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Abstract. By applying the notion of the efficient Banzhaf value, any additional fixed
utility should be distributed equally among the players who are concerned. However,
in several applications, this notion seems unrealistic for the situation being modeled.
Therefore, we adopt weights to introduce a modification of the efficient Banzhaf value,
which we name the weighted Banzhaf value. To present the rationality, we adopt
some reasonable properties to characterize this weighted value. Based on different
viewpoints, we further define excess functions to propose alternative formulations and
related dynamic processes for this weighted value.
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1. Introduction

In the framework of transferable-utility (TU) games, the power indices have
been defined to measure the political power of each member of a voting system.
A member in a voting system can be a party in a parliament or a country in a
confederation. Each member will have a certain number of votes, and so their
power indices will differ. The power index results may be found in Algaba et
al. [1], Alonso et al. [2], Alonso and Fiestras [3], van den Brink and van der
Laan [5], Dubey and Shapley [7], Haller [8], Lehrer [12], Ruiz [18], etc. Banzhaf
[4] defined a power index in the framework of voting games that was essentially
identical to that given by Coleman [6], and later extended it to arbitrary games
by Owen [15, 16], who introduced two formulas. The Banzhaf value defined by
Banzhaf [4] does not necessarily distribute the entire utility over all players in a
grand coalition. Therefore, the efficient Banzhaf value and related results were
proposed by Hwang and Liao [11] and Liao et al. [13], respectively.

In real-world situations, players might represent constituencies of different
sizes or have different bargaining abilities. In addition, a lack of symmetry may
arise when different bargaining abilities for different players are modeled. In
various applications of TU games, it seems to be natural to assume that the
players are given some a priori measures of importance, called weights. The
study of weighted Banzhaf values was introduced by Radzik et al. [17]. Consid-
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ering that there are exogenously given some positive weights between players,
Radzik et al. [17] proposed an axiomatization of weighted Banzhaf values for
a given vector of positive weights of players. Further, the family of all possible
weighted Banzhaf values is described axiomatically. However, these weighted
Banzhaf values introduced by Radzik et al. [17] are not efficient.

Based on the notion of the efficient Banzhaf value due to Hwang and Liao
[11], all players first receive their marginal contributions from all coalitions in
which they have participated; the remaining utilities are allocated equally. That
is, any additional fixed utility (e.g., the cost of a common facility) is distributed
equally among the players who are concerned. However, in several applications,
the efficient Banzhaf value seems unrealistic for the situation being modeled.
Therefore, we desire that any additional fixed utility could be distributed among
players in proportion to their weights.

To modify relative discrimination among players under various situations,
we adopt weights to propose different results as follows.

1. In Section 2, we adopt weights to propose the weighted Banzhaf value.
Further, we present an alternative formulation of the weighted Banzhaf
value in terms of excess functions. The excess of a coalition could be
treated as the variation between the productivity and total payoff of the
coalition.

2. In Section 3, we adopt the efficiency-sum-reduced game to characterize the
weighted Banzhaf value. In Section 4, we propose dynamic processes to
illustrate that the weighted Banzhaf value can be approached by players
who start from an arbitrary efficient payoff vector. In Section 5, more
discussions and interpretations are presented in detail.

2. The weighted Banzhaf value

A coalitional game with transferable-utility (TU game) is a pair (N, v) where N
is the grand coalition and v is a mapping such that v : 2N −→ IR and v(∅) = 0.
Denote the class of all TU games by G. A solution on G is a function ψ which
associates with each game (N, v) ∈ G an element ψ(N, v) of IRN .

Definition 2.1. The efficient Banzhaf value (Hwang and Liao [10]), η, is the
solution on G which associates with (N, v) ∈ G and each player i ∈ N the value

(1) ηi(N, v) = ηi(N, v) +
1

|N |
·
[
v(N)−

∑
k∈N

ηk(N, v)
]
,

where ηi(N, v) =
∑

S⊆N

i∈S

[
v(S)−v(S \{i})

]
is the Banzhaf value (Owen [15, 16])

of i. It is known that the Banzhaf value violates EFF, and the efficient Banzhaf
value satisfies EFF.
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Let (N, v) ∈ G. A function w : N → R+ is called a weight function if w is
a non-negative function. In different situations, players in N could be assigned
different weights by weight functions. These weights could be interpreted as
a-priori measures of importance; they are taken to reflect considerations not
captured by the characteristic function. For example, we may be dealing with a
problem of cost allocation among investment projects. Then the weights could
be associated to the profitability of the different projects. In a problem of
allocating travel costs among various institutions visited (cf. Shapley [20]), the
weights may be the number of days spent at each one.

Given (N, v) ∈ G and a weight function w, we define |S|w =
∑

i∈S w(i), for
all S ⊆ N . The weighted Banzhaf value is defined as follows.

Definition 2.2. Let w be a weight function. The weighted Banzhaf value ηw,
is the solution on G which associates with (N, v) ∈ G and all players i ∈ N the
value

(2) ηwi (N, v) = ηi(N, v) +
w(i)

|N |w
·
[
v(N)−

∑
k∈N

ηk(N, v)
]
.

By the definition of ηw, all players firstly receive their marginal contributions
from all coalitions, and further allocate the remaining utilities proportionally by
applying weights.

Here, we provide a brief application of TU games and the weighted Banzhaf
value in the setting of “utility distribution for management systems,” such as
Microsoft and NBA. In an organization, each department may consider man-
agement operation strategies. Besides competing in merchandising, all depart-
ments, such as the research department, purchasing department, and logis-
tics department, should develop to increase the utility of the entire organi-
zation. Such a utility distribution problem could be formulated as follows. Let
N = {1, 2, . . . , n} be a collection of all departments of an organization that
could be provided jointly by some coalitions S ⊆ N and let v(S) be the profit of
providing the cooperative coalition S ⊆ N jointly. Each coalition S ⊆ N could
be formed by considering a specific operational aim. The function v could be
treated as a utility function that assigns to each cooperative coalition S ⊆ N the
worth that the coalition S can obtain. Modeled in this notion, the utility distri-
bution management system of an organization could be considered a cooperative
TU game, with v being its characteristic function. However, as mentioned in
the Introduction, it may be inappropriate in many situations if any additional
fixed utility should be distributed equally among the players who are concerned.
Thus, it is reasonable that weights are assigned to players and any fixed utility
should be divided according to these weights. In the following sections, some
more results will be proposed to show that the weighted Banzhaf value could be
applied in the setting of utility distribution.
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A solution ψ satisfies efficiency (EFF) if
∑

i∈N ψi(N, v) = v(N), for all
(N, v) ∈ G. Property EFF asserts that all players distribute all the utility
completely.

Lemma 2.1. The weighted Banzhaf value ηw satisfies EFF.

Proof of Lemma 2.1. Let (N, v) ∈ G. By Definition 2.2,∑
i∈N

ηwi (N, v) =
∑
i∈N

ηi(N, v) +
∑
i∈N

w(i)

|N |w
·
[
v(N)−

∑
k∈N

ηk(N, v)
]

=
∑
i∈N

ηi(N, v) +
|N |w
|N |w

·
[
v(N)−

∑
k∈N

ηk(N, v)
]

= v(N).

Hence, the weighted Banzhaf value ηw satisfies EFF.

Next, we present an alternative formulation for the weighted Banzhaf value
in terms of excess functions. If x ∈ RN and S ⊆ N , write xS for the restriction of
x to S and write x(S) =

∑
i∈S xi. Denote that X(N, v) = {x ∈ IRN :

∑
i∈N xi =

v(N)}, for all (N, v) ∈ G. The excess of a coalition S ⊆ N at x is the real
number e(S, v, x) = v(S)− x(S).

Lemma 2.2. Let (N, v) ∈ G, x ∈ X(N, v) and w be a weight function. Then

w(j)
∑

S⊆N\{i}

[
e(S, v,

x

2|N |−1
)− e(S ∪ {i}, v, x

2|N |−1
)
]

= w(i)
∑

S⊆N\{j}

[
e(S, v,

x

2|N |−1
)− e(S ∪ {j}, v, x

2|N |−1
)
]
∀i, j ∈ N

⇐⇒ x = ηw(N, v).

Proof of Lemma 2.2. Let (N, v) ∈ G, x ∈ X(N, v) and w be a weight function.
For all i, j ∈ N ,

w(j)
∑

S⊆N\{i}

[
e(S, v,

x

2|N |−1
)− e(S ∪ {i}, v, x

2|N |−1
)
]

= w(i)
∑

S⊆N\{j}

[
e(S, v,

x

2|N |−1
)− e(S ∪ {j}, v, x

2|N |−1
)
]

⇐⇒ w(j)
∑

S⊆N\{i}

[
v(S)− x

2|N |−1
(S) +

x

2|N |−1
(S ∪ {i})− v(S ∪ {i})

]
= w(i)

∑
S⊆N\{j}

[
v(S)− x

2|N |−1
(S) +

x

2|N |−1
(S ∪ {j})− v(S ∪ {j})

]
⇐⇒ w(j)

∑
S⊆N\{i}

[ xi

2|N |−1
− v(S ∪ {i}) + v(S)

]
(3)
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= w(i)
∑

S⊆N\{j}

[ xj

2|N |−1
− v(S ∪ {j}) + v(S)

]
⇐⇒ w(j)

[
xi −

∑
S⊆N\{i}

[v(S ∪ {i})− v(S)]
]

= w(i)
[
xj −

∑
S⊆N\{j}

[v(S ∪ {j})− v(S)]
]

⇐⇒ w(j) ·
[
xi − ηi(N, v)

]
= w(i) ·

[
xj − ηj(N, v)

]
.

By Definition 2.2,

(4) w(j) ·
[
ηwi (N, v)− ηi(N, v)

]
= w(i) ·

[
ηwj (N, v)− ηj(N, v)

]
.

By equations (3) and (4),[
xi − ηwi (N, v)

]∑
j∈N

w(j) = w(i)
∑
j∈N

[
xj − ηwj (N, v)

]
.

Since x ∈ X(N, v) and ηw satisfies EFF,[
xi − ηwi (N, v)

]
· |N |w = w(i) ·

[
v(N)− v(N)

]
= 0.

Therefore, xi = ηwi (N, v), for all i ∈ N .

3. Axiomatic results

In this section, we adopt reductions and excess functions to introduce some
axiomatic results and dynamic processes of the weighted Banzhaf value.

Subsequently, we adopt the efficiency-average-reduced game to characterize
the weighted Banzhaf value.

Definition 3.1 (Liao et al. [13]). Let (N, v) ∈ G, S ⊆ N and ψ be a solution.
The efficiency-sum-reduced game (S, vS,ψ) with respect to ψ and S is defined by

vS,ψ(T ) =



0, T = ∅,
v(N)−

∑
i∈N\S

ψi(N, v), T = S,∑
Q⊆N\S

[
v(T ∪Q)−

∑
i∈Q

ψi(N, v)
]
, T ⊊ S.

The efficiency-sum-reduction asserts that given a proposed payoff vector
ψ(N, v), the worth of a coalition T in (S, vS,ψ) is computed under the assumption
that T can secure the cooperation of any subgroup Q of N \ S, provided each
member of Q receives his component of ψ(N, v). After these payments are made,
what remains for T is the value v(T ∪Q)−

∑
i∈Q ψi(N, v). Summing behavior on

the part of T involves finding the sum of the values v(T ∪Q)−
∑

i∈Q ψi(N, v),
for all Q ⊆ N \ S. A solution ψ satisfies bilateral efficiency-sum-consistency
(BESCON) if ψi(S, vS,ψ) = ψi(N, v), for all (N, v) ∈ G with |N | ≥ 2, for all
S ⊆ N with |S| = 2 and, for all i ∈ S.
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Lemma 3.1. The weighted Banzhaf value ηw satisfies BESCON.

Proof of Lemma 3.1. Let (N, v) ∈ G, S ⊆ N with |S| = 2 and w be a weight
function. Let x = ηw(N, v). Suppose S = {i, j} then

∑
T⊆S\{i}

[
e(T, vS,ηw ,

xS
2|S|−1

)− e(T ∪ {i}, vS,ηw ,
xS

2|S|−1
)
]

=
[
e({j}, vS,ηw ,

xS
2
)−e(S, vS,ηw ,

xS
2
)
]
+
[
e(∅, vS,ηw ,

xS
2
)−e({i}, vS,ηw ,

xS
2
)
]

=
(
vS,ηw({j})−

xj
2

)
−
(
vS,ηw(S)−

xS
2
(S)

)
+ 0−

(
vS,ηw({i})−

xi
2

)
=

(
vS,ηw({j})−

xj
2

)
− 0 + 0−

(
vS,ηw({i})−

xi
2

)
=

([ ∑
Q⊆N\S

[
v({j} ∪Q)−

∑
k∈Q

xk
2

]]
− xj

2

)
−
([ ∑

Q⊆N\S

[
v({i} ∪Q)−

∑
k∈Q

xk
2

]]
− xi

2

)
(5)

=
∑

Q⊆N\S

([
v({j} ∪Q)− xj

2|N |−1

]
−

[
v({i} ∪Q)− xi

2|N |−1

])
=

∑
Q⊆N\S

([
v({j} ∪Q)−

∑
k∈Q

xk
2|N |−1

− xj

2|N |−1

]
−
[
v({i} ∪Q)−

∑
k∈Q

xk
2|N |−1

− xi

2|N |−1

])
=

∑
Q⊆N\S

([
v({j} ∪Q)−

∑
k∈{j}∪Q

xk
2|N |−1

]
−
[
v({i} ∪Q)−

∑
k∈{j}∪Q

xk
2|N |−1

])
=

∑
Q⊆N\S

[
(e({j} ∪Q, v, x

2|N |−1
)− (e({i} ∪Q, v, x

2|N |−1
)
]

=
∑

Q⊆N\{i,j}

[
(e({j} ∪Q, v, x

2|N |−1
)− (e({i} ∪Q, v, x

2|N |−1
)
]

=
∑

Q⊆N\{i}

[
(e(Q, v,

x

2|N |−1
)− (e(Q ∪ {i}, v, x

2|N |−1
)
]
.

Similar to equation (5),

∑
T⊆S\{j}

[
e(T, vS,ηw ,

xS
2|S|−1

)− e(T ∪ {j}, vS,ηw ,
xS

2|S|−1
)
]

=
∑

Q⊆N\{j}

[
(e(Q, v,

x

2|N |−1
)− (e(Q ∪ {j}, v, x

2|N |−1
)
]
.
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By EFF of ηw and the definition of efficiency-sum-reduced game, xS ∈ X(S, vS,ηw).
Therefore, by Lemma 2.2,

w(j) ·
∑

T⊆S\{i}

[
e(T, vS,ηw ,

xS
2|S|−1

)− e(T ∪ {i}, vS,ηw ,
xS

2|S|−1
)
]

= w(j) ·
∑

Q⊆N\{i}

[
(e(Q, v,

x

2|N |−1
)− (e(Q ∪ {i}, v, x

2|N |−1
)
]

(by equation (5))

= w(i) ·
∑

Q⊆N\{j}

[
(e(Q, v,

x

2|N |−1
)− (e(Q ∪ {j}, v, x

2|N |−1
)
]

(by Lemma 2.2)

= w(i) ·
∑

T⊆S\{j}

[
e(T, vS,ηw ,

xS
2|S|−1

)− e(T ∪ {j}, vS,ηw ,
xS

2|S|−1
)
]

(similar to equation (5)).

By Lemma 2 and xS ∈ X(S, vS,ηw), we have that xS = ηw(S, vS,ηw). Hence, η
w

satisfies BESCON.

Inspired by Hart and Mas-Colell [9], we provide an axiomatic result of the
weighted Banzhaf value as follows. A solution ψ satisfies weighted Banzhaf
standard for games (WBSFG) if ψ(N, v) = ηw(N, v), for all (N, v) ∈ G with
|N | ≤ 2. Property WBSFG is a generalization of the two-person standardness
axiom of Hart and Mas-Colell [9].

Lemma 3.2. If a solution ψ satisfies WBSFG and BESCON, then it satisfies
EFF.

Proof of Lemma 3.2. Suppose ψ satisfies WBSFG and BESCON. Let (N, v) ∈
G. If |N | ≤ 2, then ψ satisfies EFF by BESCON of ψ. Suppose |N | > 2, i, j ∈ N
and S = {i, j}. Since ψ satisfies EFF in two-person games,

(6) ψi(S, vS,ψ) + ψj(S, vS,ψ) = vS,ψ(S) = v(N)−
∑
k ̸=i,j

ψk(N, v).

By BESCON of ψ,

(7) ψt(S, vS,ψ) = ψt(N, v), for all t ∈ S.

By equations (6) and (7), v(N) =
∑

k∈N ψk(N, v), i.e., ψ satisfies EFF.

Theorem 3.1. A solution ψ satisfies WBSFG and BESCON if and only if
ψ = ηw.

Proof of Theorem 3.1. By Lemma 3.1, ηw satisfies BESCON. Clearly, ηw

satisfies WBSFG.
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To prove uniqueness, suppose ψ satisfies WBSFG and BESCON. By Lemma
3.2, ψ satisfies EFF. Let (N, v) ∈ G. If |N | ≤ 2, it is trivial that ψ(N, v) =
ηw(N, v) by SFG. Assume that |N | > 2. Let i ∈ N and S = {i, j} for some
j ∈ N \ {i}. Then

ψi(N, v)− ηwi (N, v)

= ψi(S, vS,ψ)− ηwi (S, vS,ηw) (by BESCON of ψ, ηw)

= ηwi (S, vS,ψ)− ηwi (S, vS,ηw) (by WBSFG of ψ, ηw)

= ηwi (S, vS,ψ) +
w(i)

|S|w
·
[
vS,ψ(S)−

[
ηwi (S, vS,ψ) + ηwj (S, vS,ψ)

]]
(8)

− ηwi (S, vS,ηw)−
w(i)

|S|w
·
[
vS,ηw(S)−

[
ηwi (S, vS,ηw) + ηwj (S, vS,ηw)

]]
=

[
vS,ψ(S) + vS,ψ({i})− vS,ψ({j})

]
+
w(i)

|S|w
·
[
− vS,ψ(S)

]
−
[
vS,ηw(S) + vS,ηw({i})− vS,ηw({j})

]
− w(i)

|S|w
·
[
− vS,ηw(S)

]
.

By definitions of vS,ψ and vS,ηw ,

vS,ψ({i})− vS,ψ({j}) =
∑

Q⊆N\S

[
v({i} ∪Q)− v({j} ∪Q)

]
= vS,ηw({i})− vS,ηw({j}).(9)

By equations (8) and (9),

ψi(N, v)− ηwi (N, v) =
[
1− w(i)

|S|w

]
·
[
vS,ψ(S)− vS,ηw(S)

]
=
w(j)

|S|w
·
[
ψi(N, v) + ψj(N, v)− ηwi (N, v)− ηwj (N, v)

]
.

That is,

w(i) ·
[
ψi(N, v)− ηwi (N, v)

]
= w(j) ·

[
ψj(N, v)− ηwj (N, v)

]
.

By EFF of ψ and ηw,

0 = v(N)− v(N)

=
∑
j∈N

[
ψj(N, v)− ηwj (N, v)

]
= w(i) ·

[
ψi(N, v)− ηwi (N, v)

]∑
j∈N

1

w(j)
.

Hence, ψi(N, v) = ηwi (N, v), for all i ∈ N .
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The following examples are to show that each of the axioms used in Theorem
3.1 is logically independent of the remaining axioms.

Example 3.1. Define a solution ψ by, for all (N, v) ∈ G and, for all i ∈ N ,

ψi(N, v) =
v(N)

|N |
.

Clearly, ψ satisfies BESCON, but it violates WBSFG.

Example 3.2. Define a solution ψ by for all (N, v) ∈ G and, for all i ∈ N ,

ψi(N, v) =

{
ηwi (N, v), if |N | ≤ 2,

0, otherwise.

Clearly, ψ satisfies WBSFG, but it violates BESCON.

4. Dynamic results

In this section, we introduce two dynamic processes of the weighted Banzhaf
value by applying excess functions and reductions.

In the following, we adopt excess functions to propose a correction function
and related dynamic process for the weighted Banzhaf value.

Definition 4.1. Let (N, v) ∈ G, i ∈ N and w be a weight function. The

e-correction function fη
w

i : X(N, v) → R is defined by

fη
w

i (x) = xi + t
∑

j∈N\{i}

(
w(i)

∑
S⊆N\{j}

[
e(S, v,

x

2|N |−1
)− e(S ∪ {j}, v, x

2|N |−1
)
]

− w(j)
∑

S⊆N\{i}

[
e(S, v,

x

2|N |−1
)− e(S ∪ {i}, v, x

2|N |−1
)
])
,

where t ∈ (0,∞), which reflects the assumption that player i does not ask for
full correction (when t = 1) but only (usually) a fraction of it.

When a player withdraws from the coalitions he/she/it joined, some of the
other players may complain. The e-correction function is based on the idea
that, each agent shortens the weighted excess relating to his own and others’
non-participation in all coalitions, and adopts these regulations to correct the
original payoff.

The following lemma shows that the e-correction function is well-defined,
i.e., the efficiency is preserved under the e-correction function.

Lemma 4.1. Let (N, v) ∈ G, w be a weight function and fη
w
= (fη

w

i )i∈N . If

x ∈ X(N, v), then fη
w
(x) ∈ X(N, v).
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Proof of Lemma 4.1. Let (N, v) ∈ G, i, j ∈ N , x ∈ X(N, v) and w be a
weight function. Similar to the equation (3),

w(i)
∑

S⊆N\{j}

[
e(S, v,

x

2|N |−1
)− e(S ∪ {j}, v, x

2|N |−1
)
]

− w(j)
∑

S⊆N\{i}

[
e(S, v,

x

2|N |−1
)− e(S ∪ {i}, v, x

2|N |−1
)
]

= w(i)
[
xj − ηwj (N, v)

]
− w(j)

[
xi − ηwi (N, v)

]
.(10)

By equation (10),∑
j∈N\{i}

(
w(i)

∑
S⊆N\{j}

[
e(S, v,

x

2|N |−1
)− e(S ∪ {j}, v, x

2|N |−1
)
]

− w(j)
∑

S⊆N\{i}

[
e(S, v,

x

2|N |−1
)− e(S ∪ {i}, v, x

2|N |−1
)
])

= w(i)
∑

j∈N\{i}

[
xj − ηwj (N, v)

]
−
[
xi − ηwi (N, v)

] ∑
j∈N\{i}

w(j)(11)

= w(i) ·
[
v(N)− v(N)

]
−
[
xi − ηwi (N, v)

]
· |N |w

(by EFF of ηw, x ∈ X(N, v))

= |N |w ·
(
ηwi (N, v)− xi

)
.

Moreover∑
i∈N

|N |w ·
(
ηwi (N, v)− xi

)
= |N |w ·

(
v(N)− v(N)

)
(by EFF of ηw, x ∈ X(N, v))(12)

= 0.

So, we have that∑
i∈N

fη
w

i (x)

=
∑
i∈N

[
xi + t

∑
j∈N\{i}

(
w(i)

∑
S⊆N\{j}

[
e(S, v,

x

2|N |−1
)− e(S ∪ {j}, v, x

2|N |−1
)
]

− w(j)
∑

S⊆N\{i}

[
e(S, v,

x

2|N |−1
)− e(S ∪ {i}, v, x

2|N |−1
)
])]

= v(N) + t · 0
(
by equations (11), (12) and x ∈ X(N, v)

)
= v(N).

Hence, fη
w
(x) ∈ X(N, v) if x ∈ X(N, v).
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Based on Lemma 4.1, we can define x0 = x, x1 = fη
w
(x0), . . . , xq =

fη
w
(xq−1), for all (N, v) ∈ G, for all x ∈ X(N, v) and, for all q ∈ N. Next,

we adopt the correction function to propose a dynamic process.

Theorem 4.1. Let (N, v) ∈ G and w be a weight function. If 0 < t < 2
|N |w ,

then {xq}∞q=1 converges geometrically to ηw(N, v), for all x ∈ X(N, v).

Proof of Theorem 4.1. Let (N, v) ∈ G, i ∈ N , x ∈ X(N, v) and w be a weight
function. By equation (11) and definition of fη

w
,

fη
w

i (x)− xi = t
∑

j∈N\{i}

(
w(i)

∑
S⊆N\{j}

[
e(S, v,

x

2|N |−1
)− e(S ∪ {j}, v, x

2|N |−1
)
]

− w(j)
∑

S⊆N\{i}

[
e(S, v,

x

2|N |−1
)− e(S ∪ {i}, v, x

2|N |−1
)
])

= t · |N |w
(
ηwi (N, v)− xi

)
.

Hence,

ηwi (N, v)− fη
w

i (x) = ηwi (N, v)− xi + xi − fη
w

i (x)

= ηwi (N, v)− xi − t · |N |w · (ηwi (N, v)− xi)

=
(
1− t · |N |w

)[
ηwi (N, v)− xi

]
.

For all q ∈ N,

ηw(N, v)− xq =
(
1− t · |N |w

)q[
ηw(N, v)− x

]
.

If 0 < t < 2
|N |w , then −1 < (1−t·|N |w) < 1 and {xq}∞q=1 converges geometrically

to ηw(N, v).

By applying a specific reduction, Maschler and Owen [14] defined a correction
function to introduce a dynamic process for the Shapley value [19]. In the
following, we propose a dynamic process by applying the notion due to Maschler
and Owen [14].

Definition 4.2. Let ψ be a solution, (N, v) ∈ G, S ⊆ N and x ∈ X(N, v). The
(x, ψ)-reduced game1 (S, vrψ,S,x) is defined by for all T ⊆ S,

vrψ,S,x(T ) =


v(N)−

∑
i∈N\S

xi, T = S,

vS,ψ(T ), otherwise.

1. For the discussion of x-dependent reduction, please see Maschler and Owen [14].
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Inspired by Maschler and Owen [14], we define a correction function as follow.
Let (N, v) ∈ G and w be a weight function. The R-correction function to be
g = (gi)i∈N and gi : X(N, v) → R is define by

gi(x) = xi + t
∑

k∈N\{i}

(
ηwi

(
{i, k}, vrηw,{i,k},x

)
− xi

)
,

where t ∈ (0,∞), which reflects the assumption that player i does not ask
for full correction (when t = 1) but only (usually) a fraction of it. Define
x0 = x, x1 = g(x0), . . . , xq = g(xq−1), for all q ∈ N.
Lemma 4.2. g(x) ∈ X(N, v), for all (N, v) ∈ G and, for all x ∈ X(N, v).

Proof of Lemma 4.2. Let (N, v) ∈ G, w be a weight function, i, k ∈ N and
x ∈ X(N, v). Let S = {i, k}, by EFF of ηw and Definition 5,

ηwi (S, v
r
ηw,S,x) + ηwk (S, v

r
ηw,S,x) = xi + xk.

By Definition 4.2 and BESCON and WBSFG of β,

ηwi (S, v
r
ηw,S,x

)− ηwk (S, v
r
ηw,S,x

) = ηwi (S, vS,ηw)− ηwk (S, vS,ηw)

= ηwi (N, v)− ηwk (N, v).

Therefore,

(13) 2 ·
[
ηwi (S, v

r
ηw,S,x)− xi

]
= ηwi (N, v)− ηwk (N, v)− xi + xk.

By definition of g and equation (13),

gi(x) = xi +
t

2
·
[ ∑
k∈N\{i}

ηwi (N, v)−
∑

k∈N\{i}

xi

−
∑

k∈N\{i}

ηwk (N, v) +
∑

k∈N\{i}

xk

]
= xi +

w

2
·
[(
|N | − 1

)
ηwi (N, v)−

(
|N | − 1

)
xi(14)

−
(
v(N)− ηwi (N, v)

)
+
(
v(N)− xi

)]
= xi +

|N | · t
2

·
[
ηwi (N, v)− xi

]
.

So, we have that∑
i∈N

gi(x) =
∑
i∈N

[
xi +

|N | · t
2

·
[
ηwi (N, v)− xi

]]
=

∑
i∈N

xi +
|N | · t

2
·
[∑
i∈N

ηwi (N, v)−
∑
i∈N

xi
]

= v(N) +
|N | · t

2
·
[
v(N)− v(N)

]
= v(N).

Thus, g
(
x
)
∈ X(N, v), for all x ∈ X(N, v).
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Theorem 4.2. Let (N, v) ∈ G and w be a weight function. If 0 < α < 4
|N | ,

then {xq}∞q=1 converges to ηw(N, v) for each x ∈ X(N, v).

Proof of Theorem 4.2. Let (N, v) ∈ G, w be a weight function and x ∈
X(N, v). By equation (14), gi(x) = xi +

|N |·t
2 · [ηwi (N, v) − xi], for all i ∈ N .

Therefore,

(
1− |N | · t

2

)
·
[
ηwi (N, v)− xi

]
=

[
ηwi (N, v)− gi(x)

]
So, for all q ∈ N,

ηw(N, v)− xq =
(
1− |N | · t

2

)q[
ηw(N, v)− x

]
.

If 0 < t < 4
|N | , then −1 < (1− |N |·t

2 ) < 1 and {xq}∞q=1 converges to ηw(N, v), for

all (N, v) ∈ G, for all weight function w and for all i ∈ N .

5. Conclusions

Weights come up naturally in the framework of utility allocation. For example,
we may face the problem of utility allocation among investment projects. Then,
the weights could be associated with the profitability of the different projects.
Weights are also included in contracts signed by the owners of a condominium
and used to divide the cost of building or maintaining common facilities. An-
other example is data or patent pooling among firms where the firms’ sizes,
measured for instance by their market shares, are natural weights. Therefore,
we adopt weight functions to propose the weighted Banzhaf value. To present
the rationality of the weighted Banzhaf value, we employ the efficiency-sum-
reduction characterization. Based on excess functions, an alternative formula-
tion is proposed to provide an alternative viewpoint for the weighted Banzhaf
value. By applying excess functions and reductions, we also define correction
functions to propose dynamic processes for the weighted Banzhaf value. Below
are the comparisons of our results with related pre-existing results.

� The weighted Banzhaf value and related results are introduced initially in
the framework of standard TU games.

� Inspired by Maschler and Owen [14], we propose dynamic processes for
the weighted Banzhaf value. The major difference is that our e-correction
function (Definition 4.1) is based on “excess functions,” and Maschler and
Owen’s [14] correction function is based on “reductions”.

Our results proposed raise two issues.

� Whether there exist weighted modifications and related results for some
more solutions.
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� Whether there exist different formulations and related results for some
more solutions.

These issues are left to the readers.
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