
ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 50–2023 (414–439) 414

On the sub-η-n-polynomial convexity and its applications

Lei Xu
Three Gorges Mathematical Research Center
China Three Gorges University
Yichang 443002
P. R. China
leixu9903@163.com

Tingsong Du∗

Three Gorges Mathematical Research Center

China Three Gorges University

Yichang 443002

P. R. China

and

Department of Mathematics

College of Science

China Three Gorges University

Yichang 443002

P. R. China

tingsongdu@ctgu.edu.cn

Abstract. This study addresses a new family of functions, to be named as the sub-η-
n-polynomial convex functions, which is defined as a general form of the n-polynomial
convex functions and the sub-η-convex functions, and some of their significant proper-
ties are presented as well. In addition, by means of the sub-η-n-polynomial convexity,
certain Hermite–Hadamard-type inequalities are established here. The sufficient con-
ditions regarding optimality for sub-η-n-polynomial convex programming are discussed
as applications.
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1. Introduction

Convexity, as well as generalized convexity, provide forceful principles and ap-
proaches in both mathematics and certain areas of engineering, in particular,
in optimization theory, see [13, 29, 15, 31, 33] and the references therein cited
in them. With regard to generalizations and extensions of classical convexity, a
variety of interesting articles have been published by plenty of mathematicians.
For example, Bector and Singh [5] considered a type of B-vex functions. Long
and Peng [24] discussed a family of functions, which is a general form of the B-
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vex mappings, called semi-B-preinvex mappings. Chao et al. [8] investigated a
group of extented sub-b-convex mappings, as well as demonstrated the sufficient
optimality criteria regarding sub-b-convex programming within unconstrained
and inequality constrained conditions. Ahmad et al. [2] proposed the concept
of geodesic sub-b-s-convex mappings, as well as gave certain properties on Rie-
mannian manifolds. Liao and Du considered two groups of mappings in [21]
and [22], named as the sub-b-s-convex mappings and sub-(b,m)-convex map-
pings, respectively, from which certain significant properties were studied, and
optimality conditions for the introduced families of generalized convex program-
ming were reported.

On the other hand, convexity acts on a crucial role in the area of inequal-
ities by its significance of mathematics definition. Recently, a large number of
researchers, including mathematicians, engineers and scientists, have tried to
conduct an in-depth research regarding properties and inequalities in associa-
tion with convexity from distinct directions. For instance, Toplu et al. [32]
found a class of non-negative mappings, called n-polynomial convex mappings,
as well as several related Hermite–Hadamard-type inequalities have been dis-
cussed. Deng et al. [10] constructed an integral identity, as well as received
certain error bounds involving integral inequalities with regard to a family of
strongly convex mappings, which is named as strongly n-polynomial preinvex
mappings. By virtue of n-polynomial s-type preinvexity, Butt et al. [7] studied
certain refinements of Hermite–Hadamard-type integral inequalities. For more
significant findings in connection with n-polynomial convex mappings, we rec-
ommend the minded readers to consult [6, 27] and the bibliographies quoted in
them.

Trying to get the further discussion, let us consider to the subsequent ex-
traordinary Hermite–Hadamard’s inequality in association with convexity.

Suppose that ψ : Ω ⊆ R → R is a convex mapping defined on the interval
Ω, for each ζ1, ζ2 ∈ Ω together with ζ1 ̸= ζ2. The subsequent inequalities, to
be named as Hermite–Hadamard’s inequalities, are frequently put into use in
engineering mathematical and applied analysis

(1) ψ

(
ζ1 + ζ2

2

)
≤ 1

ζ2 − ζ1

∫ ζ2

ζ1

ψ(γ)dγ ≤ ψ(ζ1) + ψ(ζ2)

2
.

The distinguished integral inequalities, which have given rise to considerable
attention from plenty of authors, provide error bounds for the mean value re-
garding a continuous convex mapping ψ : [ζ1, ζ2] → R. There have been a large
amount of studies, with regard to the Hermite–Hadamard-type inequalities in-
volving other diverse types of convex mappings, such as N -quasiconvex map-
pings [1], s-convex mappings [20], (α,m)-convex mappings [30], strongly expo-
nentially generalized preinvex mappings [17], h-convex mappings [9], γ-preinvex
mappings [4] and so on. For more vital outcomes pertaining to the Hermite–
Hadamard-type inequalities, the reader may refer to [3, 11, 16, 23, 28, 25, 34]
and the bibliographies quoted in them.
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Enlightened by the above-mentioned research works, in particular, those cre-
ated in [18, 8, 32], we study a new group of generalized convex sets, as well as
generalized convex functions, to be called as sub-η-n-polynomial convex sets
and sub-η-n-polynomial convex functions, respectively. And we explore certain
fascinating properties of such group of sets and functions. Moreover, we in-
vestigate quite a few Hermite–Hadamard’s type inequalities in relation to the
sub-η-n-polynomial convex functions. As applications, we pursue the sufficient
optimality conditions for unconstrained, as well as inequality constrained pro-
gramming, which are under the sub-η-n-polynomial convexity.

Through out the paper, let us suppose that Λ is a nonempty convex set in Rn.
To this end, this section retrospects certain conceptions regarding generalized
convexity, and related momentous results.

Definition 1.1 ([8]). The real function ψ: Λ → R is named as a sub-η-convex
mapping defined on the interval Λ with regard to the mapping η : Λ×Λ× [0, 1] →
R, if the successive inequality

ψ
(
νγ + (1− ν)ϱ

)
≤ νψ(γ) + (1− ν)ψ(ϱ) + η(γ, ϱ, ν)

holds true for all γ, ϱ ∈ Λ and ν ∈ [0, 1].

Definition 1.2 ([32]). Assume that n ∈ N, the nonnegative mapping ψ: Ω ⊆
R → R is named as an n-polynomial convex mapping if the subsequent inequality

ψ
(
νγ + (1− ν)ϱ

)
≤ 1

n

n∑
κ=1

[
1− (1− ν)κ

]
ψ(γ) +

1

n

n∑
κ=1

[
1− νκ

]
ψ(ϱ)

holds true for all γ, ϱ ∈ Ω and ν ∈ [0, 1].

In the published article [14], the author proposed a refinement version with
regard to the extraordinary Hölder’s integral inequality, called as Hölder–İşcan’s
integral inequality as below.

Theorem 1.1 ([14]). Suppose that p > 1 and 1
p + 1

q = 1. If ψ and ρ are two
real mappings defined on the interval [ζ1, ζ2], as well as if |ψ|p, |ρ|q are both
integrable mappings on the interval [ζ1, ζ2], then we have the coming inequality

∫ ζ2

ζ1

|ψ(x)ρ(x)|dγ≤ 1

ζ2−ζ1

(∫ ζ2

ζ1

(ζ2−γ)|ψ(γ)|pdγ
) 1

p
(∫ ζ2

ζ1

(ζ2 − γ)|ρ(γ)|qdγ
) 1

q

+

(∫ ζ2

ζ1

(γ − ζ1)|ψ(γ)|pdγ
) 1

p
(∫ ζ2

ζ1

(γ − ζ1)|ρ(γ)|qdγ
) 1

q

 .
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2. Sub-η-n-polynomial convex functions and their properties

The fact that the convexity, n-polynomial convexity, and sub-η-convexity have
almost the analogous structures impels us to generalize these distinct fami-
lies of convex functions. Now, let us consider to introduce the conception of
the sub-η-n-polynomial convex functions and sub-η-n-polynomial convex sets as
below. Then certain basic characterization theorems are proposed, as well as
preservation of the sub-η-n-polynomial convexity with regard to some functional
operations such as composition, sum and maximum are studied. In particular,
two property theorems with regard to differentiable sub-η-n-polynomial convex
functions are investigated in this section.

Definition 2.1. Assume that n ∈ N, the non-negative function ψ: Λ → R is
named as sub-η-n-polynomial convex defined on the interval Λ with regard to the
mapping η : Λ× Λ× [0, 1] → R, if the subsequent inequality

(2) ψ
(
νγ+(1−ν)ϱ

)
≤ 1

n

n∑
κ=1

[
1−(1−ν)κ

]
ψ(γ)+

1

n

n∑
κ=1

[
1−νκ

]
ψ(ϱ)+η(γ, ϱ, ν)

holds true for each γ, ϱ ∈ Λ and ν ∈ [0, 1]. On the other hand, if the successive
inequality

(3) ψ
(
νγ+(1−ν)ϱ

)
≥ 1

n

n∑
κ=1

[
1−(1−ν)κ

]
ψ(γ)+

1

n

n∑
κ=1

[
1−νκ

]
ψ(ϱ)+η(γ, ϱ, ν)

holds true for each γ, ϱ ∈ Λ and ν ∈ [0, 1], then the function ψ is named as sub-
η-n-polynomial concave. If the inequality notations in the above-mentioned in-
equalities are strict, then the function ψ is named as strictly sub-η-n-polynomial
convex, as well as strictly sub-η-n-polynomial concave, respectively.

Remark 2.1. If we consider to take n = 1, then the sub-η-n-polynomial convex
function reduces to the sub-η convex functions. Moreover, when we attempt to
put n = 1 and claim η(γ, ϱ, ν) ≤ 0, the sub-η-n-polynomial convex function
transforms to convex functions.

Remark 2.2. In accordance with Remark 3 in Ref. [32], we know that each
nonnegative convex function is an n-polynomial convex function. When the
mapping η(γ, ϱ, ν) ≥ 0, each nonnegative convex function is also a sub-η-n-
polynomial convex function. In the same way, when we claim η(γ, ϱ, ν) ≥ 0, it
is obvious that each n-polynomial convex function is also a sub-η-n-polynomial
convex function.

Now, we try to study certain operations that preserve the sub-η-n-polynomial
convexity with regard to positive linear combination and securing pointwise
maximum. Because the proofs of these properties are simplified, they are omit-
ted.
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Proposition 2.1. If the functions ψ, ρ: Λ → R are both sub-η-n-polynomial
convex with regard to the same mapping η, then ψ + ρ is sub-η-n-polynomial
convex with regard to the mapping 2η, and αψ(α > 0) is sub-η-n-polynomial
convex with regard to the mapping αη.

Corollary 2.1. If ψκ: Λ → R (κ = 1, 2, . . . , δ) are a series of sub-η-n-polynomial
convex functions regarding the mappings ηκ : Λ×Λ× [0, 1] → R (κ = 1, 2, . . . , δ),
correspondingly, then the function

(4) ψ =
δ∑

κ=1

aκψκ, aκ ≥ 0, (κ = 1, 2, . . . , δ)

is sub-η-n-polynomial convex with regard to η =
∑δ

κ=1 aκηκ.

Proposition 2.2. If ψκ: Λ → R (κ = 1, 2, . . . , δ) are a series of sub-η-n-
polynomial convex functions with respect to the mappings ηκ : Λ × Λ × [0, 1] →
R (κ=1, 2, . . . , δ), correspondingly, then the function ψ=max{ψκ, i=1, 2, . . . , δ}
is a sub-η-n-polynomial convex function with regard to the mapping η = max{ηκ,
κ = 1, 2, . . . , δ}.

Theorem 2.1. Assume that ψ: Λ → R is a sub-η-n-polynomial convex function
with regard to the mapping η : Λ × Λ × [0, 1] → R, as well as ρ: R → R is an
increasing function. If ρ meets the coming conditions:

(i) ρ(αγ) = αρ(γ),∀γ ∈ R, α > 0,(5)

(ii) ρ(γ + ϱ) = ρ(γ) + ρ(ϱ),∀γ, ϱ ∈ R,(6)

then the function ψ△ = ρ ◦ ψ is sub-η-n-polynomial convex with regard to η△ =
ρ ◦ η.

Proof. Since the function ψ is sub-η-n-polynomial convex regarding the map-
ping η and the function ρ is increasing, it follows that

(ρ ◦ ψ)
(
νγ + (1− ν)ϱ

)
= ρ
(
ψ
(
νγ + (1− ν)ϱ

))
≤ ρ

(
1

n

n∑
κ=1

[
1− (1− ν)κ

]
ψ(γ) +

1

n

n∑
κ=1

[
1− νκ

]
ψ(ϱ) + η(γ, ϱ, ν)

)
.

By virtue of the provided conditions in (5) and (6), it readily yields that

(ρ ◦ ψ)
(
νγ + (1− ν)ϱ

)
≤ 1

n

n∑
κ=1

[
1− (1− ν)κ

]
ρ
(
ψ(γ)

)
+

1

n

n∑
κ=1

[
1− νκ

]
ρ
(
ψ(ϱ)

)
+ ρ
(
η(γ, ϱ, ν)

)
=

1

n

n∑
κ=1

[
1− (1− ν)κ

]
(ρ ◦ ψ)(γ) + 1

n

n∑
κ=1

[
1− νκ

]
(ρ ◦ ψ)(ϱ) + (ρ ◦ η)(γ, ϱ, ν).
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That is, the function ψ△ = ρ ◦ ψ is sub-η-n-polynomial convex with regard to
η△ = ρ ◦ η. This ends the proof. □

Theorem 2.2. Assume that η1 : Λ×Λ×[0, 1] → R and η2 : [0, 1]×[0, 1]×[0, 1] →
R are two mappings along with η1(γ, ϱ, ν) ≤ η2(ζ1, ζ2, ν). If ψ : Λ ⊂ Rn → R
is a sub-η1-n-polynomial convex function on Λ with regard to η1, then for all
γ, ϱ ∈ Λ, the function Φ : [0, 1] → R, Φ(t) = ψ(νγ + (1 − ν)ϱ) is sub-η2-n-
polynomial convex on [0, 1] with regard to the mapping η2.

Proof. Assume that ψ is a sub-η1-n-polynomial convex function on Λ regarding
the mapping η1. Let γ, ϱ ∈ Λ, ν ∈ [0, 1] and ζ1, ζ2 ∈ [0, 1]. Then, we know that

0 ≤ νζ1 + (1− ν)ζ2 ≤ 1,

and

Φ(νζ1 + (1− ν)ζ2)

= ψ
[(
νζ1 + (1− ν)ζ2

)
γ +

(
1− νζ1 − (1− ν)ζ2

)
ϱ
]

= ψ
[
ν(ζ1γ + (1− ζ1)ϱ) + (1− ν)(ζ2γ + (1− ζ2)ϱ)

]
≤ 1

n

n∑
κ=1

[
1− (1− ν)κ

]
ψ(ζ1γ + (1− ζ1)ϱ) +

1

n

n∑
κ=1

[
1− νκ

]
ψ(ζ2γ + (1− ζ2)ϱ)

+ η1(ζ1γ + (1− ζ1)ϱ, ζ2γ + (1− ζ2)ϱ, ν)

=
1

n

n∑
κ=1

[
1− (1− ν)κ

]
Φ(ζ1) +

1

n

n∑
κ=1

[
1− νκ

]
Φ(ζ2)

+ η1(ζ1γ + (1− ζ1)ϱ, ζ2γ + (1− ζ2)ϱ, ν)

≤ 1

n

n∑
κ=1

[
1− (1− ν)κ

]
Φ(ζ1) +

1

n

n∑
κ=1

[
1− νκ

]
Φ(ζ2) + η2(ζ1, ζ2, ν).

Hence, the function Φ is sub-η2-n-polynomial convex on [0, 1] with regard to η2.
The proof of Theorem 2.2 is completed. □

In what following, let us consider a novel concept regarding sub-η-n-poly-
nomial convex set.

Definition 2.2. Assume that the set X ⊆ Rn+1 is a nonempty set. A set
X is named as a sub-η-n-polynomial convex set with regard to the mapping
η : Rn × Rn × [0, 1] → R, if the subsequent inclusion relation

(7)

(
νγ + (1− ν)ϱ,

1

n

n∑
κ=1

[
1− (1− ν)κ

]
α+

1

n

n∑
κ=1

[
1− νκ

]
β + η(γ, ϱ, ν)

)
∈ X

holds true for ∀ (γ, α), (ϱ, β) ∈ X, γ, ϱ ∈ Rn and ν ∈ [0, 1].

Here, let us take into account a characterization of sub-η-n-polynomial con-
vex function ψ: Λ → R, by means of its epigraph E(ψ), which is described
by

(8) E(ψ) = {(γ, α)|γ ∈ Λ, α ∈ R;ψ(γ) ≤ α}.
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Theorem 2.3. A function ψ: Λ → R is a sub-η-n-polynomial convex function
regarding the mapping η : Λ × Λ × [0, 1] → R when, and only when E(ψ) is a
sub-η-n-polynomial convex set regarding the same mapping η.

Proof. Suppose that the function ψ is sub-η-n-polynomial convex regarding
the mapping η. Let (γ1, α1), (γ2, α2) ∈ E(ψ). Then ψ(γ1) ≤ α1, ψ(γ2) ≤ α2, we
know that

ψ
(
νγ1 + (1− ν)γ2

)
≤ 1

n

n∑
κ=1

[
1− (1− ν)κ

]
ψ(γ1) +

1

n

n∑
κ=1

[
1− νκ

]
ψ(γ2) + η(γ1, γ2, ν)

≤ 1

n

n∑
κ=1

[
1− (1− ν)κ

]
α1 +

1

n

n∑
κ=1

[
1− νκ

]
α2 + η(γ1, γ2, ν)

holds true for ∀γ1, γ2 ∈ Λ, ν ∈ [0, 1].
Hence, it is not difficult to check that

(
νγ1+(1−ν)γ2,

1

n

n∑
κ=1

[
1−(1−ν)κ

]
α1+

1

n

n∑
κ=1

[
1−νκ

]
α2+η(γ1, γ2, ν)

)
∈ E(ψ).

Therefore, the set E(ψ) is a sub-η-n-polynomial convex set regarding the map-
ping η.

In turn, let us assume that E(ψ) is a sub-η-n-polynomial convex set regarding
the mapping η. Let γ1, γ2 ∈ Λ, we have (γ1, α1), (γ2, α2) ∈ E(ψ). Thus, for
ν ∈ [0, 1], we find that(
νγ1+(1−ν)γ2,

1

n

n∑
κ=1

[
1−(1−ν)κ

]
α1+

1

n

n∑
κ=1

[
1−νκ

]
α2+η(γ1, γ2, ν

)
∈ E(ψ).

It suffices to show that

ψ
(
νγ1+(1−ν)γ2

)
≤ 1

n

n∑
κ=1

[
1−(1−ν)κ

]
ψ(γ1)+

1

n

n∑
κ=1

[
1−νκ

]
ψ(γ2)+η(γ1, γ2, ν).

That is, the function ψ is a sub-η-n-polynomial convex regarding the mapping
η. This finishes the proof. □

We have the succedent propositions without proof.

Proposition 2.3. If Xκ(κ ∈ Ω) is a series of sub-η-n-polynomial convex sets
regarding the same mapping η(γ, ϱ, ν), then

⋂
κ∈ΩXκ is a sub-η-n-polynomial

convex set with regard to the same mapping η(γ, ϱ, ν).

Proposition 2.4. If {ψκ|κ ∈ Ω} is a group of numerical functions, as well
as any ψκ is a sub-η-n-polynomial convex function regarding the same mapping
η(γ, ϱ, ν), then the numerical function ψ = supκ∈Ω ψκ(γ) is a sub-η-n-polynomial
convex function regarding the same mapping η(γ, ϱ, ν).
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To explore the optimal conditions regarding sub-η-n-polynomial convex pro-
gramming, we next discuss certain properties in relation to a family of the
differentiable sub-η-n-polynomial convex functions. Further, we assume that
the limit limν→0+

η(γ,ϱ,ν)
ν exists for certain fixed γ, ϱ ∈ Λ.

Theorem 2.4. Suppose that the function ψ: Λ → R is differentiable and sub-
η-n-polynomial convex regarding the mapping η. Then we have

(9) ∇ψ(γ∗)T (γ − γ∗) ≤ n+ 1

2
ψ(γ)− 1

n
ψ(γ∗) + lim

ν→0+

η(γ, γ∗, ν)

ν
.

Proof. By virtue of Taylor expansion and the sub-η-n-polynomial convexity of
ψ defined on Λ, we find that

ψ
(
νγ + (1− ν)γ∗

)
= ψ(γ∗) + ν∇ψ(γ∗)T (γ − γ∗) + o(ν)

≤ 1

n

n∑
κ=1

[
1− (1− ν)κ

]
ψ(γ) +

1

n

n∑
κ=1

[
1− νκ

]
ψ(γ∗) + η(γ, γ∗, ν).

This implies that

ν∇ψ(γ∗)T (γ − γ∗) + o(ν)

≤ 1

n

[ n∑
κ=1

[1− (1− ν)κ]ψ(γ)−
n∑

κ=1

νκψ(γ∗)
]
+ η(γ, γ∗, ν).(10)

Dividing the above inequality (10) by ν and taking ν → 0+, it yields that

∇ψ(γ∗)T (γ − γ∗) ≤ lim
ν→0+

1
n

∑n
κ=1

[
1− (1− ν)κ

]
ν

ψ(γ)

− lim
ν→0+

1
n

∑n
κ=1 ν

κ

ν
ψ(γ∗) + lim

ν→0+

η(γ, γ∗, ν)

ν
.

(11)

Employing the L’Hospital’s rule, we can figure out that

lim
ν→0+

1
n

∑n
κ=1

[
1− (1− ν)κ

]
ν

=
n+ 1

2
,

and

lim
ν→0+

1
n

∑n
κ=1 ν

κ

ν
=

1

n
.

Making use of the inequality (11), we deduce that

∇ψ(γ∗)T (γ − γ∗) ≤ n+ 1

2
ψ(γ)− 1

n
ψ(γ∗) + lim

ν→0+

η(γ, γ∗, ν)

ν
,

which proves the required inequality in (9). This concludes the proof. □
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Remark 2.3. If one attempts to pick up n = 1, in Theorem 2.4, then one
receives Theorem 1.3 proven by Chao et al. in [8].

Theorem 2.5. With the same hypotheses considered in Theorem 2.4, we have(
∇ψ(ϱ)−∇ψ(γ)

)T
(γ − ϱ)

≤ (n− 1)(n+ 2)

2n

[
ψ(ϱ) + ψ(γ)

]
+ lim

ν→0+

η(γ, ϱ, ν)

ν
+ lim

ν→0+

η(ϱ, γ, ν)

ν
.

(12)

Proof. In accordance with Theorem 2.4, it follows that

∇ψ(ϱ)T (γ − ϱ) ≤ n+ 1

2
ψ(γ)− 1

n
ψ(ϱ) + lim

ν→0+

η(γ, ϱ, ν)

ν
,(13)

and

∇ψ(γ)T (ϱ− γ) ≤ n+ 1

2
ψ(ϱ)− 1

n
ψ(γ) + lim

ν→0+

η(ϱ, γ, ν)

ν
.(14)

Adding the above two inequalities, we obtain that(
∇ψ(ϱ)−∇ψ(γ)

)T
(γ − ϱ)

≤ (n− 1)(n+ 2)

2n

[
ψ(ϱ) + ψ(γ)

]
+ lim

ν→0+

η(γ, ϱ, ν)

ν
+ lim

ν→0+

η(ϱ, γ, ν)

ν
.

This ends the proof. □

Remark 2.4. If one attempts to pick up n = 1, in Theorem 2.5, then one
captures Theorem 1.4 presented by Chao et al. in [8].

3. Inequalities in connection with sub-η-n-polynomial convexity

In this part, we construct the successive Hermite–Hadamard-type inequalities
under sub-η-n-polynomial convexity.

Theorem 3.1. Assume that the function ψ: [ζ1, ζ2] → R is sub-η-n-polynomial
convex with ζ1 < ζ2, and the mapping η: [ζ1, ζ2]× [ζ1, ζ2]× [0, 1] → R is continu-
ous. If the function ψ ∈ L([ζ1, ζ2]), then the subsequent Hermite–Hadamard-type
inequalities

(15)

1

2

(
n

n+2−n−1

)[
ψ

(
ζ1+ζ2

2

)
−η
(
ξ0ζ1+(1−ξ0)ζ2, (1−ξ0)ζ1+ξ0ζ2,

1

2

)]
≤ 1

ζ2 − ζ1

∫ ζ2

ζ1

ψ(γ)dγ ≤
(
ψ(ζ1) + ψ(ζ2)

n

) n∑
κ=1

κ

κ+ 1
+ η(ζ1, ζ2, ξ0)

hold true for certain fixed ξ0 ∈ (0, 1).
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Proof. On account of the sub-η-n-polynomial convexity of ψ defined over the
interval [ζ1, ζ2], we can figure out that

ψ

(
ζ1 + ζ2

2

)
= ψ

(
[νζ1 + (1− ν)ζ2] + [(1− ν)ζ1 + νζ2]

2

)
≤ 1

n

n∑
κ=1

[
1−

(
1− 1

2

)κ]
ψ
(
νζ1 + (1− ν)ζ2

)
+

1

n

n∑
κ=1

[
1−

(
1

2

)κ]
ψ
(
(1− ν)ζ1 + νζ2

)
+ η

(
νζ1 + (1− ν)ζ2, (1− ν)ζ1 + νζ2,

1

2

)
=

1

n

n∑
κ=1

[
1−

(
1

2

)κ] [
ψ
(
νζ1 + (1− ν)ζ2

)
+ ψ

(
(1− ν)ζ1 + νζ2

)]
+ η

(
νζ1 + (1− ν)ζ2, (1− ν)ζ1 + νζ2,

1

2

)
.

Integrating the resulting inequality above regarding the variate ν over [0, 1], it
follows that

ψ

(
ζ1 + ζ2

2

)
≤ 1

n

n∑
κ=1

[
1−

(
1

2

)κ] [∫ 1

0
f
(
νζ1 + (1− ν)ζ2

)
dν +

∫ 1

0
ψ
(
(1− ν)ζ1 + νζ2

)
dν

]
+

∫ 1

0
η

(
νζ1 + (1− ν)ζ2, (1− ν)ζ1 + νζ2,

1

2

)
dν

=
2

ζ2 − ζ1

(
n+ 2−n − 1

n

)∫ ζ2

ζ1

ψ(γ)dγ

+

∫ 1

0
η

(
νζ1 + (1− ν)ζ2, (1− ν)ζ1 + νζ2,

1

2

)
dν.

According to the mean value theorem of integrals, it yields that∫ 1

0
η

(
νζ1 + (1− ν)ζ2, (1− ν)ζ1 + νζ2,

1

2

)
dν

= η

(
ξ0ζ1 + (1− ξ0)ζ2, (1− ξ0)ζ1 + ξ0ζ2,

1

2

)
, ξ0 ∈ (0, 1).

This finishes the proof of the first inequality in (15).
In the same way, by taking advantage of the sub-η-n-polynomial convexity

of ψ on the interval [ζ1, ζ2], as well as the mean value theorem of integrals, if
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the variable is changed as γ = νζ1 + (1− ν)ζ2, then we know that

1

ζ2 − ζ1

∫ ζ2

ζ1

ψ(γ)dγ

=

∫ 1

0
ψ
(
νζ1 + (1− ν)ζ2

)
dν

≤
∫ 1

0

[
1

n

n∑
κ=1

[
1− (1− ν)κ

]
ψ(ζ1) +

1

n

n∑
κ=1

[
1− νκ

]
ψ(ζ2) + η(ζ1, ζ2, ν)

]
dν

=
ψ(ζ1)

n

∫ 1

0

n∑
κ=1

[
1− (1− ν)κ

]
dν +

ψ(ζ2)

n

∫ 1

0

n∑
κ=1

[
1− νκ

]
dν +

∫ 1

0
η(ζ1, ζ2, ν)dν

=
ψ(ζ1)

n

n∑
κ=1

∫ 1

0

[
1− (1− ν)κ

]
dν +

ψ(ζ2)

n

n∑
κ=1

∫ 1

0

[
1− νκ

]
dν

+ η(ζ1, ζ2, ξ0), ξ0 ∈ (0, 1).

Also, we observe that

∫ 1

0

[
1− (1− ν)κ

]
dν =

∫ 1

0

[
1− νκ

]
dν =

κ

κ+ 1
.

This finishes the proof. □

Remark 3.1. If one attempts to pick up the mapping η = 0 in Theorem 3.1,
then one receives Theorem 4 deduced by Toplu et al. in [32]. In particular, if
one considers to pick up η = 0 and n = 1, then the inequalities (15) coincides
with the extraordinary Hermite–Hadamard’s inequalities (1).

Theorem 3.2. Suppose that ψ: Ω ⊆ R → R is a differentiable mapping on the
interval Ω◦ with ζ1 < ζ2. If ψ is a sub-η-n-polynomial convex function regarding
continuous mapping η: Ω× Ω× [0, 1] → R, then the successive inequalities

(16)

1

2

(
n

n+2−n−1

)[
ψ

(
ζ1+ζ2

2

)
−η
(
ξ0ζ1+(1−ξ0)ζ2, (1− ξ0)ζ1 + ξ0ζ2,

1

2

)]
≤ 1

ζ2 − ζ1

∫ ζ2

ζ1

ψ(γ)dγ

≤
(
n+ 2−n−1

n

)ψ(ζ1+ζ2
2

)
+

ψ
(
3ζ1−ζ2

2

)
+ψ

(
3ζ2−ζ1

2

)
n

 n∑
κ=1

κ

κ+ 1

+η

(
3ζ1 − ζ2

2
,
3ζ2 − ζ1

2
, ξ0

)]
+ η

(
ξ1,

ζ1 + ζ2
2

,
1

2

)
,
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and

(17)

∣∣∣∣[ 1

ζ2−ζ1

∫ ζ2

ζ1

ψ(γ)dγ−η
(
ξ1,

ζ1+ζ2
2

,
1

2

)]
−
(
n+ 2−n − 1

n

)
ψ

(
ζ1+ζ2

2

)∣∣∣∣
≤

∣∣∣∣∣∣
(
n+ 2−n − 1

n

)ψ
(
3ζ1−ζ2

2

)
+ ψ

(
3ζ2−ζ1

2

)
n

 n∑
κ=1

κ

κ+ 1

+η

(
3ζ1 − ζ2

2
,
3ζ2 − ζ1

2
, ξ0

)]∣∣∣∣
hold true for certain fixed ξ0 ∈ (0, 1) and ξ1 ∈

(
3ζ1−ζ2

2 , 3ζ2−ζ1
2

)
.

Proof. Applying the mean value theorem of integrals, as well as by substituting
the variables γ = 3

4ν +
ζ1+ζ2

4 , ν ∈ [3ζ1−ζ2
3 , 3ζ2−ζ1

3 ], we deduce that

(18)

1

ζ2 − ζ1

∫ ζ2

ζ1

ψ(γ)dγ

=
3

4(ζ2 − ζ1)

∫ 3ζ2−ζ1
3

3ζ1−ζ2
3

ψ

(
3

4
ν +

ζ1 + ζ2
4

)
dν

=
3

4(ζ2 − ζ1)

∫ 3ζ2−ζ1
3

3ζ1−ζ2
3

ψ

(
1

2

(
3

2
ν

)
+

1

2

(
ζ1 + ζ2

2

))
dν

≤ 3

4(ζ2 − ζ1)

∫ 3ζ2−ζ1
3

3ζ1−ζ2
3

(
1

n

n∑
κ=1

[
1−

(
1

2

)κ] [
ψ

(
3

2
ν

)
+ ψ

(
ζ1 + ζ2

2

)]
+η

(
3

2
ν,
ζ1 + ζ2

2
,
1

2

))
dν

=

(
n+ 2−n − 1

n

)[
ψ

(
ζ1 + ζ2

2

)
+

1

2(ζ2 − ζ1)

∫ 3ζ2−ζ1
2

3ζ1−ζ2
2

ψ(ν)dν

]

+ η

(
ξ1,

ζ1 + ζ2
2

,
1

2

)
.

According to the right hand side of outcome (15), we find that

(19)

1

2(ζ2 − ζ1)

∫ 3ζ2−ζ1
2

3ζ1−ζ2
2

f(ν)dν

≤

ψ
(
3ζ1−ζ2

2

)
+ ψ

(
3ζ2−ζ1

2

)
n

 n∑
κ=1

κ

κ+ 1
+ η

(
3ζ1 − ζ2

2
,
3ζ2 − ζ1

2
, ξ0

)
.

Combining the above-mentioned inequalities (18) and (19), one achieves the
findings (16) and (17). This ends the proof. □
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Remark 3.2. Under the assumptions mentioned in Theorem 3.2 with η = 0
and n = 1, we receive Lemma 3 presented by Mehrez in [25].

For mappings whose derivatives in absolute value are sub-η-n-polynomial
convex, we will try to develop a series of Hermite–Hadamard-type integral in-
equalities. To achieve this object, we need the successive lemmas.

Lemma 3.1 ([12]). Assume that the mapping ψ: Ω ⊆ R → R is differentiable
defined over the interval Ω◦, ζ1, ζ2 ∈ Ω◦ with ζ1 < ζ2. If the mapping ψ′ ∈
L([ζ1, ζ2]), then we have the subsequent identity

ψ(ζ1) + ψ(ζ2)

2
− 1

ζ2 − ζ1

∫ ζ2

ζ1

ψ(γ)dγ =
ζ2 − ζ1

2

∫ 1

0
(1− 2ν)ψ′(νζ1+(1− ν)ζ2)dν.

Lemma 3.2 ([19]). Assume that f : Ω ⊆ R → R is a differentiable mapping
defined over the interval Ω◦, ζ1, ζ2 ∈ Ω◦ with ζ1 < ζ2. If the mapping ψ′ ∈
L([ζ1, ζ2]), then we have the coming identity

1

ζ2 − ζ1

∫ ζ2

ζ1

ψ(γ)dγ − ψ

(
ζ1 + ζ2

2

)
= (ζ2 − ζ1)

[∫ 1
2

0
νψ′(ζ2 + (ζ1 − ζ2)ν

)
dν +

∫ 1

1
2

(ν − 1)ψ′(ζ2 + (ζ1 − ζ2)ν
)
dν

]
.

Theorem 3.3. Assume that ψ: Ω ⊆ R → R is a differentiable function defined
on the interval Ω◦, ζ1, ζ2 ∈ Ω◦ with ζ1 < ζ2, and let the function ψ′ ∈ L([ζ1, ζ2]).
If the function |ψ′| is sub-η-n-polynomial convex defined over the interval [ζ1, ζ2]
and the mapping η: Ω×Ω×[0, 1] → R+ is continuous, then the coming inequality

(20)

∣∣∣∣ψ(ζ1) + ψ(ζ2)

2
− 1

ζ2 − ζ1

∫ ζ2

ζ1

ψ(γ)dγ

∣∣∣∣
≤ ζ2−ζ1

2n

(
n∑

κ=1

[
(κ2+κ+2)2κ−2

(κ+1)(κ+2)2κ+1

] (
|ψ′(ζ1)|+|ψ′(ζ2)|

)
+
n

2
η(ζ1, ζ2, ξ0)

)
holds true for some fixed ξ0 ∈ (0, 1).

Proof. Taking advantage of Lemma 3.1, as well as the sub-η-n-polynomial
convexity of |ψ′| defined on the interval [ζ1, ζ2], it yields that∣∣∣∣ψ(ζ1) + ψ(ζ2)

2
− 1

ζ2 − ζ1

∫ ζ2

ζ1

ψ(γ)dγ

∣∣∣∣
≤ ζ2 − ζ1

2

∫ 1

0
|1− 2ν||ψ′(νζ1 + (1− ν)ζ2)|dν

≤ ζ2 − ζ1
2

∫ 1

0
|1− 2ν|

(
1

n

n∑
κ=1

[
1− (1− ν)κ

]
|ψ′(ζ1)|

+
1

n

n∑
κ=1

[
1− νκ

]
|ψ′(ζ2)|+ η(ζ1, ζ2, ν)

)
dν
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=
ζ2 − ζ1
2n

(
|ψ′(ζ1)|

∫ 1

0
|1− 2ν|

n∑
κ=1

[
1− (1− ν)κ

]
dν

+|ψ′(ζ2)|
∫ 1

0
|1− 2ν|

n∑
κ=1

[
1− νκ

]
dν

)
+
ζ2 − ζ1

2

∫ 1

0
|1− 2ν|η(ζ1, ζ2, ν)dν

=
ζ2 − ζ1
2n

(
|ψ′(ζ1)|

n∑
κ=1

∫ 1

0
|1− 2ν|

[
1− (1− ν)κ

]
dν

+|ψ′(ζ2)|
n∑

κ=1

∫ 1

0
|1− 2ν|

[
1− νκ

]
dν

)
+
ζ2 − ζ1

2

∫ 1

0
|1− 2ν|η(ζ1, ζ2, ν)dν.

According to the mean value theorem of generalized integrals, we derive that∫ 1

0
|1− 2ν|η(ζ1, ζ2, ν)dν =

1

2
η(ζ1, ζ2, ξ0), ξ0 ∈ (0, 1).

Also, we observe that ∫ 1

0
|1− 2ν|dν =

1

2
,

and∫ 1

0
|1− 2ν|

[
1− (1− ν)κ

]
dν =

∫ 1

0
|1− 2ν|

[
1− νκ

]
dν =

(κ2 + κ+ 2)2κ − 2

(κ+ 1)(κ+ 2)2κ+1
.

Therefore, the proof of Theorem 3.3 is completed. □

Remark 3.3. If one considers to pick up η = 0 in Theorem 3.3, then one receives
Theorem 5 established by Toplu et al. in [32]. In particular, if we attempt to
take η = 0 and n = 1, then we gain Theorem 2.2 provided by Dragomir et al.
in [12].

Theorem 3.4. Assume that ψ: Ω ⊆ R → R is a differentiable function on Ω◦,
ζ1, ζ2 ∈ Ω◦ with ζ1 < ζ2, and ψ′ ∈ L([ζ1, ζ2]). If the function |ψ′|q is sub-η-
n-polynomial convex on the interval [ζ1, ζ2] for q > 1 with 1

p + 1
q = 1, and the

mapping η: Ω× Ω× [0, 1] → R+ is continuous, then the succedent inequality

(21)

∣∣∣∣ψ(ζ1) + ψ(ζ2)

2
− 1

ζ2 − ζ1

∫ ζ2

ζ1

ψ(γ)dγ

∣∣∣∣
≤ ζ2 − ζ1

2

(
1

p+ 1

) 1
p

[
1

n

n∑
κ=1

κ

κ+ 1

(
|ψ′(ζ1)|q + |ψ′(ζ2)|q

)
+ η(ζ1, ζ2, ξ0)

] 1
q

holds true for some fixed ξ0 ∈ (0, 1).
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Proof. By means of Lemma 3.1, Hölder’s integral inequality, and the sub-η-n-
polynomial convexity of |ψ′|q defined on the interval [ζ1, ζ2], it follows that∣∣∣∣ψ(ζ1) + ψ(ζ2)

2
− 1

ζ2 − ζ1

∫ ζ2

ζ1

ψ(γ)dγ

∣∣∣∣
≤ ζ2 − ζ1

2

∫ 1

0
|1− 2ν||ψ′(νζ1 + (1− ν)ζ2)|dν

≤ ζ2 − ζ1
2

(∫ 1

0
|1− 2ν|pdν

) 1
p
(∫ 1

0
|ψ′(νζ1 + (1− ν)ζ2)|qdν

) 1
q

≤ ζ2 − ζ1
2

(
1

p+ 1

) 1
p

(
|ψ′(ζ1)|q

n

n∑
κ=1

∫ 1

0
[1− (1− ν)κ]dν

+
|ψ′(ζ2)|q

n

n∑
κ=1

∫ 1

0
[1− νκ]dν +

∫ 1

0
η(ζ1, ζ2, ν)dν

) 1
q

.

According to the mean value theorem of integrals, we obtain that∫ 1

0
η(ζ1, ζ2, ν)dν = η(ζ1, ζ2, ξ0), ξ0 ∈ (0, 1).

Direct computation yields that,∫ 1

0
|1− 2ν|pdν =

1

p+ 1
,

and ∫ 1

0
[1− (1− ν)κ]dν =

∫ 1

0
[1− νκ]dν =

κ

κ+ 1
.

This finishes the proof. □

Remark 3.4. If one attempts to pick up the mapping η = 0 in Theorem 3.4,
then one acquires Theorem 6 derived by Toplu et al. in [32]. In particular, if
we consider to take η = 0 and n = 1, we capture Theorem 2.3 provided by
Dragomir et al. in [12].

Theorem 3.5. Assume that ψ: Ω ⊆ R → R is a differentiable function on the
interval Ω◦, ζ1, ζ2 ∈ Ω◦ with ζ1 < ζ2, and ψ

′ ∈ L([ζ1, ζ2]). If |ψ′|q is a sub-η-n-
polynomial convex function on [ζ1, ζ2] for q > 1 with 1

p+
1
q = 1, and the mapping

η: Ω× Ω× [0, 1] → R+ is continuous, then the succeding inequality

(22)

∣∣∣∣ψ(ζ1) + ψ(ζ2)

2
− 1

ζ2 − ζ1

∫ ζ2

ζ1

ψ(γ)dγ

∣∣∣∣
≤ ζ2 − ζ1

2

(
1

2(p+ 1)

) 1
p

×

( |ψ′(ζ1)|q

n

n∑
κ=1

κ

2(κ+2)
+
|ψ′(ζ2)|q

n

n∑
κ=1

κ(κ+3)

2(κ+1)(κ+2)
+
1

2
η(ζ1, ζ2, ξ0)

) 1
q
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+

(
|ψ′(ζ1)|q

n

n∑
κ=1

κ(κ+ 3)

2(κ+ 1)(κ+ 2)
+

|ψ′(ζ2)|q

n

n∑
κ=1

κ

2(κ+ 2)
+

1

2
η(ζ1, ζ2, ξ0)

) 1
q


holds true for certain fixed ξ0 ∈ (0, 1).

Proof. By taking advantage of Lemma 3.1, as well as the Hölder–İşcan’s integral
inequality, it yields that∣∣∣∣ψ(ζ1) + ψ(ζ2)

2
− 1

ζ2 − ζ1

∫ ζ2

ζ1

ψ(γ)dγ

∣∣∣∣
≤ ζ2 − ζ1

2

∫ 1

0
|1− 2ν||ψ′(νζ1 + (1− ν)ζ2)|dν

≤ ζ2 − ζ1
2

[(∫ 1

0
(1− ν)|1− 2ν|pdν

) 1
p
(∫ 1

0
(1− ν)|ψ′(νζ1 + (1− ν)ζ2)|qdν

) 1
q

+

(∫ 1

0
ν|1− 2ν|pdν

) 1
p
(∫ 1

0
ν|ψ′(νζ1 + (1− ν)ζ2)|qdν

) 1
q

]
.

Making use of the sub-η-n-polynomial convexity of |ψ′|q, it follows that∫ 1

0
(1− ν)|ψ′(νζ1 + (1− ν)ζ2)|qdν

≤ |ψ′(ζ1)|q

n

n∑
κ=1

∫ 1

0
(1− ν)[1− (1− ν)κ]dν +

|ψ′(ζ2)|q

n

n∑
κ=1

∫ 1

0
(1− ν)[1− νκ]dν

+

∫ 1

0
(1− ν)η(ζ1, ζ2, ν)dν,

and ∫ 1

0
ν|ψ′(νζ1 + (1− ν)ζ2)|qdν

≤ |ψ′(ζ1)|q

n

n∑
κ=1

∫ 1

0
ν[1− (1− ν)κ]dν +

|ψ′(ζ2)|q

n

n∑
κ=1

∫ 1

0
ν[1− νκ]dν

+

∫ 1

0
νη(ζ1, ζ2, ν)dν.

According to the mean value theorem of generalized integrals, we know that∫ 1

0
(1− ν)η(ζ1, ζ2, ν)dν =

∫ 1

0
νη(ζ1, ζ2, ν)dν =

1

2
η(ζ1, ζ2, ξ0), ξ0 ∈ (0, 1).

Direct computation yields that∫ 1

0
(1− ν)|1− 2ν|pdν =

∫ 1

0
ν|1− 2ν|pdν =

1

2(p+ 1)
,
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∫ 1

0
(1− ν)[1− (1− ν)κ]dν =

∫ 1

0
ν[1− νκ]dν =

κ

2(κ+ 2)
,

and ∫ 1

0
ν[1− (1− ν)κ]dν =

∫ 1

0
(1− ν)[1− νκ]dν =

κ(κ+ 3)

2(κ+ 1)(κ+ 2)
.

Thus, this concludes the proof. □

Remark 3.5. If one attempts to pick up the mapping η = 0, in Theorem 3.5,
then one receives Theorem 8 constructed by Toplu et al. in [32]. In particular,
if we consider to take η = 0 and n = 1, we capture Theorem 8 presented by
İşcan in [14].

Theorem 3.6. Suppose that the mapping η1: Λ × Λ × [0, 1] → R+ and the
mapping η2 : [0, 1] × [0, 1] × [0, 1] → R+ are two continuous mappings together
with η1(γ, ϱ, ν) ≤ η2(ζ1, ζ2, ν), and the function ψ: Λ ⊆ Rn → R+ is sub-
η1-n-polynomial convex on Λ with regard to η1. Then for any γ, ϱ ∈ Λ and
ζ1, ζ2 ∈ [0, 1] with ζ1 < ζ2, the subsequent inequality

(23)

∣∣∣∣12
∫ ζ1

0
ψ(sγ + (1− s)ϱ)ds+

1

2

∫ ζ2

0
ψ(sγ + (1− s)ϱ)ds

− 1

ζ2 − ζ1

∫ ζ2

ζ1

(∫ θ

0
ψ(sγ + (1− s)ϱ)ds

)
dθ

∣∣∣∣
≤ ζ2 − ζ1

2n

[
n∑

κ=1

(
(κ2 + κ+ 2)2κ − 2

(κ+ 1)(κ+ 2)2κ+1

)(
ψ(ζ1γ + (1− ζ1)ϱ)

+ ψ(ζ2γ + (1− ζ2)ϱ)
)
+
n

2
η2(ζ1, ζ2, ξ0)

]
holds true for certain fixed ξ0 ∈ (0, 1).

Proof. Assume that γ, ϱ ∈ Λ and ζ1, ζ2 ∈ [0, 1] with ζ1 < ζ2. Since ψ is a sub-
η1-n-polynomial convex function, by Theorem 2.2, it yields that the function

Φ : [0, 1] → R, Φ(ν) = ψ(νγ + (1− ν)ϱ)

is a sub-η2-n-polynomial convex function on [0, 1] with regard to η2.
Define Ψ: [0, 1] → R

Ψ(ν) =

∫ ν

0
Φ(s)ds =

∫ ν

0
ψ(sγ + (1− s)ϱ)ds.

Evidently, Ψ′(ν) = Φ(ν) for ∀ ν ∈ (0, 1).
Owing to ψ(Λ) ⊆ R+, it shows that Φ ≥ 0 on [0, 1]. Thus, Ψ′ ≥ 0 on [0, 1].

If one employs Theorem 3.3 to the function Ψ, then one knows that∣∣∣∣Ψ(ζ1) + Ψ(ζ2)

2
− 1

ζ2 − ζ1

∫ ζ2

ζ1

Ψ(θ)dθ

∣∣∣∣
≤ ζ2 − ζ1

2n

(
n∑

κ=1

[
(κ2 + κ+ 2)2κ − 2

(κ+ 1)(κ+ 2)2κ+1

] (
|Ψ′(ζ1)|+ |Ψ′(ζ2)|

)
+
n

2
η2(ζ1, ζ2, ξ0)

)
,
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and we conclude that the desired outcome (23) holds true. □

Theorem 3.7. Suppose that the function ψ: Ω ⊆ R → R has differentiable
sub-η1-n-polynomial convexity on Ω◦ regarding continuous mapping η1: Ω×Ω×
[0, 1] → R+, ζ1, ζ2 ∈ Ω◦ with ζ1 < ζ2, and its derivative ψ′: [3ζ1−ζ2

2 , 3ζ2−ζ1
2 ] → R

is a continuous function on [3ζ1−ζ2
2 , 3ζ2−ζ1

2 ]. For q ≥ 1, if the function |ψ′|q is

sub-η2-n-polynomial convex on [3ζ1−ζ2
2 , 3ζ2−ζ1

2 ] regarding continuous mapping η2:

[3ζ1−ζ2
2 , 3ζ2−ζ1

2 ]× [3ζ1−ζ2
2 , 3ζ2−ζ1

2 ]× [0, 1] → R+, then the successive inequality

(24)

∣∣∣∣12
(

n

n+ 2−n − 1

)[
1

ζ2 − ζ1

∫ ζ2

ζ1

ψ(γ)dγ

−η1
(
ξ1,

ζ1 + ζ2
2

,
1

2

)]
− ψ

(
ζ1 + ζ2

2

)∣∣∣∣ ≤ (ζ2 − ζ1)

(
1

8

)1− 1
q

×

( |ψ′(3ζ1−ζ2
2 )|q

n
K1+

|ψ′(3ζ2−ζ1
2 )|q

n
K2+

1

8
η2

(
3ζ1−ζ2

2
,
3ζ2−ζ1

2
, ξ2

)) 1
q

+

(
|ψ′(3ζ1−ζ2

2 )|q

n
K2+

|ψ′(3ζ2−ζ1
2 )|q

n
K1+

1

8
η2

(
3ζ1−ζ2

2
,
3ζ2−ζ1

2
, ξ3

)) 1
q


holds for certain fixed ξ1 ∈ (3ζ1−ζ2

2 , 3ζ2−ζ1
2 ), ξ2 ∈ (0, 12), and ξ3 ∈ (12 , 1), where

K1 =

n∑
κ=1

[
1

8
+

κ+ 3− 2κ+2

(κ+ 1)(κ+ 2)2κ+2

]
,

and

K2 =
n∑

κ=1

[
1

8
− 1

(κ+ 2)2κ+2

]
.

Proof. Making use of inequality (18), we know that

(25)

1

ζ2 − ζ1

∫ ζ2

ζ1

ψ(γ)dγ

≤
(
n+ 2−n − 1

n

)[
ψ

(
ζ1 + ζ2

2

)
+

1

2(ζ2 − ζ1)

∫ 3ζ2−ζ1
2

3ζ1−ζ2
2

ψ(ν)dν

]

+ η1

(
ξ1,

ζ1 + ζ2
2

,
1

2

)
.
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Taking advantage of Lemma 3.2, we derive that

(26)

1

2(ζ2 − ζ1)

∫ 3ζ2−ζ1
2

3ζ1−ζ2
2

ψ(ν)dν

= ψ

(
ζ1 + ζ2

2

)
+ 2(ζ2 − ζ1)

[∫ 1
2

0
νψ′

(
3ζ2 − ζ1

2
+ 2(ζ1 − ζ2)ν

)
dν

+

∫ 1

1
2

(ν − 1)ψ′
(
3ζ2 − ζ1

2
+ 2(ζ1 − ζ2)ν

)
dν

]
.

By putting (26) into (25), and by virtue of the properties of modulus, it yields
that

(27)

∣∣∣∣12
(

n

n+ 2−n − 1

)[
1

ζ2 − ζ1

∫ ζ2

ζ1

ψ(γ)dγ

−η1
(
ξ1,

ζ1 + ζ2
2

,
1

2

)]
− ψ

(
ζ1 + ζ2

2

)∣∣∣∣
≤ (ζ2 − ζ1)

[∫ 1
2

0
ν

∣∣∣∣ψ′
(
3ζ2 − ζ1

2
+ 2(ζ1 − ζ2)ν

)∣∣∣∣ dν
+

∫ 1

1
2

(1− ν)

∣∣∣∣ψ′
(
3ζ2 − ζ1

2
+ 2(ζ1 − ζ2)ν

)∣∣∣∣ dν
]
.

Let us take into account the coming two cases. Suppose that q = 1. We observe
that

ψ′
(
3ζ2 − ζ1

2
+ 2(ζ1 − ζ2)ν

)
= ψ′

(
ν

(
3ζ1 − ζ2

2

)
+ (1− ν)

(
3ζ2 − ζ1

2

))
.

Since the function |ψ′| is a sub-η2-n-polynomial convex on [3ζ1−ζ2
2 , 3ζ2−ζ1

2 ], we
know that for any ν ∈ [0, 1]

(28)

∫ 1
2

0
ν

∣∣∣∣ψ′
(
3ζ2 − ζ1

2
+ 2(ζ1 − ζ2)ν

)∣∣∣∣ dν
≤

∣∣∣ψ′
(
3ζ1−ζ2

2

)∣∣∣
n

n∑
κ=1

∫ 1
2

0
ν
[
1− (1− ν)κ

]
dν

+

∣∣∣ψ′
(
3ζ2−ζ1

2

)∣∣∣
n

n∑
κ=1

∫ 1
2

0
ν
[
1− νκ

]
dν

+

∫ 1
2

0
νη2

(
3ζ1 − ζ2

2
,
3ζ2 − ζ1

2
, ν

)
dν.
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Similarly, it follows that

(29)

∫ 1

1
2

(1− ν)

∣∣∣∣ψ′
(
3ζ2 − ζ1

2
+ 2(ζ1 − ζ2)ν

)∣∣∣∣ dν
≤

∣∣∣ψ′
(
3ζ1−ζ2

2

)∣∣∣
n

n∑
κ=1

∫ 1

1
2

(1− ν)
[
1− (1− ν)κ

]
dν

+

∣∣∣ψ′
(
3ζ2−ζ1

2

)∣∣∣
n

n∑
κ=1

∫ 1

1
2

(1− ν)
[
1− νκ

]
dν

+

∫ 1

1
2

(1− ν)η2

(
3ζ1 − ζ2

2
,
3ζ2 − ζ1

2
, ν

)
dν.

According to the mean value theorem of generalized integrals, we derive that∫ 1
2

0
νη2

(
3ζ1−ζ2

2
,
3ζ2−ζ1

2
, ν

)
dν=

1

8
η2

(
3ζ1−ζ2

2
,
3ζ2−ζ1

2
, ξ2

)
, ξ2∈

(
0,

1

2

)
,

and∫ 1

1
2

(1−ν)η2
(
3ζ1−ζ2

2
,
3ζ2−ζ1

2
, ν

)
dν=

1

8
η2

(
3ζ1−ζ2

2
,
3ζ2−ζ1

2
, ξ3

)
, ξ3∈

(
1

2
, 1

)
.

Direct computation yields that
n∑

κ=1

∫ 1
2

0
ν[1−(1−ν)κ]dν=

n∑
κ=1

∫ 1

1
2

(1−ν)[1−νκ]dν=
n∑

κ=1

[
1

8
+

κ+3−2κ+2

(κ+ 1)(κ+ 2)2κ+2

]
,

and
n∑

κ=1

∫ 1
2

0
ν[1− νκ]dν =

n∑
κ=1

∫ 1

1
2

(1− ν)[1− (1− ν)κ]dν =

n∑
κ=1

[
1

8
− 1

(κ+ 2)2κ+2

]
.

Consequently, this concludes the proof for this case.
Assume that q > 1. On account of the power–mean inequality, as well as

the sub-η2-n-polynomial convexity of |ψ′|q, we deduce that

(30)

∫ 1
2

0
ν

∣∣∣∣ψ′
(
3ζ2 − ζ1

2
+ 2(ζ1 − ζ2)ν

)∣∣∣∣ dν
=

∫ 1
2

0
ν

∣∣∣∣ψ′
(
ν

(
3ζ1 − ζ2

2

)
+ (1− ν)

(
3ζ2 − ζ1

2

))∣∣∣∣ dν
≤

(∫ 1
2

0
νdν

)1− 1
q
(∫ 1

2

0
ν

∣∣∣∣ψ′
(
ν

(
3ζ1−ζ2

2

)
+(1−ν)

(
3ζ2−ζ1

2

))∣∣∣∣q dν
) 1

q

≤
(
1

8

)1− 1
q

(
|ψ′(3ζ1−ζ2

2 )|q

n
K1 +

|ψ′(3ζ2−ζ1
2 )|q

n
K2

+
1

8
η2

(
3ζ1 − ζ2

2
,
3ζ2 − ζ1

2
, ξ2

)) 1
q

.
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In the same way, it yields that

(31)

∫ 1

1
2

ν

∣∣∣∣ψ′
(
3ζ2 − ζ1

2
+ 2(ζ1 − ζ2)ν

)∣∣∣∣ dν
≤
(
1

8

)1− 1
q


∣∣∣ψ′
(
3ζ1−ζ2

2

)∣∣∣q
n

K2 +

∣∣∣ψ′
(
3ζ2−ζ1

2

)∣∣∣q
n

K1

+
1

8
η2

(
3ζ1 − ζ2

2
,
3ζ2 − ζ1

2
, ξ3

)) 1
q

.

Employing (30) and (31) in (27), one achieves the desired outcome (24), which
concludes the proof. □

Remark 3.6. Under the same assumptions considered in Theorem 3.7 with
η1 = η2 = 0 and n = 1, we successfully gain Theorem 1 presented by Mehrez
in [25].

4. Applications

In order to identify the applications of the outcomes derived in the study, the
unconstraint nonlinear programming is considered as below:

(32) (P ) min
{
ψ(γ)|γ ∈ Λ ⊂ Rn

}
,

where ψ : Λ → R is a differentiable sub-η-n-polynomial convex function on Λ.

Theorem 4.1. Assume that the function ψ: Λ → R has differentiable sub-η-
n-polynomial convexity with regard to the mapping η : Λ × Λ × [0, 1] → R. If
γ∗ ∈ Λ and the successive condition

(33) ∇ψ(γ∗)T (γ − γ∗)− lim
ν→0+

η(γ, γ∗, ν)

ν
≥ n− 1

n
ψ(γ∗) +

n− 1

2
ψ(γ),

holds true for each γ ∈ Λ, ν ∈ [0, 1], then γ∗ is the optimal solution of ψ on Λ.

Proof. For any γ ∈ Λ, by Theorem 2.4, we find that

∇ψ(γ∗)T (γ − γ∗)− lim
ν→0+

η(γ, γ∗, ν)

ν
≤ n+ 1

2
ψ(γ)− 1

n
ψ(γ∗).

In combination with the condition (33), it readily yields that

n+ 1

2
ψ(γ)− 1

n
ψ(γ∗) ≥ n− 1

n
ψ(γ∗) +

n− 1

2
ψ(γ),

i.e., ψ(γ) − ψ(γ∗) ≥ 0. Therefore, γ∗ is an optimal solution of ψ on Λ. This
concludes the proof. □
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Remark 4.1. If one considers to pick up n = 1, in Theorem 4.1, then one
successfully receives Theorem 2.1 deduced by Chao et al. in [8].

Now, let us apply the outcomes investigated in this study to the nonlinear
programming along with the subsequent inequality constraints:

(34)

min ψ(γ)

(Pg) s.t. ωi(γ) ≤ 0, i ∈ U = {1, 2, . . . ,m},
γ ∈ Rn,

where ψ and ωi are all differentiable defined on the set D =
{
γ ∈ Rn|ωi(γ)

≤ 0, i ∈ U
}
, which is assumed to be a nonempty feasible set of (Pg). In addition,

for γ∗ ∈ D, we define U∗ =
{
γ ∈ Rn|ωi(γ

∗) = 0, i ∈ U
}
, λi = (λ1, . . . , λm)T .

The successive theorem displays the Karush–Kuhn–Tucker (KKT) sufficient
conditions.

Theorem 4.2. (KKT sufficient conditions) Assume that ψ(γ) : Rn → R is a
differentiable and sub-η-n-polynomial convex function with regard to the mapping
η : Rn × Rn × [0, 1] → R, and the functions ωi : Rn → R (i ∈ U) are a
series of differentiable sub-η-n-polynomial convex with regard to the mappings
ηi : Rn×Rn×[0, 1] → R (i ∈ U). Assume that γ∗ ∈ D is a KKT point regarding
(Pg), that is, there exist multipliers λi ≥ 0 (i ∈ U) satisfying that

∇ψ(γ∗) +
∑
i∈U

λi∇ωi(γ
∗) = 0,

λiωi(γ
∗) = 0.

(35)

If the subsequent condition

n− 1

n
ψ(γ∗) +

n− 1

2
ψ(γ) + lim

ν→0+

η(γ, γ∗, ν)

ν

≤ −
∑
i∈U

λi lim
ν→0+

ηi(γ, γ
∗, ν)

ν
,∀ γ ∈ D,

(36)

also holds true, then γ∗ is an optimal solution regarding the problem (Pg).

Proof. For each γ ∈ D, one observes that

ωi(γ) ≤ 0 = ωi(γ
∗), i ∈ U∗ = {i ∈ U |ωi(γ

∗) = 0}.

Making use of the sub-η-n-polynomial convexity of ωi and Theorem 2.4, for
i ∈ U∗, we find that

(37) ∇ωi(γ
∗)T (γ − γ∗)− lim

ν→0+

ηi(γ, γ
∗, ν)

ν
≤ n+ 1

2
ωi(γ)−

1

n
ωi(γ

∗) ≤ 0.
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According to the conditions (35), we know that

(38) ∇ψ(γ∗)T (γ−γ∗)=−
∑
i∈U

λi∇ωi(γ
∗)T (γ−γ∗)=−

∑
i∈U∗

λi∇ωi(γ
∗)T (γ − γ∗).

By virtue of the inequality (36), we can figure out that

∇ψ(γ∗)T (γ − γ∗)− n− 1

n
ψ(γ∗)− n− 1

2
ψ(γ)− lim

ν→0+

η(γ, γ∗, ν)

ν

≥ −
∑
i∈U∗

λi∇ωi(γ
∗)T (γ − γ∗) +

∑
i∈U∗

λi lim
ν→0+

ηi(γ, γ
∗, ν)

ν

≥ −
∑
i∈U∗

λi

[
∇ωi(γ

∗)T (γ − γ∗)− lim
ν→0+

ηi(γ, γ
∗, ν)

ν

]
.

(39)

Here, we use (37) and (39) to derive the coming inequality

∇ψ(γ∗)T (γ − γ∗)− n− 1

n
ψ(γ∗)− n− 1

2
ψ(γ)− lim

ν→0+

η(γ, γ∗, ν)

ν
≥ 0,

that is,

∇ψ(γ∗)T (γ − γ∗)− lim
ν→0+

η(γ, γ∗, ν)

ν
≥ n− 1

n
ψ(γ∗) +

n− 1

2
ψ(γ),

and in accordance with Theorem 4.1 , it yields that

ψ(γ) ≥ ψ(γ∗), ∀ γ ∈ D.

Therefore, γ∗ is an optimal solution regarding the problem (Pg). This concludes
the proof. □

5. Conclusions

Sub-η-n-polynomial convexity, as well as sub-η-n-polynomial convex sets, are
introduced in the present paper. Because of their significance, a series of
interesting properties for newly defined functions and sets are discussed, re-
spectively. Certain Hermite–Hadamard-type integral inequalities, in connection
with sub-η-n-polynomial convex functions, are also presented. We conclude
the article by showing that the derived inequalities also hold for convex func-
tions and n-polynomial convex functions. As applications, under the sub-η-
n-polynomial convexity, the KKT sufficient optimality conditions, under the
sub-η-n-polynomial convex programming with unconstrained and constrained
inequalities, are deduced in the present paper, respectively. We have reason to
confirm that it is an interesting and innovative problem, for forthcoming re-
searchers who will enable them to establish analogous integral inequalities for
other diverse types of sub-η-convexity, and corresponding KKT optimality con-
ditions for the generalized sub-η-convex programming in their future work.
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