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Abstract. The main goal of this paper is to find an approximate solution for a certain
type of Fredholm fractional integro-differential equation by using Bernstein polynomials.
In the last section, some examples have been presented to compare their approximate
and exact solutions.
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1. Introduction

Fractional differential equations have been implemented to model various prob-
lems in several fields, [2], [3], [4], [6] and [10]. Any system containing fractional
derivatives is more practical than the regular system because of the non-locality
of the fractional derivative. Recently, mathematicians have shown a lot of inter-
est in studying new types of equations having non-local fractional derivatives.
The study of any type of fractional integro-differential equation depends on the
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type of the fractional derivative. Therefore, many researchers have shown great
interest in studying new types of the Caputo fractional differential equations and
their applications, see [12] and [13]. Fractional integro-differential equations of
Fredholm type have been studied by many researchers to find their approximate
solutions using many types of methods and polynomials, see [1], [5], [12], [14],
[18] and [19]. The Bernstein polynomials [7] is one of the methods for comput-
ing the approximate solution of fractional equation, see [13], [14], [17]. In [8],
a solution of a special type of fractional integro-differential equations using Ja-
cobi wavelet operational matrix of fractional integration presented and the same
authors in [9], discussed numerical Solution of a Fredholm Fractional Integro-
differential equation. Recently, Mansouri and Azimzadeh in [11], introduced
an approximate solution of fractional delay Volterra integro-differential equa-
tions by Bernstein polynomials . Also, in [16], numerical solution method for
multi-term variable order fractional differential equations by shifted Chebyshev
polynomials of the third kind is given.

In this article, we study how to find approximate solutions to a class of Fred-
holm fractional integro-differential equations that contains the Caputo fractional
derivative of order n−1 < α ≤ n. Finally, some examples are given to find their
approximate solutions.

2. Preliminaries

In this section, we present some necessary definitions and results which will be
used in other sections. We start with the definition and main properties of the
fractional derivative. For more details on the subject see [15] and [4].

Definition 2.1 ([15]). Let y = f(x) be a function, then the fractional derivative
of y in Caputo sense of order α > 0 is defined as:

c
aD

α
xf(x) =


1

Γ(n− α)

∫ x
a

f (n)(t)
(x−t)α+1+ndt, n− 1 < α < n, n ∈ N,

dn

dxn
f(x), α = n ∈ N.

If f(x) is a constant function, then c
aD

α
xf(x) = 0.

The Caputo derivative of f(x) = (x− a)j is defined as: (see [15])

c
aD

α
x (x− a)j =


0, for j ∈ N ∪ {0} and j < ⌈α⌉,

Γ(j + 1)

Γ(j + 1− α)
(x− a)j−α, for j ∈ N and j ≥ ⌈α⌉

or j /∈ N and j > ⌊α⌋.

Here, ⌈α⌉ is denoted to be the smallest integer greater than or equal to α
and ⌊α⌋ is the largest integer less than or equal to α.
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Lemma 2.1 ([15]). The Caputo fractional differentiation is a linear operation,
that is for any two constants a1, a2 and any two functions y1, y2, we have

c
aD

α
x (a1y1 + a2y2) = a1(

c
aD

α
x (y1)) + a2(

c
aD

α
x (y2)).

Definition 2.2 ([7]). The Bernstein polynomials of degree n are denoted by
Bi,n(x) and defined as:

(1) Bi,n(x) =

(
n
i

)
(x− a)i(b− x)n−i

(b− a)n
, x ∈ [a, b] ⊆ R, i = 0, 1, 2, ..., n.

Particularly, if x ∈ [0, 1] then Bi,n(x) are defined as:

Bi,n(x) =

(
n

i

)
xi(1− x)n−i, i = 0, 1, 2, ..., n.

Since (b− x)n−i = [(b− a)− (x− a)](n−i), equation (1) can be written as:

(2) Bi,n(x) =

n∑
j=i

(−1)j−i

(b− a)j

(
n

i

)(
n− i

j − i

)
(x− a)j .

Hence,

(3) Bi,n(x) =
n∑

j=i

(−1)j−i

(b− a)j

(
n

j

)(
j

i

)
(x− a)j .

Lemma 2.2 ([7]). The derivatives of Bernstein polynomials of degree n can be
written as a linear combination of Bernstein polynomials of degree n− 1 which
is given by:

(4)
d

dx
Bi,n(x) = n(Bi−1,n−1(x)−Bi,n−1(x)).

Lemma 2.3. The fractional derivative of order 0 < α ∈ R \N of the Bernstein
polynomials of degree n in the Caputo sense is given by:

(5) c
aD

α
xBi,n(x) =

n∑
j=i

(−1)j−i

(b− a)j

(
n

j

)(
j

i

)
c
aD

α
x (x− a)j .

Since c
aD

α
x (x− a)j = 0 for each j < α , we have

(6) c
aD

α
xBi,n(x) =

n∑
j=⌈α⌉

(−1)j−i

(b− a)j

(
n

j

)(
j

i

)
Γ(j + 1)

Γ(j + 1− α)
(x− a)j−α.

Proof. Follows from applying Definition 2.1 to equation (3).
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3. Approximation method

In this section, we propose the following fractional integro-differential equation
and provide approximate solutions to this equation:

c
aD

α
xy(x) +

n∑
k=2

gk(x)
c
aD

(α
k
)

x y(x) + g0(x)y(x)

= f(x) +

n∑
m=1

∫ b

a
Km(x, t) c

aD
β
m
t y(t)dt,(7)

where n − 1 < α ≤ n, β ≤ α and a ≤ t, x ≤ b. Subject to the conditions
y(i)(a) = λi, i = 0, 1, 2, ..., n− 1.

The solution of equation (7) is the function y(x) which is a continuous func-
tion and its approximate solution can be expressed in terms of nth-degree of
Bernstein polynomial

(8) yn(x) =
n∑

i=0

ciBi,n(x).

From the initial condition, we have λ0 = yn(a) =
∑n

i=0 ciBi,n(a), which
implies that

(9) c0 = λ0.

Again, from equation (3), we have

y′n(x) =
n∑

i=0

ciB
′
i,n(a) =

n∑
i=0

ci

n−i∑
j=i

(−1)j−i

(b− a)j

(
n

j

)(
j

i

)
j(x− a)j−1.

This implies that all the terms are zero at x = a except when j = 1. Hence, we
obtain that

λ1 = y′n(a) =

n∑
i=0

ci
(−1)1−i

(b− a)

(
n

1

)(
1

i

)
.

Therefore,

λ1 =
−n

b− a
c0 +

n

b− a
c1.

Hence,

(10) c1 = λ0 +
(b− a)λ1

n
.

Thus, in general, if n ≥ m ∈ N we have

y(m)
n (x) =

n∑
i=0

ciB
m
i,n(x) =

n∑
i=0

ci

n∑
j=i

(−1)j−i

(b− a)j

(
n

j

)(
j

i

)
m!

(
j

m

)
(x− a)j−m,
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when x = a all the terms are zero except j = m. Hence,

(11) λm = y(m)
n (a) =

m∑
i=0

ci
(−1)m−im!

(b− a)m

(
n

m

)(
m

i

)
.

From equation (11) and solving for the coefficients ci, i = 0, 1, ...,m, we
obtain that:

(12) ci =
i∑

k=0

(
i
k

)(
n
k

) × (b− a)i y(i)(a)

k!
.

Now, by substituting equations (2), (4), (12) in equation (7), we get an algebraic
equation with unknown constants ci, i = m + 1,m + 2, ..., n and by a suitable
way we can find a matrix equation of the form AC = B, where A ia an (n−m)×
(n −m) matrix and CT = [cm+1, cm+2, ..., cn]. Then C = A−1B. Substituting
the ci’s in equation (8) we get the approximate solution of equation (7).

4. Illustrative examples

In this section, we discuss the approximate solution of some examples for distinct
fractional derivatives α and β, where n − 1 < α ≤ n and β ≤ α and compare
them with their exact solutions. We start with the following example:

Example 4.1. Consider the integro-differential equation

(13) c
1D

α
xy(x) = f(x) + 3

∫ 2

1
(xt) c

1D
β
t y(t)dt,

where f(x)= 2
Γ(3−α)(x− 1)2−α−6x(β−3)(2β−9)

Γ(5−β) , 1<α≤2, β ≤ α and 1 ≤ t, x ≤ 2.

Subject to the conditions y(1) = y′(1) = 2.

Using Bernstein polynomials of degree n = 3, we approximate the solution
as:

(14) y(x) =
3∑

i=0

ciBi,3(x).

From equations (9), (10), we obtain that c0 = 2 and c1 =
8
3 .

Applying equation (6) on y(x) and substituting in equation (13), we get

(15) c
1D

α
x

3∑
i=0

ciBi,3(x) = f(x) + 3

∫ 2

1
(xt) c

1D
β
t

3∑
i=0

ciBi,3(t)dt.

Hence

(16)

3∑
i=0

ci{c1Dα
xBi,3(x)− 3

∫ 2

1
(xt) c

1D
β
t Bi,3(t)dt} = f(x).
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Applying equation (6) , we get

3∑
i=0

ci{
3∑

j=⌈α⌉

(−1)j−i

(b− a)j

(
3

j

)(
j

i

)
Γ(j + 1)

Γ(j + 1− α)
(x− 1)j−α

− 3

∫ 2

1
(xt)

3∑
j=⌈β⌉

(−1)j−i

(b− a)j

(
3

j

)(
j

i

)
Γ(j + 1)

Γ(j + 1− β)
(x− 1)j−βdt} = f(x).

As a particular case, if we take α = 2 and β = 1 the exact solution of equation
(13) is y(x) = x2 + 1. After integrating and simplifying the above equation, we
get the following equation:

(17)

c0

[
12− 6x

]
+ c1

[
− 30 + 18x

]
+ c2

[
24− 18x

]
+ c3

[
− 6 + 6x

]
−3x

∫ 2

1
{c0

[
− 12t+ 12t2 − 3t3

]
+ 3c1

[
8t− 10t2 + 3t3

]
−3c2

[
− 5t+ 8t2 − 3t3

]
+ c3

[
3t− 6t2 + 3t3

]
}dt = 2− 14x.

Integrating the last equation and substituting for c0 and c1 and simplifying,
we get

c2[24−
69

4
x] + c3[−6 +

3

4
x] = 58− 119

2
x.

Solving for c2 and c3, we obtain that c2 = 3.666 and c3 = 4.997. The
approximate solution of equation (13) is

y(x) ≈ 2(2− x)3 + 8(x− 1)(2− x)2 + 3× (3.66)(x− 1)2(2− x) + 4.997(x− 1)3.

The following table describes the relation between the exact and approximate
solution of some selected values of x, where n = 3, α = 2 and β = 1.

Table 1: Exact and approximate solution when α = 2 and β = 1
x yApprox yExact

1.1 2.20998 2.21

1.2 2.43991 2.44

1.3 2.68979 2.69

1,4 2.95962 2.95999999999999

1.5 3.24938 3.25

1.6 3.55906 3.55999999999999

1.7 3.88868 3.88999999999999

1.8 4.23821 4.24

1.9 4.60765 4.60999999999999

2 4.9971 4.99999999999999
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Now, if we take α = 3
2 and β = 0.5, we have

3∑
i=0

ci{
3∑

j=⌈α⌉

(−1)j−i

(b− a)j

(
3

j

)(
j

i

)
Γ(j + 1)

Γ(j − 1
2)
(x− 1)j−

3
2

− 3

∫ 2

1
(xt)

3∑
j=⌈β⌉

(−1)j−i

(b− a)j

(
3

j

)(
j

i

)
Γ(j + 1)

Γ(j + 1
2)
(x− 1)j−

1
2dt}

=
4√
π
(
√
x− 1−64x

7
).

Substituting and simplifying, we get

c2

[
6

Γ(32)
(x− 1)

1
2 − 18

Γ(52)
(x− 1)

3
2 − 64x

35
√
π

]
+ c3

[
6

Γ(52)
(x− 1)

3
2 − 64x

7Γ(72)

]
= − 320x

21
√
π
+

256x

105
√
π
+

24

Γ(32)
(x− 1)

1
2 − 36

Γ(52)
(x− 1)

3
2 − 48

Γ(32)
(x− 1)

1
2

− 48

Γ(52)
(x− 1)

3
2 +

4√
π
(
√
x− 1− 64x

7
).

We get 1.0316c2 + 2.7511c3 = 9.2489 and 8.8335c2 − 0.98876c3 = −2.4978.
Solving for c2 and c3, we get c2 = 0.0897 and c3 = 3.3283.

The following table describes the approximate solution of equation (13) for
some selected values of n, α and β. Here, y1, y2 and y3 represent the approximate
solution when n = 3, (α = 1.8, β = 0.8), (α = 1.6, β = 0.6) and (α = 1.2,
β = 0.2), respectively. While y4, y5 and y6 represent the approximate solution
when n = 7, (α = 1.8, β = 0.8), (α = 1.6, β = 0.6) and (α = 1.2, β = 0.2).

Table 2: Approximate solution when (n = 3) and(n = 7)
x y1 y2 y3 y4 y5 y6
1.1 2.215946531 2.227593549 2.284126883 2.216914203 2.233433219 2.337681516

1.2 2.464096576 2.509845878 2.724168086 2.466686882 2.524408268 2.836704064

1.3 2.744915811 2.84596451 3.301614439 2.748712324 2.865521894 3.420408092

1.4 3.058869912 3.235156969 3.997956773 3.063062995 3.254315643 4.07293886

1.5 3.406424555 3.676630777 4.794685919 3.410119352 3.690280056 4.793196618

1.6 3.788045417 4.169593457 5.673292706 3.790382296 4.173485633 5.579198956

1.7 4.204198174 4.713252534 6.615267966 4.204405053 4.704224102 6.429009677

1.8 4.655348502 5.306815529 7.602102528 4.652781212 5.283043554 7.344388516

1.9 5.141962077 5.949489967 8.615287224 5.136125705 5.910560971 8.323316056

2 5.664504577 6.640483371 9.636312884 5.654985475 6.586435719 9.327548172

The following graphs represents the approximate solution of equation (13), for
n = 3 and some selective α and β.
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Y

Graphs of approximate solutions for equation (13)

y1, α = 1.8, β = 0.8
y2, α = 1.6, β = 0.6
y3, α = 1.2, β = 0.2

Example 4.2. Consider the following integro-differential equation:

(18)

c
2D

α
xy(x) + g1(x)

c
2D

α
2
x y(x) + g2(x)

c
2D

α
3
x y(x) =

f(x) +

∫ 4

2
K(x, t) c

2D
β
t y(t)dtm,

where g1(x) = −Γ(4− α
2 )(x−2)

α
2 , g2(x) = Γ(4− α

3 )(x−2)
α
3 , f(x) = 72(x−2)3−α

Γ(4−α) +

16(x − 2) − 6α(x − 2)2 − x[10 − 6
2−β ], K(x, t) = Γ(2−β)

16 x(t − 2)β, 2 < α ≤ 3,

β ≤ α and 2 ≤ t, x ≤ 4. Subject to the conditions y(2) = 0, y′(2) = 8, and
y′′(2) = −36.

By using Bernstein polynomials of degree n = 5, we approximate the solution
as:

(19) y(x) =

5∑
i=0

ciBi,5(x).

From equations (9), (10), we obtain that c0 = 0, c1 = 3.2 and c2 = −0.8.
For a particular case, if we take α = 3 and β = 1, the exact solution of

equation (18) is y(x) = 12x3 − 90x2 + 224x − 184. Applying equation (6) on
y(x) and substituting in equation (18), we obtain a system of equations and
solving for ci‘s we obtain that c3 = −2.4, c4 = 8 and c5 = 40. The approximate
solution of equation (18) is

y(x) ≈ 3.2× 5(x− 2)(4− x)4 − 0.8× 10(x− 2)2(4− x)3

−2.4× 10(x− 2)3(4− x)2 + 8× 5(x− 2)4(4− x) + 40(x− 2)5.
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Table 3: Exact and approximate solution of equation (18) when α = 3 and
β = 1

x yExact yApprox

2 0 0

2.2 0.976 0.976

2.4 1.088 1.088

2.6 0.912 0.912000000000003

2.8 1.024 1.024

3 2 2.00000000000001

3.2 4.416 4.41600000000002

3.4 8.848 8.84800000000002

3.6 15.872 15.872

3.8 26.064 26.064

4 40 40

Table (3), describes the relation between the exact and approximate solution of
some selected values of x when n = 5, α = 3 and β = 1.

In Table 4, the approximate solution of equation (18) for some selected values
of n, α and β is given. Where (y1, y2, y3 and y4) represent the approximate
solution when n = 5, (α = 2.2, β = 0.8), (α = 2.4, β = 0.6), (α = 2.8, β = 0.8)
and (α = 2.8, β = 0.2) respectively.

Table 4: Approximate solution of equation (18) when (n = 5)
x y1 y2 y3 y4
2 0 0 0 0

2.2 0.935068639 0.940240031 0.964551823 0.952827794

2.4 0.783006127 0.815156792 0.996094846 0.902813899

2.6 -0.04904965 0.03156834 0.600239489 0.286683772

2.8 -1.109884972 -0.977248379 0.280076751 -0.461247938

3 -1.920849711 -1.761022338 0.535063774 -0.91120986

3.2 -1.992496767 -1.86195325 1.859909408 -0.640106363

3.4 -0.841221493 -0.824176374 4.743459784 0.766349975

3.6 1.994098875 1.796772669 9.667583876 3.711505903

3.8 6.93546579 6.424493083 17.10605907 8.58563503

4 14.34911996 13.45225408 27.52345674 15.76380536
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Graphs of approximate solutions for equation (18)

y1, α = 2.2, β = 0.8
y2, α = 2.4, β = 0.6
y3, α = 2.8, β = 0.8
y4, α = 2.8, β = 0.2

Example 4.3. Consider the integro differential equation

(20) c
0D

α
xy(x)−c

0 D
α
2
x y(x) = f(x) +

∫ 1

0
ex y(t)dt,

where f(x) = ex(1− e), 1 < α ≤ 2, and 0 ≤ t, x ≤ 1.
Subject to the conditions y(0) = y′(0) = 1.

By using Bernstein polynomials of degree n = 5, we approximate the solution
as:

(21) y(x) =
5∑

i=0

ciBi,5(x).

From equations (9), (10), we obtain that c0 = 1 and c1 = 1.2.
For a particular case, if we take α = 1.5, the exact solution of equation (20)

is y(x) = ex. Applying equation (6) on y(x) and substituting in equation (20),
we obtain a system of equations and solving for ci‘s we obtain that c2 = 1.4499,
c3 = 1.766749, c4 = 2.1746 and c5 = 2.71818. The approximate solution of
equation (18) is

y(x) ≈ (1− x)5 + 1.2× 5x(1− x)4 + 1.4499× 10x2(1− x)3

+1.766749× 10x3(1− x)2 + 2.1746× 5x4(1− x) + 2.71818x5.

Table 5, describes the relation between the exact and approximate solution
of some selected values of x when n = 5 and α = 1.5.
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Table 5: Exact and approximate solution of equation (20) when α = 1.5
x yExact yApprox Error

0 1 1 0

0.1 1.105170918 1.10516730537358 0.36127E-07

0.2 1.221402758 1.22139337801439 0.938015E-07

0.3 1.349858808 1.34984418528478 0.146223E-06

0.4 1.491824698 1.49180461512623 0.200825E-06

0.5 1.648721271 1.64869423914596 0.270316E-06

0.6 1.8221188 1.82208307570373 0.357247E-06

0.7 2.013752707 2.01370735299845 0.453545E-06

0.8 2.225540928 2.22548527215494 0.556563E-06

0.9 2.459603111 2.45953277031058 0.703408E-06

1 2.718281828459050 2.71817928370205 0.102545E-03

The following table describes the approximate solution of equation (20) when
n = 5 and for some selected values of α. Where y1, y2, y3 and y4 represent the
approximate solution when (α = 1.8), (α = 1.6), (α = 1.4) and (α = 1.2)
respectively.

Table 6: Approximate solution of equation (20) when (n = 5)
x y1 y2 y3 y4
0 1 1 1 1

0.1 1.10240044295794 1.1038346323492 1.10747314761792 1.12496938543169

0.2 1.21058024191943 1.21626456566409 1.2300657682098 1.29333323551814

0.3 1.32590023707549 1.33863237800476 1.36843578414082 1.49945853949894

0.4 1.44961437376952 1.47225158750577 1.52372197489588 1.74235948212542

0.5 1.58291419217209 1.61844778803726 1.69748145554922 2.02453402379607

0.6 1.72697331695556 1.77859978486614 1.891627155234 2.35080048069196

0.7 1.88299194696886 1.95418073031716 2.10836529561194 2.72713410491211

0.8 2.05224134491214 2.14679925943408 2.35013286934289 3.15950366460895

0.9 2.23610832701151 2.35824062564082 2.61953511855447 3.65270802412371

1 2.43613975269372 2.59050783640254 2.91928301331163 4.20921272412183
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Graphs of approximate solutions for equation (20)

y1, α = 1.8
y2, α = 1.6
y3, α = 1.4
y4, α = 1.2

Example 4.4. Consider the integro-differential equation:

c
2D

α
xy(x) +

1

6

n∑
k=2

gk(x)
c
2D

α
k
x y(x) + g0(x) y(x)

= f(x) +
1

64

∫ 6

2

2∑
m=1

Km(x, t) c
2D

β
m
t y(t)dt,(22)

where g0(x) = −5, gk(x) = Γ(4− α
k )(x− 2)

α
k , k = 2, 3, 4, 5, 6,

Km(x, t) = 6Γ

(
4− β

m

)
(x− 2)2(t− 2)

β
m ,m = 1, 2,

f(x) =

(
6− 12β +

57α

30

)
(x− 2)2 +

(
(12− α)(18− α)

24
− 45

)
(x− 2)− 10,

5 < α ≤ 6, β ≤ α and 2 ≤ t, x ≤ 6.
Subject to the conditions y(2) = 2, y′(2) = 9, y′′(2) = −12, y′′′(2) = 6,

y(4)(2) = y(5)(2) = 0.

By using Bernstein polynomials of degree n = 8, the approximate solution
is:

(23) y(x) =

8∑
i=0

ciBi,8(x).

From equations (9), (10), we obtain that c0 = 2, c1 = 6.5, c2 = 7.571428571,
c3 = 6.357142857, c4 = 4, c5 = 1.642857143.
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Applying equation (6) on y(x) and substituting in equation (22). For a
particular case, if we take α = 6 and β = 3, then the exact solution is y(x) =
x3 − 12x2 + 45x − 48. After simplifying, we obtain a system of equations and
solving for c′is we obtain that c6 = 0.428571429, c7 = 1.5 and c8 = 6.

In the following table, we clarify the relation between the exact and approx-
imate solution of some selected values of x when n = 6, α = 6 and β = 3.

Table 7: Exact and approximate solution of equation (22) when n = 6, α = 6
and β = 3

x yExact yApprox

2 2 2

2.2 3.568 3.568

2.4 4.704 4.704

2.6 5.456 5.45599999999999

2.8 5.872 5.872

3.2 5.888 5.88799999999999

3.6 5.136 5.13599999999999

3.8 4.592 4.59199999999999

4.2 3.408 3.40799999999999

4.6 2.416 2.416

4.8 2.112 2.112

5 2 2

5.2 2.128 2.128

5.4 2.544 2.544

5.6 3.296 3.296

5.8 4.432 4.43200000000001

6 6 6.00000000000002

Table 8 describes the approximate solution of equation (22) for some selected
values of n, α and β. y1, y2, y3 and y4 represent the approximate solution when
n = 8, (α = 5.2, β = 2.2), (α = 5.2, β = 2.4), (α = 5.2, β = 0.6) and (α = 5.2,
β = 2.8) respectively.
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Table 8: Approximate solution for equation (22) when (n = 8)
x y1 y2 y3 y4
2.2 3.567999399 3.567999659 3.567999826 3.567999935

2.6 5.455632344 5.455789229 5.455890186 5.455956281

2.8 5.870120127 5.870916513 5.871428998 5.871764511

3.2 5.870551725 5.877816333 5.882491207 5.885551739

3.6 5.058221496 5.08987522 5.110244822 5.12358033

3.8 4.45331972 4.50895321 4.54475412 4.568192147

4 3.772873431 3.862434539 3.920068334 3.957799846

4.2 3.06214361 3.195683913 3.28161892 3.33787858

4.8 1.275625972 1.565429718 1.751922382 1.874014815

5.2 1.044082921 1.356223109 1.557089579 1.688592209

5.4 1.475720031 1.718932302 1.875442716 1.977906463

5.8 3.992755454 3.797248767 3.671437547 3.589071852

6 6.335131668 5.704188236 5.298167531 5.032355169

In the following graphs, the approximate solution of equation (22) is drawn
with distinct given β.

2 2.5 3 3.5 4 4.5 5 5.5 6
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5
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7.5
8

8.5

X

Y

Graphs of approximate solutions for equation (22) when n = 8 and α = 5.2

y1, β = 2.2
y2, β = 2.4
y3, β = 2.6
y4, β = 2.8

5. Conclusion

In this paper, an approximate solution of certain types of Fredholm integro-
differential equations of fractional order α ∈ R+ \N is given by using the general
form of Bernstein polynomials of various degrees. It is noted that the approxi-
mate solution of such equations is very close to the exact one.
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