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1. Introduction

Uncertainty theory was initiated by Liu [2] in 2007 and advanced by Liu [3] in
2011 which based on an uncertain measure which supplies normality, duality,
subadditivity, and product axioms. Recently, uncertainty theory has effectively
been applied to uncertain programming (see, e,g., Liu [4], Liu and Chen [5]),
uncertain risk analysis (see, e.g., Liu [6]), uncertain calculus (see, e.g., Liu [7])
and uncertain statistics (see, e.g., Tripathy and Nath [8]), etc.

Peng [9] proposed the notions of complex uncertain variables that are mea-
surable functions from uncertainty spaces to the set of complex numbers. As
convergence of sequences plays an essential role in the basic theory of mathe-
matics, there are many mathematicians who have worked these in the field of
uncertain measure. Liu [2] presented convergence in measure, convergence in
mean, convergence almost surely (a.s.) and convergence in distribution in 2007.
You [12] gave a kind type of convergence called convergence uniformly almost
surely (u.a.s.) and proved the relationships among the convergence notions.
Based on these concepts, the convergence of complex uncertain sequences was
first worked by Chen, Ning and Wang [13]. Tripathy and Nath [8] investigated
the statistical convergence concepts of complex uncertain sequences.
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Several kinds of convergence were investigated for sequence of measurable
functions on a measure space, and fundamental relations between these types
were examined [14]. Fuzzy measure theory is a generalisation of classical measure
theory. This generalisation is acquired by exchanging the additivity axiom of
classical measures with weak axioms of monotonicity and continuity [15]. As
detailed in [16, 17, 18], several generalizations of Lebesgue’s theorem, Egoroff’s
theorem and Riesz’s theorem for sequence of measurable functions on classical
measure spaces hold for fuzzy measures with the autocontinuity and finiteness.

This paper is devoted to presenting classical theorems such as Lebesgue’s the-
orem, Egoroff’s theorem and Riesz’s theorem for complex uncertain sequences
in uncertain theory.

2. Preliminaries

First, some basic notions and theorems in uncertainty theory are given, which
are utilized in this paper.

Definition 2.1. Assume that L be a σ-algebra on a non-empty set Γ. A set
function M is named an uncertain measure if it supplies the subsequent axioms:

(i) M{Γ} = 1;

(ii) M{Λ}+M{Λc} = 1 for any Λ ∈ Γ

(iii) For all countable sequence of {Λp} ⊂ L, we obtain

M


∞⋃
p=1

Λp

 ≤
∞∑
p=1

M{Λp} .

The triplet (Γ,L,M) is named an uncertainty space, and every element Λ in L
is known as an event.

Definition 2.2. A complex uncertain variable is a measurable function from
the space (Γ,L,M) to the set of complex numbers, namely, for any Borel set of
T of complex numbers, the set

{ζ ∈ T} = {γ ∈ Γ : ζ (γ) ∈ T}

is an event.

Definition 2.3. The sequence {ζw} is named to be convergent a.s. to ζ provided
that there is an event Λ with M{Λ} = 1 such that

lim
w→∞

∥ζw(γ)− ζ(γ)∥ = 0,

for every γ ∈ Λ.
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Definition 2.4. The sequence {ζw} is named to be convergent u.a.s. to ζ pro-
vided that there is a {Rk}, M{Rk} → 0 such that {ζw} converges uniformly to
ζ in Rc

k = Γ−Rk, for any fixed k ∈ N.

Let T be an abstract space. F a σ-algebra of subsets of T , X a real normed
space with the origin 0, P0 (X) the family of all nonvoid subsets of X; Pf (X)
the family of closed, nonvoid sets of X and h the Hausdorff pseudometric on
Pf (X) given by:

h(M ;N) = max {e (M,N) ; e (N,M)} , for every M,N ∈ Pf (X) ,

where e (M,N) = supx∈X d (x,N) is the excess of M over N .

Definition 2.5 ([1, 10, 11]). A set multifunction µ : F → Pf (X) is said to be:

(i) continuous from below if limn→∞ h (µ (An) , A) = 0, for each increasing
sequence of sets (An)n ⊂ F , with An ↗ A.

(ii) continuous from above if limn→∞ h (µ (An) , A) = 0, for each decreasing
sequence of sets (An)n ⊂ F , with An ↘ A.

(iii) order continuous if limn→∞ |µ (An)| = 0, for every sequence of sets (An)n ⊂
F , with An ↘ ∅.

(iv) strongly order continuous if limn→∞ |µ (An)| = 0, for every sequence of
sets (An)n ⊂ F , with An ↘ A and µ (An) = {0} .

3. Main results

The aim of this study is to examine Lebesgue’s theorem, Egoroff’s theorem and
Riesz’s theorem in uncertain measure theory. Throughout the study, assume
(Γ,L,M) be an uncertainty space, Λw and Λ are both events in L. Now, we
give two notions of uncertain measure M.

Definition 3.1. M is named strongly order continuous, if it supplies that
limw→∞M (Λw) = 0 whenever Λw ↘ Λ and M (Λ) = 0.

Definition 3.2. M is named strongly continuous at Γ, if it supplies that

lim
w→∞

M (Λw) = 1

whenever Λw ↗ Λ and M (Λ) = 1.

Theorem 3.1 (Lebesgue’s theorem). Assume that {ζw} be a complex uncertain
sequence and ζ be a complex uncertain variable in (Γ,L,M), which supply the
subsequent condition that {ζw} converges almost surely (a.s.) to ζ. Then, {ζw}
converges in measure to ζ iff M is strongly order continuous.
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Proof. Presume that the sequence {ζw} converges to ζ a.s., and take H as the
set of these points γ ∈ Γ at which ζw (γ) does not convergence to ζ (γ), hen

H =
∞⋃
p=1

∞⋂
w=1

∞⋃
r=w

{
γ : ∥ζr (γ)− ζ (γ)∥ ≥ 1

p

}
and M (H) = 0. In addition, we get

M

( ∞⋂
w=1

∞⋃
r=w

{
γ : ∥ζr (γ)− ζ (γ)∥ ≥ 1

p

})
= 0

for any p ≥ 1. If we accept

Λ(p)
w =

∞⋃
r=w

{
γ : ∥ζr (γ)− ζ (γ)∥ ≥ 1

p

}
and

Λ(p) =
∞⋂

w=1

∞⋃
r=w

{
γ : ∥ζr (γ)− ζ (γ)∥ ≥ 1

p

}
for any p ≥ 1, then

∞⋃
r≥w

{
γ : ∥ζr (γ)− ζ (γ)∥ ≥ 1

p

}
↘

∞⋂
w=1

∞⋃
r=w

{
γ : ∥ζr (γ)− ζ (γ)∥ ≥ 1

p

}
, (w → ∞)

and M(Λ(p)) = 0. According to strongly order continuity of M, we can acquire

limw→∞M(Λ
(p)
w ) = 0 for any p ≥ 1 and, so

lim
w→∞

M
({

γ : ∥ζw (γ)− ζ (γ)∥ ≥ 1

p

})
≤ lim

w→∞
M
(
Λ(p)
w

)
= 0, ∀p ≥ 1.

This demonstrates that {ζr} converges in measure to ζ. For any sequence {Λw}w
of events with Λw ↘ Λ and M (Λ) = 0, we determine a complex uncertain
sequence {ζw} by

ζw (γ) =

{
0, if γ ∈ Γ− Λw,

1, if γ ∈ Λw

for any w ≥ 1. It is easy to understand that {ζw} converges to 0 a.s. If {ζw}
converges to 0 in measure, then we can acquire

lim
w→∞

M (Λw) ≤ lim
n→∞

M
({

γ : ζw (γ) ≥ 1

2

})
= 0.

As a result, M is strongly order continuous.

Now, we generalize Egoroff’s theorem in classical measure theory to uncer-
tain measure theory.
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Definition 3.3. M is called to have feature (S), if for any sequence {Λw}w of
events with limw→∞M (Λw) = 0, there is a subsequence {Λwi}i of {Λw}w such
that M (lim supΛwi) = 0.

Theorem 3.2 (Egoroff’s theorem). Assume that {ζw} be a complex uncertain
sequence and ζ be a complex uncertain variable in (Γ,L,M). If M is strongly
order continuous and has feature (S), then

ζw → ζ(a.s.) ⇒ ζw → ζ(u.a.s.)

Proof. Presume that M is strongly order continuous and has feature (S ). Take
H as the set of points γ ∈ Γ whenever {ζw} does not convergence to ζ. Then,
M (H) = 0 and {ζw} converges a.s. to ζ on Γ−H. If we indicate

H(r)
w =

∞⋂
i=w

{
γ ∈ Γ : ∥ζi (γ)− ζ (γ)∥ <

1

r

}

for any r ≥ 1, then H
(r)
w is increasing in w for all fixed r, and we obtain

Γ−H =

∞⋂
r=1

∞⋃
w=1

H(r)
w .

As for any fixed r ≥ 1, Γ−H ⊆
⋃∞

w=1H
(r)
w , we get

Γ−H(r)
w ↘

∞⋂
w=1

(
Γ−H(r)

w

)
.

Noting that
⋂∞

w=1(Γ−H
(r)
w ) ⊂ H for any fixed r ≥ 1, so M(

⋂∞
w=1(Γ−H

(r)
w )) = 0

(r = 1, 2, ...). By utilizing the strong order continuity of M, we get

lim
w→∞

M
(
Γ−H(r)

w

)
= 0, ∀r ≥ 1.

So, there is a subsequence {Γ−H
(r)
w(r)}r of {Γ−H

(r)
w : w, r ≥ 1} supplying

M
(
Γ−H

(r)
w(r)

)
≤ 1

r
, ∀r ≥ 1

and so
lim

w→∞
M
(
Γ−H

(r)
w(r)

)
= 0.

By applying the feature (S ) of M to the sequence {Γ−H
(r)
w(r)}r, then there is a

subsequence of {Γ−H
(ri)
w(ri)

}i of {Γ−H
(r)
w(r)}r such that

M
(
lim
i→∞

(
Γ−H

(ri)
w(ri)

))
= 0
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and r1 < r2 < ....
At the same time, since(∞⋃

i=t

(
Γ−H

(ri)
w(ri)

))
↘ lim

i→∞

(
Γ−H

(ri)
w(ri)

)
so, by utilizing the strong order continuity of M, we get

lim
t→∞

M

(∞⋃
i=t

(
Γ−H

(ri)
w(ri)

))
= 0.

For any ρ > 0, we take t0 such that M(
⋃∞

i=t0
(Γ−H

(ri)
w(ri)

)) < ρ, namely, M(Γ−⋂∞
i=t0

H
(ri)
w(ri)

) < ρ.

Take Hρ =
⋂∞

i=t0
H

(ri)
w(ri)

, then M(Γ−Hρ) < ρ. Now, we need to demonstrate

that {ζw} converges to ζ on Hρ uniformly a.s. Since

Hρ =

∞⋂
i=t0

∞⋂
j=w(ri)

{
γ ∈ Γ : ∥ζi (γ)− ζ (γ)∥ <

1

ri

}
,

therefore, for any fixed i ≥ k0,

Hρ ⊂
∞⋂

j=w(ri)

{
γ ∈ Γ : ∥ζj (γ)− ζ (γ)∥ <

1

ri

}
.

For any given σ > 0, we take i0 (≥ t0) such that 1
ri0

< σ. Thus, as j > w (ri0),

for any γ ∈ Hρ, ∥ζj (γ)− ζ (γ)∥ < 1
ri0

< σ. This denotes that {ζw} converges to

ζ on Γρ uniformly a.s. The proof of the theorem is finalized.

Definition 3.4. M is named order continuous if it supplies that limw→∞M(Λw)
= 0 whenever Λw ↘ ∅.

Theorem 3.3. Let M be an uncertain measure, assume that {ζw} be a complex
uncertain sequence and ζ be a complex uncertain variable in (Γ,L,M). ζw →
ζ(a.s.) implies ζw → ζ(u.a.s.), then M is strongly order continuous and hence
order continuous.

Proof. For any decreasing sequence {Λw}w of events with Λw ↘ Λ andM (Λ) =
0, we consider a complex uncertain sequence {ζw} as

ζw (γ) =

{
0, if γ ∈ Γ− Λw,

1, if γ ∈ Λw

for any w ≥ 1. It is easy to obtain that ζw → 0 (a.s.). If ζw → 0 (u.a.s.), then
we can acquire for any σ > 0,

lim
w→∞

M{γ : ∥ζw (γ)∥ ≥ σ} = 0.
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As a result

lim
w→∞

M (Λw) = lim
w→∞

M
{
γ : ζw (γ) ≥ 1

2

}
= 0.

This gives M is strongly order continuous and hence order continuous.

Theorem 3.4 (Riesz’s theorem). Assume that M be an uncertain measure with
the feature (S). If {ζw} converges to ζ in measure, then there is a subsequence
{ζwr}r of {ζw}w such that ζwr → ζ(a.s.).

Proof. Let {ζw} converges to ζ in measure. Then

lim
w→∞

M
{
γ : ∥ζw (γ)− ζ (γ)∥ ≥ 1

r

}
= 0, ∀r ≥ 1.

If we take Λ
(r)
w =

{
γ : ∥ζw (γ)− ζ (γ)∥ ≥ 1

r

}
, then there is a subsequence {wr}r

such that M(Λ
(r)
wr ) ≤ 1

r for any r ≥ 1. Since M has the feature (S ), there is a

subsequence {Λ(ri)
wri

} of {Λ(r)
wr} such that M(limi→∞Λ

(ri)
wri

) = 0. This gives that
ζwri

→ ζ(a.s.).
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