβ(B) = B \ Intβ(B)

is called the β-border of B, and the set

Frβ(B) = Clβ(B) \ Intβ(B)

is called the β-frontier of B.

Theorem 3.7 (Properties of β-Boundary). For any subset B of X, the following
statements hold:

(1) bβ(B) ⊆ bp(B).
(2) B = Intβ(B) ∪ bβ(B) and Intβ(B) ∩ bβ(B) ̸= ∅.
(3) B is β-open set ⇔ bβ(B) = ∅.
(4) bβ(Intβ(B)) = ∅.
(5) Intβ(bβ(B)) = ∅.
(6) bβ(bβ(B)) = bβ(B).
(7) bβ(B) = B ∩ Clβ(X \B).
(8) bβ(B) = B ∩Dβ(X \B).
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Proof. (1) Since Intp(B) ⊆ Intβ(B), we have bβ(B) = B \ Intβ(B) ⊆ B \
Intp(B), which implies bβ(B) ⊆ bp(B).

Converse of above is not true which is explained in Example 3.10.
(2) Straightforward.
(3) Since Intβ(B) ⊆ B and B is β-open ⇔ B = Intβ(B) ⇔ bβ(B) =

B \ Intβ(B) ⇔ bβ(B) = ∅.
(4) Since Intβ(B) is β-open implies directly from (3) that bβ(Intβ(B)) = ∅.
(5) Let b ∈ Intβ(bβ(B)), then b ∈ bβ(B) ⊆ B and so b ∈ Intβ(B) since

Intβ(bβ(B)) ⊆ Intβ(B). Thus, b ∈ Intβ(B) ∩ bβ(B), which is a contradiction
as per (2) of Theorem 3.7. Hence, Intβ(bβ(B)) = ∅.

(6) Since bβ(bβ(B)) = bβ(B)\ Intβ(bβ(B)) = bβ(B), using part (5) Theorem
3.7. Hence, the proof.

(7) Since bβ(B) = B \ Intβ(B) = B \ (X \Clβ(X \B)) = B ∩ (X \Clβ(X \
B))c =B ∩ Clβ(X \B), using part(6) of Theorem 3.6.

(8) By using Theorem 3.2 and above part,

bβ(B) = B ∩ Clβ(X \B)

= B ∩ ((X \B) ∪Dβ(X \B))

= (B ∩X \B) ∪ (B ∩Dβ(X \B))

= ∅ ∪ (B ∩Dβ(X \B))

= B ∩Dβ(X \B).

Hence, the proof.

Example 3.10. LetX = {a, b, c, d, e} be a set with topology τ = {X, ∅, {b}, {d, e},
{b, d, e}}. Then τp = τ∪{{d}, {e}, {b, d}, {b, e}, {a, b, d}, {a, b, e}, {b, c, d}, {b, c, e},
{a, b, c, d}, {a, b, c, e}, {a, b, d, e}, {b, c, d, e}} and τβ = τp ∪ {{a, b}, {a, d}, {a, e},
{b, c}, {c, d}, {c, e}, {d, e}, {a, b, c}, {a, c, d}, {a, d, e}, {a, c, e}, {c, d, e}, {a, c, d, e}.
Consider a subset B = {a, c, d}. Then bp(B) = {a, c} and bβ(B) = ∅ which im-
plies that the converse of Theorem 3.7(1) is not true in general.

Lemma 3.2. Let B be a subset of topological space X, then B is β-closed if and
only if Frβ(B) ⊆ B.

Proof. Let B be β-closed. Then, Frβ(B) = Clβ(B)\Intβ(B) = B \Intβ(B) ⊆
B. Conversely, suppose Frβ(B) ⊆ B. Then, Clβ(B) \ Intβ(B) ⊆ B and so
Clβ(B) ⊆ B. Hence, B = Clβ(B) and so B is β-closed, which completes the
proof.

Theorem 3.8 (Properties of β-Frontier). Let B be a subset of X, then the
following assertions hold:

(1) Frβ(B) ⊆ Frp(B).
(2) Clβ(B) = Intβ(B) ∪ Frβ(B) and Intβ(B) ∪ Frβ(B) = ∅.
(3) bβ(B) ⊆ Frβ(B).
(4) Frβ(B) = bβ(B) ∪ (Dβ(B) \ Intβ(B)).
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(5) B is β-open ⇔ Frβ(B) = bβ(X \B).

(6) Frβ(B) = Clβ(B) ∩ Clβ(X \B).

(7) Frβ(B) = Frβ(X \B).

(8) Frβ(B) is β-closed.

(9) Intβ(B) = B \ Frβ(B).

(10) Frβ(Frβ(B)) ⊆ Frβ(B).

(11) Frβ(Intβ(B)) ⊆ Frβ(B).

(12) Frβ(Clβ(B)) ⊆ Frβ(B).

Proof. (1) Since Frβ(B) = Clβ(B) \ Intβ(B) ⊆ Clp(B) \ Intβ(B) ⊆ Clp(B) \
Intp(B) = Frp(B).

(2) The first part is direct. For the next, we have Intβ(B) ∪ Fβ(B) =
Intβ(B) ∪ (Clβ(B) \ Intβ(B)) = ∅ (Obviously).

(3) Since B ⊆ Clβ(B) and bβ(B) = B \ Intβ(B) ⊆ Clβ(B) \ Intβ(B) =
Frβ(B).

(4) By using the definition of β-boundary of B and Theorem 3.2, we have

Frβ(B) = Clβ(B) \ Intβ(B)

= (B ∪Dβ(B)) \ Intβ(B)

= (B ∪Dβ(B)) ∩ (X \ Intβ(B))

= (B ∩ (X \ Intβ(B)) ∪ (Dβ(B) ∩ (X \ Intβ(B))

= (B \ Intβ(B)) ∪ (Dβ(B) \ Intβ(B))

= bβ(B) ∪ (Dβ(B) \ Intβ(B)),

which completes the proof.

(5) Suppose B is β-open. Then,

Frβ(B) = bβ(B) ∪ (Dβ(B) \ Intβ(B))

= ∅ ∪ (Dβ(B) \B)

= Dβ(B) \B
= Dβ(B) ∩ (X \B)

= bβ(X \B),

using part (3) and (8) of Theorem 3.7.

Conversely, suppose Frβ(B) = bβ(X \B). Then

∅ = Frβ(B) \ bβ(X \B)

= (Clβ(B) \ Intβ(B)) \ (X \B \ Intβ(B))

= B \ Intβ(B),

which implies B ⊆ Intβ(B). In general, Intβ(B) ⊆ B. Hence, Intβ(B) = B.
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(6) Using the part (5) of Theorem 3.6, we have

Clβ(B) ∩ Clβ(X \B) = Clβ(B) ∩ (X \ Intβ(B))

= Clβ(B) ∩ (Intβ(B))c

= Clβ(B) \ Intβ(B)

= Frβ(B),

which complete the proof.

(7)Same as (6).

(8) We need to show that Clβ(Frβ(B)) = Frβ(B). Clearly, Frβ(B) ⊆
Clβ(Frβ(B)). Next, we shall show that Clβ(Frβ(B) ⊆ Frβ(B). We have,

Clβ(Frβ(B)) = Clβ(Clβ(B) ∩ Clβ(X \B))

⊆ Clβ(Clβ(B)) ∩ Clβ(Clβ(X \B))

= Clβ(B) ∩ Clβ(X \B)

= Frβ(B),

which implies Frβ(B) is closed set.

(9) Using the definition of β-frontier of B and basic property of set theory,
we have

B \ Frβ(B) = B \ (Clβ(B) \ Intβ(B))

= (B \ Clβ(B)) ∪ (B ∩ Clβ(B) ∩ Intβ(B))

= (B \ Clβ(B)) ∪ Intβ(B)

= ∅ ∪ Intβ(B)

= Intβ(B).

This completes the proof.

(10) Since Frβ(B) is β-closed and so by Lemma 3.2, Frβ(Frβ(B)) ⊆ Frβ(B).

(11) We have,

Frβ(Intβ(B)) = Clβ(Intβ(B)) \ Intβ(Intβ(B))

⊆ Clβ(B) \ Intβ(B)

= Frβ(B).

(12)We have,

Frβ(Clβ(B)) = Clβ(Clβ(B)) \ Intβ(Clβ(B))

⊆ Clβ(B) \ Intβ(B)

= Frβ(B).

Hence, the proof.
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Example 3.11. Let X = {a, b, c, d} be a set with topology τ = {X, ∅, {a}, {b},
{a, b}, {a, b, d}, {a, b, c}}. Then τp = τ and τβ = τp ∪ {{a, c}, {a, d}, {b, c},
{b, d}, {b, c, d} {a, c, d}}.

Consider a subset A = {c, d} and B = {a, c} of X, then Frβ(A) = {c, d} =
Frp(A). Also, Frβ(B) = ∅ while Frp(B) = {c, d} which implies equality in
Theorem 3.8(1) may not hold.

Example 3.12. Consider X = {a, b, c, d} with same topology τ and τβ as in
Example 3.2. Let B = {a, b, c}, then bβ(B) = ∅ while Frβ(B) = {d}, which
shows that the converse of Theorem 3.8(3) is not true in general.

Definition 3.6. Let B be a subset of X, Extβ(B) = Intβ(X \ B) is said to be
β-exterior of B.

We denote Extp(B) to be pre-exterior [5] of B.

Example 3.13. Let X = {a, b, c, d, e} with

τ = {X, ∅, {a}, {c, d}, {a, c, d}, {b, c, d, e}}.

Then, τβ = {X, ∅, {a}, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {c, e}, {d, e},
{a, b, c}, {a, c, d}, {a, d, e}, {a, b, d}, {a, c, e}, {b, c, d}, {b, c, e}, {b, d, e}, {c, d, e},
{a, b, c, d}, {a, b, c, e}, {a, c, d, e}, {a, b, d, e}, {b, c, d, e}}. Consider a subset A =
{b, c, d} and B = {a, c, d, e} of set X , then Extβ(A) = Intβ(X \ A) = {a}and
Extβ(B) = Intβ(X \B) = ∅.

Theorem 3.9. For a subset B,B1, B2 of X, the following assertion are valid.
(1) Extp(B) ⊆ Extβ(B).
(2) Extβ(B) is a β-open.
(3) Extβ(B) = X \ Clβ(B).
(4) Extβ(Extβ(B)) = Intβ(Clβ(B)) ⊇ Intβ(B).
(5) If B1 ⊆ B2, then Extβ(B1) ⊆ Extβ(B2).
(6) Extβ(B1 ∪B2) ⊆ Extβ(B1) ∩ Extβ(B2).
(7) Extβ(B1) ∪ Extβ(B2) ⊆ Extβ(B1 ∩B2).
(8) Extβ(X) = ∅, Extβ(∅) = X.
(9) Extβ(B) = Extβ(X \ Extβ(B)).
(10) B = Intβ(B) ∪ Extβ(B) ∪ Frβ(B).

Proof. (1) Clearly by Theorem 3.5, Intp(B) ⊆ Intβ(B), we have Extp(B) =
Intβ(X \B) ⊆ Intβ(X \B) = Extβ(B).

(2) Straightforward.
(3) By part(6) of Theorem 3.6, X \ Clβ(B) = Intβ(X \B) = Extβ(X \B).
(4) By Theorem 3.5 and part (5) of Theorem 3.6,

Extβ(Extβ(B)) = Extβ(Intβ(X \B))

= Intβ(X \ Intβ(X \B))

= Intβ(Clβ(X \ (X \B)))

= Intβ(Clβ(B)) ⊇ Intβ(B).
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(5) Let B1 ⊆ B2. Then, Extβ(B2) = Intβ(X \B2) ⊆ Intβ(X \B1) = Extβ(B1).

(6) By using part (9) of Theorem 3.6, we have

Extβ(B1 ∪B2) = Intβ(X \ (B1 ∪B2))

= Intβ((X \B1) ∩ (X \B2))

⊆ Intβ(X \B1) ∩ Intβ(X \B2)

= Extβ(B1) ∩ Extβ(B2),

which completes the proof.

(7) By using part (8) of Theorem 3.6, we have

Extβ(B1) ∪ Extβ(B2) = Intβ(X \B1) ∪ Intβ(X \B2)

⊆ Intβ((X \B1) ∪ (X \B2))

= Intβ(X \ (B1 ∩B2))

= Extβ(B1 ∩B2),

hence the proof.

(8) Straightforward.

(9) By using the definition of β-exterior of B, we have

Extβ(X \ Extβ(B)) = Extβ(X \ Intβ(X \B))

= Intβ(Intβ(X \B))

= Intβ(X \B)

= Extβ(B).

Hence, the proof.

(10) Trivial.

Example 3.14. Let (X, τ) be a topological space same as given in Example 3.13.
Consider B1 = {b, c, d} and B2 = {b, c, e}, then Extβ(B1) = Intβ(X \B1) = {a}
and Extβ(B2) = Intβ(X \ B2) = {a, d}, which implies Extβ(B1) ⊆ Extβ(B2)
but B1 ⊈ B2. This shows that the converse of Theorem 3.9(5) is not true.

Example 3.15. Let (X, τ) be a topological space same as given in Example
3.13. Let B1 = {d, e} and B2 = {c}. Then, Extβ(B1 ∪ B2) = {a} ≠ {a, b} =
{a, b, c}∩ {a, b, d, e} = Extβ(B1)∩Extβ(B2), which implies that the equality in
the Theorem 3.9(6) is not true.

Example 3.16. Let (X, τ) be a topological space same as given in Example
3.13. Let B1 = {a, c, d} and B2 = {b, e}. Then, Intβ(X \B1) = ∅ and Intβ(X \
B2) = {a, c, d}. Hence, Extβ(B1) ∪ Extβ(B2) = ∅ ∪ {a, c, d} = {a, c, d} ⊆
Extβ(B1 ∩ B2) = X which shows that the equality in Theorem 3.9(7) is not
valid.



552 SHALLU SHARMA, TSERING LANDOL and SAHIL BILLAWRIA

4. Conclusion

This paper begins with a brief survey of the notion of β-open sets and β-
continuity introduced by Abd El-Monsef et al. [1]. We also recall some other
generalized open sets in topological spaces, like semi-open sets [6], pre-open sets
[8] and α-open sets [9] so as to compare these sets to β-open sets.

The authors studied β-limit points and β-derived sets in topological spaces
and proved many results on β-derived sets. Some characteristics of β-interiors
and β-closures of sets are also investigated.

Moreover, β-exterior, β-frontier and β-boundary of sets are also studied.
Several examples are given to indicate the connections among these concepts.
Some properties of these concepts are also discussed which will open the way for
more applications of β-open sets in real-life problems. Also, all these properties
of β-open sets in topological spaces can be very handy for studying compactness,
connectedness, separation axioms via β-open sets.
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