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Abstract. In this paper, the relative averaging operator is introduced as a relative
generalization of the averaging operator. We explicitly determine all averaging operators
on the 2-dimensional complex associative algebra. The results show that not every
dialgebra can be derived from an averaging algebra. We then generalize the construction
of dialgebras and trialgebras from averaging operators to a construction from relative
averaging operators. It is shown that this construction from relative averaging operators
gives all dialgebras and trialgebras.
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1. Introduction

There are two seemingly unrelated objects, namely averaging operators (resp.,
of weight λ) and dialgebras (resp., trialgebras). This paper shows that there is a
close tie between them, generalizing and strengthening a previously established
connection from averaging algebras to dialgebras [1, 12, 13].

Let k be a unitary commutative ring and A a k-algebra. If a k-linear map
P : A → A satisfies the averaging relations:

P (x · P (y)) = P (x) · P (y) = P (P (x) · y), ∀x, y ∈ A,(1)

then P is called an averaging operator and (A,P ) is called an averaging algebra.
Averaging operator was implicitly studied in the famous paper of O. Reynolds

[15] in connection with the theory of turbulence and explicitly defined by Kol-
mogoroff and Kampé de Fériet [7]. It later attracted the attentions of other
well-known mathematicians including G. Birkhoff [4] and Rota with motivation
from quantum physics and combinatorics. It has found diverse applications in
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many areas of pure and applied mathematics, such as the theory of turbulence,
probability, function analysis, and information theory [8, 15, 16, 17, 18, 19].

Recently, averaging operators have been studied for many algebraic struc-
tures [1, 6, 12, 13]. In [14], we studied the averaging operators from an algebraic
point of view and built a connection between averaging operators and large
Schröder numbers. We also defined a related new operator, called averaging
operator of weight λ in [13]. For a fixed λ ∈ k. An averaging operator of weight
λ on A is a k-linear map P : A −→ A such that Eq. (1) holds and

P (x) · P (y) = λP (x · y), ∀x, y ∈ A.(2)

By definition, if P is an averaging operator of weight 1, then λP is an
averaging operator of weight λ. We note that an averaging operator of weight
zero is not an averaging operator. So we can’t give a uniform definition for the
averaging operator as in the case of Rota-Baxter operators of weight λ.

On the other hand, motivated by the study of the periodicity in algebraic
K-theory, J.-L. Loday [9] introduced the concept of Leibniz algebra thirty years
ago as a non-skew-symmetric generalization of Lie algebra. He then defined
dialgebra [10] as the enveloping algebra of Leibniz algebra by analogy with
associative algebra as the enveloping algebra of Lie algebra.

Definition 1.1. A dialgebra is a k-module D with two associative bilinear
operations ⊣ and ⊢ such that

x ⊣ (y ⊣ z) = x ⊣ (y ⊢ z),(3)

(x ⊢ y) ⊣ z = x ⊢ (y ⊣ z),(4)

(x ⊣ y) ⊢ z = (x ⊢ y) ⊢ z,(5)

for all x, y, z ∈ D.

M. Aguiar showed the following connection from averaging algebras to dial-
gebras.

Theorem 1.1 ([1]). Let (A,P ) be an averaging k-algebra. Define two new
operations on A by

(6) x ⊣ y = xP (y), x ⊢ y = P (x)y, ∀x, y ∈ A.

Then (A,⊣,⊢) is a dialgebra.

Theorem 1.1 gives a functor from the category of averaging algebras to the
category of dialgebras. The relationship between averaging algebras and dialge-
bras is generalized in [13] in two directions. In one direction, the relationship is
generalized from associative algebras to other algebraic structures. In the other
direction, the averaging operator of weight λ is introduced to give trialgebra.

The former studies told us that there is a close tie between averaging algebra
(resp., of weight λ) and dialgebra (resp., trialgebra). Then it is natural to ask
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whether every dialgebra (resp., trialgebra) could be derived from an averaging
algebra (resp., of weight λ) by a construction like Eq. (6). As Section 2 shows,
the answer is no.

Interestingly, there is an analogous phenomenon that a Rota-Baxter alge-
bra gives a dendriform or tridendriform algebra, depending on the weight. The
problem that whether every dendriform algebra and tridendriform algebra could
be derived from a Rota-Baxter algebra was solved by C. Bai, L. Guo and X.
Ni [3]. They found there is a generalization of the concept of a Rota-Baxter
operator that could derive all the dendriform algebras and tridendriform alge-
bras. In this paper, we turn to consider the recovering problem for dialgebras
from averaging algebras. Inspired by their observation, we define the concept of
relative averaging operator (resp., of weight λ) as a generalization of averaging
operator (resp., of weight λ) and show that every dialgebra (resp., trialgebra)
can be recovered from a relative averaging operator (resp., of weight λ).

This paper is organized as follows. In the next section, we first determine
all averaging operators on the 2-dimensional complex associative algebra and
then list the dialgebras induced by these averaging operators. In Section 3 ,
the definitions of relative averaging operator and relative averaging operator of
weight λ are given. Finally, we prove that every dialgebra (resp., trialgebra) can
be derived from relative averaging algebra (resp., of weight λ).

2. Averaging operators on the complex 2-dimensional associative
algebra

In this section, we determine all averaging operators on 2-dimensional complex
associative algebras. Then we find all dialgebras induced by averaging operators
on the 2-dimensional complex associative algebra. The results show that not
every dialgebra can be derived from an averaging algebra.

There are six associative algebras structures on the 2-dimensional vector
space V = Ce1 ⊕ Ce2 except the trivial one, two of them are non-commutative
and the other four are commutative [2, 5]. We list their characteristic matrices
in the following and denote the corresponding algebra by (Ai, •i), 1 ≤ i ≤ 6,
respectively:

•1 e1 e2
e1 0 e1
e2 0 e2

•2 e1 e2
e1 0 0
e2 e1 e2

•3 e1 e2
e1 e1 0
e2 0 0

•4 e1 e2
e1 e2 0
e2 0 0

•5 e1 e2
e1 e1 0
e2 0 e2

•6 e1 e2
e1 0 e1
e2 e1 e2

.

A linear operator P : Ai → Ai is determined by

(7)

(
P (e1)
P (e2)

)
=

(
a11 a12
a21 a22

)(
e1
e2

)
,
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where aij ∈ C, 1 ≤ i, j ≤ 2. P is an averaging operator on Ai if the above matrix
(aij)2×2 satisfies Eq. (1) for x, y ∈ {e1, e2}.

In order to show P is an averaging operator, we only need to check

(8) P (ei)P (ej) = P (eiP (ej)) = P (P (ei)ej), 1 ≤ i, j ≤ 2.

It is clear that the zero operator is an averaging operator on Ai. Furthermore,
it follows from a direct check that P is an averaging operator if and only if λP
is an averaging operator for 0 ̸= λ ∈ C. Thus, the set AV (Ai) of averaging
operators on Ai carries an action of C∗ := C\{0} by scalar multiplication. To
determine all the averaging operators on Ai, we only need to give a complete
set of representatives of AV (Ai) under this action.

We only give the sketch of process for determining averaging operators on
A1 here. The others discussions are the same as A1.

By direct computation, we have

P (e1)P (e1) = a11a12e1 + a212e2, P (e1P (e1)) = a11a12e1 + a212e2,

P (P (e1)e1) = 0, P (e1)P (e2) = a11a22e1,

P (e1P (e2)) = a11a22e1, P (P (e1)e2) = a211e1,

P (e2)P (e1) = 0, P (e2P (e1)) = 0, P (P (e2)e1) = 0,

P (e2)P (e2) = a21a22e1 + a222e2, P (e2P (e2)) = a21a22e1 + a222e2,

P (P (e2)e2) = (a11a21 + a21a22)e1 + a222e2.

By Eq. (8) and comparing the corresponding coefficients of e1 and e2, we have

a11a12 = 0, a212 = 0, a211 = a11a22, a11a21 = 0.

Hence, the averaging operators on A1 are given by a complete set of represen-
tatives of AV (A1) under the action of C∗ by scalar product consists of the 5
averaging operators whose linear transformation matrices with respect to the
basis e1, e2 are listed below, where a are non-zero complex numbers:(

0 0
0 0

) (
0 0
1 0

) (
0 0
0 1

) (
0 0
a 1

) (
1 0
0 1

)
.

Theorem 2.1. 1. The non-zero averaging operators on A1 and A2 are given by(
0 0
1 0

) (
0 0
0 1

) (
0 0
a 1

) (
1 0
0 1

)
, a ̸= 0.

2. The non-zero averaging operators on A3 are given by(
0 0
0 1

)
,

(
0 1
0 0

)
,

(
0 1
0 a

)
,

(
1 0
0 0

)
,

(
1 0
0 a

)
, a ̸= 0.
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The non-zero averaging operators on A4 are given by(
0 1
0 0

)
,

(
0 0
0 1

)
,

(
0 1
0 a

)
,

(
1 0
0 1

)
,

(
1 a
0 1

)
, a ̸= 0.

3. The non-zero averaging operators on A5 are given by, a ̸= 0,(
0 0
0 1

)
,

(
0 0
1 1

)
,

(
1 0
0 0

)
,

(
1 0
0 a

)
,

(
1 1
0 0

)
,

(
1 1
a a

)
.

4. The non-zero averaging operators on A6 are given by, a ̸= 0,(
0 0
0 1

)
,

(
0 0
1 0

)
,

(
0 1
0 0

)
,

(
0 a
0 1

)
,

(
1 0
0 1

)
,

(
1 0
a 1

)
.

By Theorem 1.1 and Theorem 2.1, after a direct computation, we have

Corollary 2.1. Let V = Ce1⊕Ce2 and (V,⊣,⊢) be a dialgebra which is induced
by the averaging operators on A1—A6 and the trivial 2-dimensional complex
associative algebra A0. Then either (V,⊣) ∼= Ai, (V,⊢) ∼= Ai, 0 ≤ i ≤ 6, or one
of the following items holds:

(1) (V,⊣) ∼= A0, (V,⊢) ∼= A4;

(2) (V,⊣) ∼= A1, (V,⊢) ∼= A3;

(3) (V,⊣) ∼= A3, (V,⊢) ∼= A2;

(4) (V,⊣) ∼= A1, (V,⊢) ∼= A2;

(5) (V,⊣) ∼= A5, (V,⊢) ∼= A2.

Remark 2.1. Let ⊣ be the zero multiplication and ⊢= •i, i = 1, 2, 3, 5, 6. For
each i, the multiplications ⊣ and ⊢ give a dialgebra structure on V = Ce1⊕Ce2.
By Corollary 2.1, the above dialgebras can’t be derived from a 2-dimensional
complex averaging algebra.

3. Relative averaging operators, dialgebras and trialgebras

In this section we study the relationship between relative averaging operators
(resp., of weight λ) and dialgebras (resp., trialgebras) on the domains of these
operators. First, we give some related concepts. Then we show that relative
averaging operators recover all dialgebras and trialgebras on the domains of the
operators.
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3.1 A-bimodule k-algebras and relative averaging operators

First, we recall a generalization of the well-known concept of bimodules in [3].

Definition 3.1. Let (A, ∗) be a k-algebra with multiplication ∗ and (R, ◦) be
a k-algebra with multiplication ◦. Let ℓ, r : A −→ Endk(R) be two linear
maps. We call (R, ◦, ℓ, r) or simply R an A-bimodule k-algebra if (R, ℓ, r) is an
A-bimodule that is compatible with the multiplication ◦ on R. More precisely,
forall x, y ∈ A, v, w ∈ R, we have

ℓ(x ∗ y)v = ℓ(x)(ℓ(y)v), ℓ(x)(v ◦ w) = (ℓ(x)v) ◦ w,(9)

vr(x ∗ y) = (vr(x))r(y), (v ◦ w)r(x) = v ◦ (wr(x)),(10)

(ℓ(x)v)r(y) = ℓ(x)(vr(y)), (vr(x)) ◦ w = v ◦ (ℓ(x)w).(11)

Note that an A-bimodule (V, ℓ, r) becomes an A-bimodule k-algebra if V
is regarded as an algebra with the zero multiplication. For a k-algebra (A, ∗)
and x ∈ A, define the left and right actions L(x) : A −→ A, L(x)y = x ∗ y;
R(x) : A −→ A, yR(x) = y ∗ x, y ∈ A. For x ∈ A, define

L = LA : A −→ Endk(A), x 7−→ L(x);R = RA : A −→ Endk(A), x 7−→ R(x).

Then (A,L,R) is an A-bimodule and (A, ∗, L,R) is an A-bimodule k-algebra.

Now, we can define our generalization of the averaging operator .

Definition 3.2. Let (A, ∗) be a k-algebra.

1. Let V be an A-bimodule. A linear map Q : V −→ A is called a relative
averaging operator on the module V if Q satisfies

(12) Q(u) ∗Q(v) = Q(ℓ(Q(u)v)) = Q(ur(Q(v))), u, v ∈ V.

2. Let (R, ◦, ℓ, r) be an A-bimodule k-algebra and λ ∈ k. A linear map
Q : R −→ A is called a relative averaging operator of weight λ on the
algebra R if Q satisfies

(13) Q(u) ∗Q(v) = Q(ℓ(Q(u))v) = Q(ur(Q(v))) = λQ(u ◦ v), u, v ∈ R.

When V is taken to be the A-bimodule (A,L,R) associated to the algebra
A, a relative averaging operator (resp., of weight λ) on the module is just an
averaging operator (resp., of weight λ).

3.2 Averaging algebras, dialgebras and trialgebras

The concept of a trialgebra was introduced by Loday and Ronco as a general-
ization of a dialgebra.
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Definition 3.3 ([11]). A trialgebra is a k-module T with three associative bi-
linear operations ⊣, ⊢ and ⊥ such that

(x ⊣ y) ⊣ z = x ⊣ (y ⊢ z), (x ⊢ y) ⊣ z = x ⊢ (y ⊣ z),(14)

(x ⊣ y) ⊢ z = x ⊢ (y ⊢ z), (x ⊣ y) ⊣ z = x ⊣ (y ⊥ z),(15)

(x ⊥ y) ⊣ z = x ⊥ (y ⊣ z), (x ⊣ y) ⊥ z = x ⊥ (y ⊣ z),(16)

(x ⊢ y) ⊥ z = x ⊢ (y ⊥ z), (x ⊥ y) ⊢ z = x ⊢ (y ⊢ z),(17)

for all x, y, z ∈ T .

The Corollary 4.9 in [13] generalized Theorem 1.1 and showed that if (A, ◦, P )
is an averaging algebra of weight λ ̸= 0, then the multiplications

(18) x ⊣P y := x◦P (y), x ⊢P y := P (x)◦y, x ⊥P y := λx◦y, ∀x, y ∈ A,

define a trialgebra (A,⊣P ,⊢P ,⊥P ).

For a given k-module V , define AV(V ) (resp., AVλ(V )) to be the set of all
averaging algebras (resp., of weight λ) on V . Let AD(V ) (resp., AT (V )) be the
set of all dialgebras (resp., trialgebras) on V .

Then Eqs. (6) and (18) induce two maps

Φ : AV(V ) −→ AD(V ),(19)

Φλ : AVλ(V ) −→ AT (V ).(20)

Thus deriving all dialgebras (resp., trialgebras) on V from averaging operators
(resp., of weight λ) on V amounts to the surjectivity of Φ (resp., Φλ). Unfor-
tunately, by Remark 2.1, these maps are not surjective. Next, we will consider
the case of relative averaging operators.

3.3 From relative averaging operators to dialgebras and trialgebras

Theorem 3.1. Let (A, ∗) be an associative algebra.

(a) Let (R, ◦, ℓ, r) be an A-bimodule k-algebra. Let Q : R −→ A be a relative
averaging operator of weight λ on the algebra R. Then the multiplications
(21)
u ⊣Q v := ur(Q(v)), u ⊢Q v := ℓ(Q(u))v, u ⊥Q v := λu ◦ v, ∀u, v ∈ R,

define a trialgebra (R,⊣Q,⊢Q,⊥Q).

(b) Let (V, ℓ, r) be an A-bimodule. Let Q : V −→ A be a relative averaging
operator on the module V . Then the multiplications

(22) u ⊣Q v := ur(Q(v)), u ⊢Q v := ℓ(Q(u))v, ∀u, v ∈ V,

define a dialgebra (V,⊣Q,⊢Q).
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Proof. (a) For any x, y, z ∈ R, by the definitions of ⊣Q, ⊢Q and ⊥Q and
A-bimodule k-algebra, we have

(x ⊣Q y) ⊣Q z =
(
xr(Q(y))

)
r(Q(z)) = xr(Q(y) ∗Q(z)).

Since Q(y) ∗Q(z) = Q(ℓ(Q(y))z) = Q(yr(Q(z))) = λQ(y ◦ z), we have

(x ⊣Q y) ⊣Q z = x ⊣Q (y ⊢Q z) = x ⊣Q (y ⊣Q z) = x ⊣Q (y ⊥Q z).

It follows from x ⊢Q (y ⊢Q z) = ℓ(Q(x))
(
ℓ(Q(y))z

)
= ℓ(Q(x) ∗ Q(y))z and

Q(x) ∗Q(y) = Q(ℓ(Q(x))y) = Q(xr(Q(y))) = λQ(x ◦ y) that

x ⊢Q (y ⊢Q z) = (x ⊢Q y) ⊢Q z = (x ⊣Q y) ⊢Q z = (x ⊥Q y) ⊢Q z.

We also, have

(x ⊢Q y) ⊣Q z =
(
ℓ(Q(x))y

)
r(Q(z)) = ℓ(Q(x))(yr(Q(z))) = x ⊢Q (y ⊣Q z),

(x ⊥Q y) ⊣Q z = (λx ◦ y)r(Q(z)) = λx ◦ (yr(Q(z))) = x ⊥Q (y ⊣Q z),

(x ⊣Q y) ⊥Q z = λ(xr(Q(y)) ◦ z = x ◦
(
ℓ(Q(y))z

)
= x ⊥Q (y ⊣Q z),

(x ⊢Q y) ⊥Q z = λ(ℓ(Q(x))y) ◦ z = ℓ(Q(x))(λy ◦ z) = x ⊢Q (y ⊥Q z),

(x ⊥Q y) ⊥Q z = λ(λx ◦ y) ◦ z = λ(x ◦ (λy ◦ z)) = x ⊥Q (y ⊥Q z).

The above relations for ⊣Q, ⊢Q and ⊥Q coincide with the axioms of trialgebra
in Definition 3.3.
(b) By the definitions of ⊣Q, ⊢Q and bimodule, similar to the proof of (a),
(V,⊣Q,⊢Q) is a dialgebra.

For a k-algebra A and an A-bimodule k-algebra (R, ◦), denote

RAalg
λ (R,A)

:= {Q : R → A|Q is a relative averaging operator of weight λ on algebra R}.

By (a) of Theorem 3.1, we obtain a map

(23) Φalg
λ,R,A : RAalg

λ (R,A) −→ AT (Rmod),

where Rmod denotes the underlying k-module of R.
Now let V be a k-module. Let AVλ(V,−) be the set of relative averaging

operators of weight λ on algebra (V, ◦) , where ◦ is an associative product on
V . In other words,

(24) AVλ(V,−) :=
∐
R,A

AValg
λ (R,A),

where the disjoint union runs through all pairs (R,A) where A is a k-algebra
and R is an A-bimodule k-algebra such that Rmod = V . Then from the map
Φalg
λ,V,A in Eq. (23), we have

(25) Φalg
λ,V :=

∐
R,A

Φalg
λ,V,A : AValg

λ (V,−) −→ AT (V ).
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Similarly, for a k-module V and k-algebra A, denote

RAmod(V,A)

:= {Q : V → A|Q is a relative averaging operator on the module V },

By (b) of Theorem 3.1, we obtain a map

(26) Φalg
V,A : AVmod(V,A) −→ AD(V )

Let AVmod(V,−) be the set of relative averaging operators on the module
V . In other words, AVmod(V,−) :=

∐
AAVmod(V,A), where A runs through all

the k-algebras. Then we have

(27) Φmod
V :=

∐
A

Φmod
V,A : AVmod(V,−) −→ AD(V ).

Theorem 3.2. Let V be a k-module. The maps Φalg
1,V and Φmod

V are surjective.

Proof. We first prove the surjectivity of Φalg
1,V . Let (V,⊣,⊢,⊥) be a trialgebra.

Define two linear maps

(28) L⊢, R⊣ : V −→ Endk(V ), L⊢(x)(y) = x ⊢ y,R⊣(x)(y) = y ⊣ x,∀x, y ∈ V.

Let I be the ideal generated by the set {u ⊣ v − u ⊢ v | u, v ∈ V } ∪ {u ⊣
v− u ⊥ v | u, v ∈ V }. Let Ṽ := V/I, then we have ⊣=⊢=⊥ in Ṽ . Furthermore,
Ṽ can be regarded as an associative algebra with an operation ∗ :=⊣=⊢=⊥.

By comparing the trialgebra axioms and the axioms of (V, ∗)-bimodule k-
algebra, we have that if we replace the operation ∗ in Eq. (9) and (10), by any
of ⊣,⊢,⊥, the equations still hold. Hence, (V,⊥, L⊢, R⊣) is a (Ṽ , ∗)-bimodule
k-algebra.

Let Q be the natural projection from V to Ṽ . Then we have

Q(x) = x, Q(x ⊣ y) = Q(x ⊢ y) = Q(x ⊥ y) = Q(x) ∗Q(y).

Hence,

Q(x) ∗Q(y) = Q(Q(x) ⊢ y) = Q(x ⊣ Q(y)) = Q(x ⊥ y),

and then

Q(x) ∗Q(y) = Q(L⊢(Q(x))y) = Q(xR⊣(Q(y))) = Q(x ⊥ y).

That is Q is a relative averaging operator of weight 1 on the algebra (V,⊥).

To prove the surjective of Φmod
V , let (V,⊣,⊢) be a dialgebra. Let I be the

ideal generated by the set {u ⊣ v − u ⊢ v | u, v ∈ V }. Define Q be the natural

projection from V to V/I. Similar to the proof for Φalg
1,V , we get Q is a relative

averaging operator on bimodule (V,L⊢, R⊣).
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