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Abstract. There are many researches about converting n job m machine problem
to a n job 2 machine one, and finally using Johnson’s rule for minimizing makespan.
In one case, this converting leads to the inner product of processing times by Pascal
numbers. In this paper, it is shown that there are other suitable numerical sequences
with a triangle pattern or without it, producing better makespans in several cases. The
quality of results is checked by the benchmark of Taillard in permutation flow shop
scheduling problem.
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1. Introduction

In flow shop scheduling, the issue is to determine the best sequence of n jobs that
are processed on m machines in the same order. Let tij denote deterministic
processing time of job j at machine i, which is a positive integer. It is assumed
that all jobs process on every single machine. Makespan or Cmax refers to the
total time for complete processing of all jobs.

It is usually supposed that all jobs are independent and available. No mat-
ter when, each machine processes at most one job and each job is processed
only by one machine. No preemption is allowed. Set up times are included in
the processing times. Infinite storage buffer between machines is also assumed
and machines are available. There are job permutations, which change from
machine to machine. Therefore, (n!)m schedules can be obtained. Having the
same permutation for all machines is supposed; hence, n! schedules are possi-
ble. The resulting problem is known as the permutation flow shop scheduling
problem (PFSP), denoted by Fm/prmu/ Cmax Graham et al. [7]. Only the
F2/prmu/Cmax problem is polynomially, solvable and proposed by Johnson [8];
for m ≥ 3, the problem is NP-complete Garey et al. [6].

It seems that after several papers in 1950s and then the widespread concern
about expansion complexity theory by Karp [9], the great numerical growth
of papers was stopped in 1990s. Now, there are few papers about adequate
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heuristic algorithm for solving deterministic flow shop scheduling problems by
minimizing makespan criterion.

For the reason that Johnson’s algorithm is exact, authors have hardly tried
to convert each arbitrary n×m PFSP to a 2-machine problem.

Bonney et al. [4] expressed a job in terms of the slopes of the comulative
start and times. It converted the original n jab m machine to a n jab 2 machine
problem.

Semanco et al. [11] employed Johnson’s rule to present a good initial solution
for improving heuristic and the proposed algorithm called MOD. Wei Jia et al.
[13] proposed a new algorithm. Firstly, the proposed algorithm normalized
the matrix A of processing times. Then it transformed the original problem
containing m machines into a 2 machine one that is solved by Johnson’s rule.
Fernandez- Viagas et al. [5] presented two constructive heuristics based on
Johnson’s algorithm. Belabid et al. [2] studied the resolution of PFSP that
their first method was based on Johnson’s rule.

2. The extended Johnson’s algorithm

Before explaining the presented algorithm, it is better to make an example about
the process of reducing m machine problem into a 2 machine one.

An illustration of this is that m = 6 and one job must be processed in m = 6
machines with processing times t1 to t6. By adding the first two processing
times, it is assigned to the first hypothetical machine. It is also continued in a
similar way for all jobs and finally the problem was transformed into a m = 2
machine, Baskar et al. [1].

It is observed that for m number of machines, the coefficients are the mem-
bers of Pascal’s Triangle for

(
m−2
k

)
; k = 0, 1, 2, . . . , n. Indeed, the dot products

of these numbers with the original times are obtained. Also at the end, the terms
including last and first processing times i.e t6 , t1 are respectively omitted.
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3. The presented algorithm

In general, suppose the deterministic times for PFSP are tij ; 1 ≤ i ≤ n and
1 ≤ j ≤ m. This problem is transformed to a two machine one. The job order
obtained from Johnson’s algorithm is used to find initial order and calculate the
makespan.

Let the time martrix of the initial problem be M = [tij ]n×m and the time
matrix after using Johnson’s algorithm be N = [Tpq]n×2. Then, the following
relations can be given

q=1 ⇒ Tp1=(tp1, tp2, tp3, . . . , tpm) •
((

m−2

0

)
,

(
m−2

1

)
,

(
m−2

2

)
, . . . , 0

)

=
m∑
k=1

(
m− 2

k − 1

)
tpk

q=2 ⇒ Tp2=(tp1, tp2, tp3, . . . , tpm) •
(
0,

(
m− 2

0

)
,

(
m− 2

1

)
, . . . ,

(
m− 2

m− 2

))

=
m∑
k=1

(
m− 2

k − 2

)
tpk.

The optimal permutation is resulted from Johnson’s algorithm on N . This
permutation is applied to M . Utilizing Belman et al.’s theorem [3] leads to the
minimum makespan.

As was mentioned, inner products of tpks by Pascal’s triangle elements are
equal to Tp1 and Tp2. The algorithm is executed on Taillard’s problems [12] by
Pascal numbers. The triangular neutrality of Pascal’s numbers draws attention
to the scalar products of the times of Taillard’s problems by first and second
kind Stirling numbers, Bell’s numbers and Fibonacci numbers. These sequences
of numbers have triangular pattern du to the next equations.

1) sn+1,k = snk−1 − nsn,k, sn,k is a number of first kind Stirling numbers (St
1) that is in n’th row and k’th column in the triangle;

2) Sn+1,k = Sn,k−1 + kSn,k, second kind of Stirling numbers (St 2);

3) fn+1 =
(
n
0

)
+

(
n−1
1

)
+

(
n−2
2

)
+ . . .+

(
n−k
k

)
, k =

[
n
2

]
, fn+1 is n+ 1’th term

in Fibonacci sequence (Fibo);

4)
(
n
k

)
=

(
n−1
k−1

)
+
(
n−1
k

)
, k ≥ 1, Pascal numbers (Pasc);

5) Bn+1 =
∑n

k=0

(
n
k

)
Bk, B0 = 1, Bn+1 is n + 1’th term in Bell’s sequence

(Bell).

Now, the presented algorithm is divided into three simple steps:
1. Select the first m (m is the number of machines) elements of the above

numerical sequences i.e.
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i) sm−1,k, k = 0, 1, 2, . . . ,m− 1 (St 1);

ii) Sm−1,k, k = 0, 1, 2, . . . ,m− 1 (St 2);

iii) fm−1 (Fibo);

iv)
(
m−1
k

)
, k = 0, 1, 2, . . . ,m− 1 (Pasc);

v) Bk, k = 0, 1, 2, . . . ,m− 1 (Bell).

For each stage, inner products of the above elements with the times of orig-
inal problem are obtained. First, the term concluding tpm, and then the term
concluding tp1 are clearly omitted.

2. Johnson’s algorithm is applied to give job order from artificial n job and
two machine problems with (i),(ii),. . . ,(v) sequences.

3. The job order obtained in previous step is used to find initial order and
compute the makespan in original problem.

The algorithm implemented in Visual Basic and carried out all tests on
Pentium IV computer at 3.2 GHz with 2 GBytes of RAM memory.

For the statistical analysis, the well known standard benchmark set of Tail-
lard [12] was used. This set includes 120 instances divided into 12 groups with
10 replicates each. The sizes range from 20 jobs, 5 machines to 500 jobs, 20
machines. In the flowshop scheduling literature, this benchmark has been ex-
tensively used in the past years. For each instance, a very tight lower bound and
upper bound are known. All 10 instances in the 50×20 set , nine in 100×20, six
in 200×20 and three in 500×20 are open. For all other instances, the optimum
solution is already known.

The applied performance measure that was used, is the Relative parcentage
Deviation (RPD) over the optimum or the best solution (upper bound ) for each
instance:

Relative Perentage Deviation (RPD) =
Heusol −Bestsol

Bestsol
× 100,

where Heusol is the solution given by any of the tested heuristic for a given
instance and Bestsol is the optimum solution or the lowest known upper bound
for Taillard’s instances.

The solutions of presented algorithm are compared with the results of NEH
and Taillard’s benchmark. NEH was made-up by Nawas et. al. [10], that is the
best heuristic that have ever been proposed for solving PFSP [5].

In the following tables, the summary of these comparisons and the results
of Talllard’s problems are shown. The tables also display the results of NEH.
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Table 1. The least RPD for Heuristic Algorithm

Size of Least RPD Obtained With NEH Taillard Upper
Problems Prob.No Sequence Best Makespan RPD reaults Bounds

20× 5 2 St 2 1422 4.6 1365 1359
20× 10 9 St 2 1848 16 1639 1593
20× 20 8 St 2 2473 12.4 2249 2200
50× 5 6 Fibo 3093 9.3 2835 2829
50× 10 6 Pasc 3728 24 3148 3006
50× 20 1 St 2 4762 26.2 4006 3771
100× 5 6 Pasc 5740 11.7 5154 5135
100× 10 9 St 1 6973 18.7 6016 5871
100× 20 10 St 2 7994 24.8 6680 6434
200× 10 4 St 2 12880 18.2 11057 10889
200× 20 8 St 2 14327 21.1 11824 11334

500× 20 5 Pasc 31706 20.3 26928 26334

Table 2. The greatest RPD for Heuristic Algorithm

Size of Greatest RPD Obtained With NEH Taillard Upper
Problems Prob.No Sequence Best Makespan RPD results Bounds

20× 5 3 St 2 1349 24.7 1132 1081
20× 10 4 Fibo 1856 34.7 1416 1377
20× 20 4 Pasc 2749 23.6 2257 2223
50× 5 3 St 2 3209 22.4 2650 2621
50× 10 3 Pasc 3878 36.5 2994 2839
50× 20 4 Pasc 4874 34 3953 3723
100× 5 2 Pasc 6171 17.1 5284 5268
100× 10 2 Pasc 6795 27 5466 5349
100× 20 7 St 1 8135 31.5 6578 6268
200× 10 2 St 2 13142 25.4 10677 10480
200× 20 3 Pasc 14693 30.2 11724 11281

500× 20 10 Pasc 32782 23.9 27103 26457

It is seen that the least RPD is 4.6 which is obtained in Taillard’s 20× 5− 2
problem after the inner product of second kind Stirling numbers. The greatest
RPD is 36.5 that is resulted in 50 × 10 − 3 problem after the dot product of
Pascal numbers.

The best makespan in each instance is shown in the table 1 after the dot
product of sequences and comparing with each other. For example in the first
section, 7 times second kind Strirling numbers, 1 time Fibonacci numbers, and
only 3 times Pascal numbers are resulted the best makespan! In this research,
Bell numbers are not resulted this.

The best solutions in the light of quality are those obtained from the inner
product of seoond kind Stirling numbers.

For more researches, the Bank of numerical sequences is chosen. This Bank
i.e oeis.org includes “The On-Line Encyclopedia Of Integer Sequences” found
by N.J.A. Sloane. He has worked the sustainable collection of these sequences
since 1964.

At another time, the algorithm implemented in Python and carried out all
tests on a Quad-Core Intel Core i7 computer at 2.6 GHz with 16 GBytes of RAM
memory. In 10 hours, first 100000 sequences were chosen and scalar products
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of them were determined. Then Johnson’s algorithm found initial order of jobs.
The average of ten obtaining makespans in each package of Taillard instances
was calculated, afterward 100000 solutions in them were collected in following
figures.

In these figures, l is the average of lower bounds or the average of solution;
and u is the average of upper bounds in each package of Taillard’s instances.

Additionally, X-axis shows the number of sequences, and the result of each
correspondent sequence is a point in the direction of Y -axis. It is regarded that
the specified average points have not good situation with respect to l and u.

Figure 1. average results of 20× 5 Figure 2. average results of 20× 10

Figure 3. average results of 20× 20 Figure 4. average results of 50× 5

Figure 5. average results of 50× 10 Figure 6. average results of 50× 20
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Figure 7. average results of 100× 5 Figure 8. average results of 100× 10

Figure 9. average results of 100×20 Figure 10. average results of 200×10

Figure 11. average results of 200×20 Figure 12. average results of 500×20

In all 120 instances of Taillard’s and 120 × 100000 cases, there is only one
result that is the same of Taillard’s solution after fixing all steps and running
Johnson’s algorithm.

This is 100×5−1 problem and the solution is 5493. The result is consequent
of the inner product of the original processing times by the sequence A088661
with the general term:

an =
8∑

k=1

[
Pn,k

Pn−1,k

]
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when

Pn,k =

n∑
i=1

log i

n−
[

n

4k

]∑
i=n−

[
3n

4k

] log i

namely “A log based cantor self similar sequence” (bracket is floor). The
author is Roger L. Bagula, Nov 21 2003. For n = 3, 4, . . . , 107 the terms
of this sequence are 8, 8, 7, 6, 7, 8, 8, 7, 6, 8, 8, 7, 7, 8, 8, 7, 7, 8, 8, 5, 7, 8, 8, 7, 6, 8, 8,
7, 7, 8, 8, 7, 7, 8, 8, 6, 7, 8, 8, 7, 5, 8, 8, 7, 7, 8, 8, 7, 7, 8, 8, 6, 7, 8, 8, 7, 6, 8, 8, 7, 7, 8, 8,
7, 7, 8, 8, 6, 7, 8, 8, 7, 6, 8, 8, 7, 7, 8, 8, 7, 7, 8, 8, 4, 7, 8, 8, 7, 6, 8, 8, 7, 7, 8, 8, 7, 7, 8, 8,
6, 7, 8, 8, 7, 5.

A brief research is denoted that after each 4-term section, four numbers 7,
8, 8, 7 are repeated.

For the intuitive perception of sequence’s behaviour, its pin plot and scatter
plot are designed in the following.

Figure 13. Pin plot of A088661(n)

4. Conclusions

In this paper, it was tried to transform the n×m problem to a 2×m problem
after obtaining the inner product of proessing times in PFSP by the most fa-
mous numerical sequences. Johnson’s algorithm was used and the results were
compared with those of the Taillard’s 120 problem solutions. The least rela-
tive percentage deviation was obtained in 20 × 5 − 2 Taillard’s problem with
the dot product of Stirling second kind numbers. Moreover, the greatest RPD
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Figure 14. Scatterplot of A088661(n)

was resulted in 50× 10− 3 Taillard’s problem. All these arguments lead to the
conclusion that Baskar’s ideas [1] about good solutions of the inner product of
Pascal numbers have been invalidated.

After obtaining the dot product of 100000 different numerical sequences
in processing times for 100 × 5 − 1 instance, Johnson’s rule results optimum
solutions.
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[11] P. Semančo, V. Modrák, A comparison of constructive heuristics with the
objective of minimizing makespan in the flow-shop scheduling problem, Acta
Polytechnica Hungarica, 9 (2012), 177-190.

[12] E. Taillard, Benchmarks for basic scheduling problems, European Journal
of Operational Research, 64 (1993), 278-285.

[13] J.Y. Wei, Y.B. Qin, D.Y. Xu, DRPFSP algorithm for solving permutation
flow shop scheduling problem, Computer Science, 2015.

Accepted: February 10, 2021


