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Abstract. The purpose of this paper is to introduce the Nörlund ideal convergent
sequence spaces with respect to these spaces N f

I0(S)
, N f

I(S)
and N f

I∞(S)
. Also, we

studied the Nörlund ideal Cauchy criterion in neutrosophic normed space and its prop-
erties. Also, we define an open ball B(x, ϵ, γ) and closed ball B[x, ϵ, γ] in neutrosophic
norm space. Furthermore, we also look at some of these convergent sequence spaces’
topological and algebraic properties.
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1. Introduction

The fuzzy set was first developed in 1965 by Zadeh [27], and they have since
been used in a variety of domains, including artificial intelligence, robotics, and
control theory. According to him, a fuzzy set assigns a membership value from
[0, 1] to each element of a given crisp universe set.

Atanassov K.T. in [14], [13] introduced the intuitionistic fuzzy set (IFS) on
a universe X as an extension of the fuzzy set. Coker [15] used this concept
to develop intuitionistic fuzzy topological spaces. Saadati and Park [20] inves-
tigated these spaces and their extension, resulting in the idea of intuitionistic
fuzzy normed space.

In 1998, Samarandache [3] presented the first philosophical point for neutro-
sophic set. The concept of classic set theory has been extended in the form of
the neutrosophic set by adding an intermediate membership function. Examples
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of other generalizations are the Fuzzy set [27], and intuitionistic fuzzy set [14].
The actual definition of neutrosophic sets was given based on the independence
of membership, non-membership, and hesitation function.

In 2006, F. Samarandache and W.B. Vasantha Kanasamy in [26] introduced
the concept of neutrosophic algebraic structures.

Bera and Mahapatra [21] first introduced the neutrosophic soft linear space.
Neutrosophic soft norm linear space, convexity, metric [34], and Cauchy se-
quence were examined by Bera and Mahapatra [22]. The purpose of the current
paper is to change the intuitionistic fuzzy normed space of the structure into
neutrosophic normed space. The Cauchy sequence has been studied on neutro-
sophic normed space in an attempt to investigate some beautiful results in this
structure.

H. Fast [5] and I. J. Schoenberg [6] introduce the idea of statistical conver-
gence, whereas J. C̃erveñanský [28] and J.S. Connor [29, 30] develop it. R.C.
Buck [31, 32] and D.S. Mitrinović [33] include some examples of statistical con-
vergence in mathematical analysis and number theory. The idea of statistical
convergence with regard to the intuitionistic fuzzy norm was introduced by
Mursaleen [16]. In neutrosophic normed space, statistical convergence was first
investigated by Kirisci and Simsek [7]. The concept of ”ideal convergence” is
an extension of the notion of “statistical convergence”, and it is dependent on
the idea of the ideal of subsets of the set N. Śalát et al. [23], [24], Filipów and
Tryba [19], Khan and Nazreen [12], Khan et al. [11], Khan and Nazreen [12]
and several more writers further investigated the concept of I-convergent from
the perspective of sequence space and related it with the summability theory.
To better understand the I-convergence in neutrosophic normed space, we have
been inspired by this.

The purpose of this study is to define new neutrosophic sequence spaces
using the Nörlund matrix and the neutrosophic norm. Also, we will study
Nörlund I-convergent and Nörlund I-Cauchy in neutrosophic normed spaces,
and by using the Nörlund matrix N f and the notion of Nörlund I-convergent
of sequence in neutrosophic normed space, we introduce some new spaces of
Nörlund I-convergent sequence with regard to the neutrosophic norm (U ,V,W).
We also investigate at some of these convergent sequence spaces’ topological
and algebraic properties, as well as some interesting connections between these
spaces N f

I0(S)
, N f

I(S)
and N f

I∞(S)
.

2. Preliminaries

Definition 2.1 ([9]). Let I be the power set of any set Z, where Z is the set.
Then, I is called ideal, if:

(1) ∅ ∈ I;

(2) ϑ1, ϑ2 ∈ I ⇒ ϑ1 ∪ ϑ2 ∈ I, additive;

(3) ϑ1 ∈ I, ϑ2 ⊆ ϑ1 ⇒ ϑ2 ∈ I, hereditary.
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If I ̸= 2Z then I ⊆ 2Z is called nontrivial. If I contain every singleton subset
of X. then nontrivial ideal I ⊆ 2Z is called admissible. If there are no non-trivial
ideal K ̸= I then nontrivial ideal I is maximal such that I ⊂ K.

Definition 2.2 ([9]). Let F be the power set of any set Z, where Z is the set.
Then, F is said to be filter. If: (1) ∅ ̸∈ F ;

(2) For ϑ1, ϑ2 ∈ F ; ϑ1 ∩ ϑ2 ∈ F ;

(3) If ϑ1 ∈ F and ϑ2 ⊃ ϑ1 imply ϑ2 ∈ F .

F (I) is the filter associated with each idealI of Z such that F (I) =
{
A ⊂

Z : Ac ∈ I
}
is true for each ideal of Z. Then, using the article, we present I as

an admissible ideal.

Note. Class F (I) = {ϑ1 ⊂ Z : ϑ1 = Z/ϑ2, for some ϑ2 ∈ I} is a filter on Z,
where I ⊂ P (Z) is a non-trivial ideal. F (I) is described as the filter associated
with the ideal I.

Definition 2.3 ([8]). In any set Z, let I be a non trivial ideal subset of a power
set (P (Z)). So, it is said that a sequence x = (xk) is ideally convergent to α, iff
the set {k ∈ Z : |xk − α| ≥ ϵ} ∈ I and we write it as I − limx = α, for every
ϵ > 0.

Definition 2.4 ([8]). In any set Z, let I be a non trivial ideal subset of a power
set (P (Z)). So, it is said that a number sequence x = (xk) is ideally Cauchy. If,
for any ϵ > 0,∃ L = L(ϵ), the set {k ∈ Z : |xk − xL| ≥ ϵ} ∈ I.

The Nörlund matrix N f was initially used in the theory of sequence space by
Wang [25]. Remember that t = (tk) is a non negative sequence of real numbers
and An =

∑n
k=0 tk, ∀ n ∈ N with t0 > 0. Then, with regard to the sequence

t = (tk), the Norlund matrix N f = (atnm) is defined as follows:

(1) atnm =


tn−m

An
, if 0 ≤ m ≤ n

0, if m > n,

for all n,m ∈ N. It is known that the Nörlund matrix N f is regular iff tn/Tn →
0 as n → ∞.

Let t0 = D0 = 1 and define Ln for n ∈ {1, 2, 3, ...} by

(2) Dn =



t1 1 0 0 ...0
t2 t1 1 0 ...0
t3 t2 t1 1 ...0
...

...
...

...
...

tn−1 tn−2 tn−3 tn−4 ...1
tn tn−1 tn−2 tn−3 ...t1
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Then, the inverse matrix Lt = (ltnm) of Nörland matrix N f = (atnm) was define
by Mears in [4], for all n ∈ N, as follows

lnm =

{
(−1)n−mDn−mTk, if (0 ≤ m ≤ n),

0, otherwise,

for all n,m ∈ N.
One can refer to [4, 2, 1] for more background about Norland space.
In this paper, the natural and real number sets, respectively, are denoted

by the letters N and R. ω also represents for the linear space having all real
sequences. The sequence spaces c0, c and l∞ represent the spaces of all null,
convergent, and bounded sequences, respectively. We now define the Nörlund
sequence space established by Wang in [25] as follows

N f =

{
x = (xk) ∈ ω =

∞∑
n=0

| 1

An

n∑
k=0

an−kxk|p < ∞, 1 ≤ p < ∞
}
,

where An =
∑n

k=0 ak. All sequences whose Norlund transformations are in the
spacel∞ and lp with 1 ≤ p < ∞ are contained in the spaces l∞(N f ) and lp(N f ).

Motivated by [17], Khan [8] recently presented the sequence spaces cI0(N
f ),

cI(N f ), and lI∞(N f ) as the sets of all sequences whose N f transformations
are in spaces c0, c, and l∞, respectively. Khan did this by using the concept of
Nörlund I−convergence, Nörlund I− null and Nörlund I− bounded sequence
space,where I is an admissible ideal of subset of N. For more details on these
spaces, we refer to [18, 8]. Define

cI0(N
f ) :=

{
y = (yk) ∈ ω : {n ∈ N : |N f

n (y)| ≥ ϵ} ∈ I
}
,

cI(N f ) := {y=(yk)∈ω : {n∈N : |N f
n (y)−K|≥ϵ for some K ∈ R}∈I},

lI∞(N f ) :=
{
y = (yk) ∈ ω : ∃M > 0 s.t {n ∈ N : |N f

n (y)| ≥ M} ∈ I
}
,

where

(3) N f
n (y) :=

1

Tn

n∑
k=0

tn−kyk, for all n ∈ N.

Definition 2.5 ([10, 7]). Given an binary operation ∗ : [0, 1] × [0, 1] −→ [0, 1]
is said to be a continuous t-norm if:

(a) ∗ is commutative and associative;
(b) ∗ is continuous;
(c) ϑ ∗ 1 = ϑ ∀ ϑ ∈ [0, 1];
(d) ϑ1 ∗ ϑ2 ≤ ϑ3 ∗ ϑ4 whenever ϑ1 ≤ ϑ3 and ϑ2 ≤ ϑ4 for each ϑ1, ϑ2, ϑ3, ϑ4 ∈

[0, 1].

Example 2.1. For ϑ1, ϑ2 ∈ [0, 1], define ϑ1∗ϑ2 = ϑ1ϑ2 or ϑ1∗ϑ2 = min{ϑ1, ϑ2},
then ∗ is continuous t-norm.
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Definition 2.6 ([10, 7]). Given an binary operation ⋄ : [0, 1] × [0, 1] −→ [0, 1]
is said to be a continuous t-conorm if:

(a) ⋄ is commutative and associative;

(b) ⋄ is continuous;

(c) ϑ ⋄ 0 = ϑ ∀ σ ∈ [0, 1];

(d) ϑ1 ⋄ ϑ2 ≤ ϑ3 ⋄ ϑ4 whenever ϑ1 ≤ ϑ3 and ϑ2 ≤ ϑ4 for each ϑ1, ϑ2, ϑ3, ϑ4 ∈
[0, 1].

Example 2.2. Let ϑ1, ϑ2 ∈ [0, 1]. Define ϑ1 ⋄ϑ2 = min{ϑ1 +ϑ2, 1} or ϑ1 ⋄ϑ2 =
max{ϑ1, ϑ2}, then ⋄ is continuous t-conorm.

Definition 2.7 ([20]). Take Z as a linear space and S = {< x,U(x),V(x),
W(x) >: x ∈ Z} be a normed space such that S : Z × (0,∞) −→ [0, 1]. Assume
∗ is a continuous t-norm, ⋄ is a continuous t-conorm respectively. The four-tuple
V = (Z,S, ∗, ⋄) is said to be neutrosophic normed space (NNS) if the subsequent
conditions are hold, for all x, y,∈ Z and γ, δ > 0:

(1) 0 ≤ U(x, γ) ≤ 1, 0 ≤ V(x, γ) ≤ 1, 0 ≤ W(x, γ) ≤ 1, γ ∈ R+;

(2) U(x, γ) + V(x, γ) +W(x, γ) ≤ 3, for γ ∈ R+;

(3) U(x, γ) = 1 for γ > 0 iff x = 0;

(4) U(αx, γ) = U (x, γ
|α|);

(5) U(x, γ) ∗ U(y, δ) ≤ U(x+ y, γ + δ);

(6) U(x, ∗) is continuous nondecreasing function;

(7) limγ→∞ U(x, γ) = 1;

(8) V(x, γ) = 0 for γ > 0 iff x = 0;

(9) V(αx, γ) = V(x, γ
|α|);

(10) V(x, γ) ⋄ V(y, δ) ≥ V(x+ y, γ + δ);

(11) V(x, ⋄) is continuous nonincreasing function;

(12) limγ→∞ V(x, γ) = 0;

(13) W(x, γ) = 0 for γ > 0 iff x = 0;

(14) W(αx, γ) = W(x, γ
|α|);

(15) W(x, γ) ⋄W(y, δ) ≥ W(x+ y, γ + δ);

(16) W(x, ⋄) is continuous nonincreasing function;

(17) limγ→∞W(x, γ) = 0;

(18) if γ ≤ 0, then U(x, γ) = 0,V(x, γ) = 1,W(x, γ) = 1.

In such case, S = (U ,V,W) is said to be neutrosophoic norm (NN).

Example 2.3 ([10]). Suppose (Z, ∥.∥) be a normed space. Using the ∗ and ⋄
operations, as t-norm x ∗ y = x.y and t-conorm x ⋄ y = x+ y − xy, for γ > ||x||
and γ > 0

U(x, γ) = γ

γ + ∥µ∥
, V(x, γ) = ∥x∥

γ + ∥x∥
and W(x, γ) =

∥x∥
γ

,

for all x, y ∈ Z. If we take γ ≤ ∥x∥, then U(x, γ)=0,V(x, γ) = 1 andW (x, γ)=1.
Then, (Z,S, ∗, ⋄) is NNS in such a way that S : Z × R+ → [0, 1].
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Example 2.4. Suppose (Z = R, ∥.∥) be a normed space, where ∥a∥ = |a|,∀ a ∈
R. Using the ∗ and ⋄ operations, as t-norm x ∗ y = min{x, y} and t-conorm
x ⋄ y = max{x, y}, ∀x, y ∈ [0, 1] and define

U(x, γ) = γ

γ + r∥x∥
, V(x, γ) = r∥x∥

γ + ∥x∥
and W(x, γ) =

r∥x∥
γ

,

where r > 0 Then, S = {(x, γ),U(x, γ),V(x, γ),W(x, γ) : (x, γ) ∈ Z × R+} is a
NN on Z.

Definition 2.8 ([7]). Let V be an NNS. A sequence x = {xk} is said to be
convergent to α with respect to S = (U ,V,W), if for every 0 < ϵ < 1 and
γ > 0, there exists k ∈ N, such that U(xk − α, γ) > 1− ϵ, V(xk − α, γ) < ϵ and
W(xk − α, γ) < ϵ. That is, for all γ > 0, we have

lim
k→∞

U(xk − α, γ) = 1, lim
k→∞

V(xk − α, γ) = 0 and lim
k→∞

W(xk − α, γ) = 0.

The convergent in NNS V = (Z,S, ∗, ⋄) is denoted by S − limxk = α.

Definition 2.9 ([7]). Let V be an NNS. A sequence x = {xk} is Cauchy se-
quence with respect to S = (U ,V,W), if for every 0 < ϵ < 1 and γ > 0,
there exists K ∈ N, such that U(xn − xk, γ) > 1 − ϵ, V(xn − xk, γ) < ϵ and
W(xn − xk, γ) < ϵ, for all n, k ∈ K.

Definition 2.10 ([7]). Let V be an NNS. Then, open ball with center x and
radius ϵ is defined as, for 0 < ϵ < 1 , x ∈ Z and γ > 0,

B(x, ϵ, γ) = {y ∈ Z : U(x− y, γ) > 1− ϵ, V(x− y, γ) < ϵ, W(x− y, γ) < ϵ}.

Definition 2.11 ([7]). Let V be an NNS and Y ⊆ Z. Then, Y is said to be
open if for each y ∈ Y , there exist γ > 0, 0 < ϵ < 1 such that B(y, ϵ, γ) ⊆ Y.

3. Main results (on the Nörlund sequence)

Throughout the article, we assume that the sequences x = {xk} ∈ ω and N f
n (x)

are connected as shown in (3) and I is an admissible ideal of a subset of N. In
this section, by using a domain of the Nörlund matrix which is used in [8] and
I−convergence w.r.t. neutrosophic norm S = (U ,V,W). As shown below, we
define new Norlund sequence spaces:

N f
I0(S) :=

{
x = {xn} ∈ ω : {n ∈ N : U

(
N f

n (x), γ
)
≤ 1− ϵ

or V
(
N f

n (x), γ
)
≥ ϵ,W

(
N f

n (x), γ
)
≥ ϵ} ∈ I

}
(4)

N f
I(S) :=

{
x={xn}∈ω : {n∈N : for some γ ∈ R , U

(
N f

n (x)− α, γ
)
≤1− ϵ

or V
(
N f

n (x)− α, γ
)
≥ ϵ,W

(
N f

n (x)− α, γ
)
≥ ϵ} ∈ I

}
(5)



358 VAKEEL A. KHAN and MOHAMMAD ARSHAD

N f
I∞(S) :=

{
x={xn}∈ω : {n∈N, ∃ϵ∈(0, 1) s.t U

(
N f

n (x), γ
)
≤1− ϵ

or V
(
N f

n (x), γ
)
≥ ϵ,W

(
N f

n (x), γ
)
≥ ϵ} ∈ I

}
.(6)

We describe an open ball and a closed ball with a center at x and a radius γ >
0 with regard to the neutrosophic ϵ ∈ (0, 1) parameter, indicated by B(x, ϵ, γ)
and B[x, ϵ, γ], as follows:

B(x, ϵ, γ)=
{
z={zk}∈ω : {n ∈ N : U

(
N f

n (x)− N f
n (z), γ

)
≤1−ϵ

or V
(
N f

n (x)− N f
n (z), γ

)
≥ ϵ,W

(
N f

n (x)− N f
n (z), γ

)
≥ ϵ} ∈ I

}
(7)

and

B[x, ϵ, γ]=
{
z={zk}∈ω : {n∈N : U

(
N f

n (x)−N f
n (z), γ

)
<1− ϵ

or V
(
N f

n (x)− N f
n (z), γ

)
> ϵ,W

(
N f

n (x)− N f
n (z), γ

)
> ϵ} ∈ I

}
.(8)

In this case, we write I(S)– lim(x) = α since {xn} converges to some α ∈ C

represented by xn
I(S)−−→ α if {xn} ∈ N t

I(S).

Theorem 3.1. The inclusion relation N f
I0(S) ⊂ N f

I(S) ⊂ N f
I∞(S) holds.

Proof. We know that N f
I0(S) ⊂ N f

I(S). Then, we only show that N f
I(S) ⊂

N f
I∞(S). Consider x = {xn} ∈ N f

I(S). Then, there exists α ∈ C, such that

I(S)– lim(xk) = α. Thus, for any 0 < ϵ < 1 and γ > 0 the set

P =
{
n ∈ N : U

(
N f

n (x)− α,
γ

2

)
> 1− ϵ and V

(
N f

n (x)− α,
γ

2

)
< ϵ,

W
(

N f
n (x)− α,

γ

2

)
< ϵ

}
∈ F (I).

Suppose U
(
α, γ2

)
= u , V

(
α, γ2

)
= v and W

(
α, γ2

)
= w, for all γ > 0. Since

u, v, w ∈ (0, 1) and 0 < ϵ < 1, there exists r1, r2, r3 ∈ (0, 1), such that (1−ϵ)∗u >
1− r1 , ϵ ⋄ v < r2 and ϵ ⋄ w < r3, we have

U
(
N f

n (x), γ
)
=U

(
N f

n (x)− α+ α, γ
)

≥U
(
N f

n (x)− α,
γ

2

)
∗ U

(
α,

γ

2

)
>(1− ϵ) ∗ u
>1− r1,

V
(
N f

n (x), γ
)
=V

(
N f

n (x)− α+ α, γ
)

≤V
(
N f

n (x)− α,
γ

2

)
⋄ V

(
α,

γ

2

)
<ϵ ⋄ v
<r2
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and

W
(
N f

n (x), γ
)
=W

(
N f

n (x)− α+ α, γ
)

≤W
(
N f

n (x)− α,
γ

2

)
⋄W

(
α,

γ

2

)
<ϵ ⋄ w
<r3.

Taking r = max{r1, r2, r3}, then
{
n ∈ N,∃ r ∈ (0, 1) : U

(
N f

n (x), γ
)
> 1− r

and V
(
N f

n (x), γ
)
< r,W

(
N f

n (x), γ
)
< r

}
∈ F (I) =⇒ x = {xk} ∈ N f

I∞(S)

implies N f
I(S) ⊂ N f

I∞(S).

The contrary of an inclusion relation does not hold. To defend our claim,
consider the following examples.

Example 3.1. Suppose (R, ∥.∥) be a normed space such that ∥x∥ = supk |xk|,
and ϑ1 ∗ ϑ2 = min{ϑ1, ϑ2} and ϑ1 ⋄ ϑ2 = max{ϑ1, ϑ2}, ∀ϑ1, ϑ2 ∈ (0, 1). Now,
define norms S = (U ,V,W) on R2 × (0,∞) as follows

U
(
x, γ) =

γ

γ + ∥x∥
, V

(
x, γ) =

∥x∥
γ + ∥x∥

and W
(
x, γ) =

∥x∥
γ

.

Then, (R,S, ∗, ⋄) is a NNS. Consider the sequence (xk)={1}. It can be easily

seen that (xk) ∈ N f
I(S) and xk

I(S)−−→ 1, but xk /∈ N f
I0(S).

Theorem 3.2. The spaces N f
I0(S) and N f

I(S) are linear spaces.

Proof. We know that N f
I0(S) ⊂ N f

I(S). Then, we’ll illustrate the outcome for

N f
I(S) The proof of linearity of the space N f

I0(S) follows similarly. Suppose

sequences x = {xk}, y = {yk} ∈ N f
I(S). Then, there exist α1, α2 ∈ C, such that

{xk} and {yk} I–converge to α1 and α2 respectively.
We will show that the sequence µxk + νyk I–converges to µα1+ να2 for any

scalars µ and ν. Consider the following sets for c and d

P1 =

{
n ∈ N : U

(
N f

n (x)− α1,
γ

2|µ|

)
≤ 1− ϵ or V

(
N f

n (x)− α1,
γ

2|µ|

)
≥ ϵ,

W
(

N f
n (x)− α1,

γ

2|µ|

)
≥ ϵ

}
∈ I,

P2 =

{
n ∈ N : U

(
N f

n (y)− α2,
γ

2|ν|

)
≤ 1− ϵ or V

(
N f

n (y)− α2,
γ

2|ν|

)
≥ ϵ,

W
(

N f
n (y)− α2,

γ

2|ν|

)
≥ ϵ

}
∈ I.
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Now, we take the complement of P1 and P2

Pc
1 =

{
n ∈ N : U

(
N f

n (x)− α1,
γ

2|µ|

)
> 1− ϵ and V

(
N f

n (x)− α1,
γ

2|µ|

)
< ϵ,

W
(

N f
n (x)− α1,

γ

2|µ|

)
< ϵ

}
∈ F (I),

Pc
2 =

{
n ∈ N : U

(
N f

n (y)− α2,
γ

2|ν|

)
> 1− ϵ and V

(
N f

n (y)− α2,
γ

2|ν|

)
< ϵ,

W
(

N f
n (y)− α2,

γ

2|ν|

)
< ϵ

}
∈ F (I).

Consequently, set P = P1 ∪P2 produces P ∈ I. Thus, Pc is a set that is
not empty in F(I). We’ll illustrate this for each {xk}, {yk} ∈ N f

I(S)

Pc ⊂
{
n ∈ N : U

(
N f

n (µx+ νy)− (µα1 + να2), γ

)
> 1− ϵ

and V
(

N f
n (µx+ νy)− (µα1 + να2), γ

)
< ϵ,

W
(

N f
i (µx+ νy)− (µα1 + να2), γ

)
< ϵ

}
.

Let i ∈ Pc. In this case,

U
(

N f
i (x)− α1,

γ

2|µ|

)
> 1− ϵ and V

(
N f

i (x)− α1,
γ

2|µ|

)
< ϵ,

W
(

N f
i (x)− α1,

γ

2|µ|

)
< ϵ,

U
(

N f
i (y)− α2,

γ

2|ν|

)
> 1− ϵ and V

(
N f

i (y)− α2,
γ

2|ν|

)
< ϵ,

W
(

N f
i (y)− α2,

γ

2|ν|

)
< ϵ.

Consider

U
(

N f
i (µx+ νy)− (µα1 + να2), γ

)
≥ U

(
µN f

i (x)− µα1,
γ

2

)
∗ U

(
νN f

i (y)− να2,
γ

2

)
= U

(
N f

i (x)− α1,
γ

2|µ|

)
∗ U

(
N f

i (y)− α2,
γ

2|ν|

)
> (1− ϵ) ∗ (1− ϵ)

> 1− ϵ.
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=⇒ U
(

N f
i (µx+ νy)− (µα1 + να2), γ

)
> 1− ϵ

V
(

N f
i (µx+νy)−(µα1+να2), γ

)
≤V

(
µN f

i (x)−µα1,
γ

2

)
⋄ V

(
νNi(y)−να2,

γ

2

)
=V

(
N f

i (x)−α1,
γ

2|µ|

)
⋄V

(
N f

i (y)−α2,
γ

2|ν|

)
< ϵ ⋄ ϵ
< ϵ.

=⇒ V
(

N f
i (µx+ νy)− (µα1 + να2), γ

)
< ϵ and

W
(

N f
i (µx+ νy)− (µα1 + να2), γ

)
≤ W

(
µN f

i (x)− µα1,
γ

2

)
⋄W

(
µNi(y)− να2,

γ

2

)
= W

(
N f

i (x)− α1,
γ

2|µ|

)
⋄W

(
N f

i (y)− α2,
γ

2|ν|

)
< ϵ ⋄ ϵ
< ϵ.

=⇒ W(N f
i (µx + νy) − (µα1 + να2), γ) < ϵ. Thus, Pc ⊂ {n ∈ N :

U(N f
n (µx+νy)−(µα1+να2), γ) > 1−ϵ and V(N f

n (µx+νy)−(µα1+να2), γ) <

ϵ,W(N f
n (µx+ νy)− (µα1 + να2), γ) < ϵ}. Since Pc ∈ F (I).

By the properties of F (I), we have {n ∈ N : U(N f
n (µx + νy) − (µα1 +

να2), γ) > 1 − ϵ and V(N f
n (µx + νy) − (µα1 + να2), γ) < ϵ,W(N f

n (µx +
νy)− (µα1 + να2), γ) < ϵ} ∈ F (I). It indicates that the sequence (µxk + νyk)

I–converge to µα1+να2. Therefore, (µxk+νyk) ∈ N f
I(S). Hence, N f

I(S) is linear
space.

Theorem 3.3. Each open ball in neutrosophic 0 < ϵ < 1 with centre at x and
radius 0 < ȷ < 1, i.e., B(x, γ, ϵ) is an open set in N f

I(S), where S = (U ,V,W) is
a neutrosophic norm.

Proof. Suppose that B(x, γ, ϵ) is an open ball with a radius of γ > 0 and a

neutrosophic 0 < ϵ < 1 parameter, with its centre at x = (xk) ∈ N f
I(S)

B(x, γ, ϵ) =
{
y = (yk) ∈ ω : {n ∈ N : U

(
N f

n (x)− N f
n (y), γ

)
≤ 1− ϵ

or V
(
N f

n (x)− N f
n (y), γ

)
≥ ϵ,W

(
N f

n (x)− N f
n (y), γ

)
≥ ϵ} ∈ I

}
.

Then

Bc(x, γ, ϵ) =
{
y = (yk) ∈ ω : {n ∈ N : U

(
N f

n (x)− N f
n (y), γ

)
> 1− ϵ and

V
(
N f

n (x)− N f
n (y), γ

)
< ϵ,W

(
N f

n (x)− N f
n (y), γ

)
< ϵ} ∈ F (I)

}
.
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Suppose y = (yk) ∈ Bc(x, γ, ϵ). Then, for U
(
N f

n (x) − N f
n (y), γ

)
> 1 − ϵ,

V
(
N f

n (x) − N f
n (y), γ

)
< ϵ and W

(
N f

n (x) − N f
n (y), γ

)
< ϵ so, there exists

γ0 ∈ (0, γ) such that U
(
N f

n (x)−N f
n (y), γ0

)
> 1−ϵ , V

(
N f

n (x)−N f
n (y), γ0

)
< ϵ

and W
(
N f

n (x)− N f
n (y), γ0

)
< ϵ.

Putting ϵ0 = U
(
N f

n (x)−N f
n (y), γ0

)
, we have ϵ0 > 1− ϵ. Then, ∃ p ∈ (0, 1)

such that ϵ0 > 1− p > 1− ϵ. For ϵ0 > 1− p, we can have ϵ1, ϵ2, ϵ3 ∈ (0, 1), such
that ϵ0 ∗ ϵ1 > 1 − p , (1 − ϵ0) ⋄ (1 − ϵ2) < p. and (1 − ϵ0) ⋄ (1 − ϵ3) < p. Let
ϵ4 = max{ϵ1, ϵ2, ϵ3}.

Now, consider the open ball Bc(y, γ−γ0, 1−ϵ4).We shall show that Bc(y, γ−
γ0, 1− ϵ4) ⊂ Bc(x, γ, ϵ).

Let z = {zk} ∈ Bc(y, γ − γ0, 1− ϵ4), then U
(
N f

n (y)− N f
n (z), γ − γ0

)
> ϵ4

and V
(
N f

n (y)−N f
n (z), γ− γ0

)
< 1− ϵ4, W

(
N f

n (y)−N f
n (z), γ− γ0

)
< 1− ϵ4.

Therefore,

U
(
N f

n (x)− N f
n (z), γ

)
≥U

(
N f

n (x)−N f
n (y), γ0

)
∗ U

(
N f

n (y)−N f
n (z), γ − γ0

)
≥ ϵ0 ∗ ϵ4 ≥ ϵ0 ∗ ϵ1
> (1− p)

> (1− ϵ)

V
(
N f

n (x)−N f
n (z), γ

)
≤V

(
N f

n (x)−N f
n (y), γ0

)
⋄ V

(
N f

n (y)−N f
n (z), γ − γ0

)
≤ (1− ϵ0) ⋄ (1− ϵ4) ≤ ϵ0 ⋄ ϵ2
< p

< ϵ

and

W
(
N f

n (x)−N f
n (z), γ

)
≤W

(
N f

n (x)−N f
n (y), γ0

)
⋄W

(
N f

n (y)−N f
n (z), γ−γ0

)
≤ ϵ0 ⋄ ϵ4 ≤ ϵ0 ⋄ ϵ3
< p

< ϵ

Therefore, the set
{
n ∈ N : U

(
N f

n (x) − N f
n (z), γ

)
> 1 − ϵ and V

(
N f

n (x) −
N f

n (z), γ
)
< ϵ , W

(
N f

n (x)− N f
n (z), γ

)
< ϵ

}
∈ F (I).

=⇒ z = (zk) ∈ Bc(x, γ, ϵ),
=⇒ Bc

(
y, γ − γ0, 1− ϵ4

)
⊂ Bc

(
x, γ, ϵ

)
.

Remark 3.1. The spaces N f
I(S) and N f

I0(S) are Nörland I-convergent and

Nörland I-null in NNS with respect to neutrosophic norms S = (U ,V,W).

Now, define a collection τN f

I(S) of a subset of N f
I(S) as follows: τN f

I(S) = {P ⊂
N f

I(S) : for every x = (xk) ∈ P ∃ γ > 0 and ϵ ∈ (0, 1) s.t B(x, γ, ϵ) ⊂ P}. Then,
τN f

I(S) constructs a topology on sequence space N f
I(S). The collection described
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by B =
{
B(x, γ, ϵ) : b ∈ N f

I(S), r > 0 and ϵ ∈ (0, 1)
}
is the topology’s base τN f

I(S)

on the space N f
I(S).

Theorem 3.4. The topology τN f

I(S) on the space N f
I0(S) is first countable.

Proof. For every x = {xk} ∈ N f
I(S), consider the set B = {B(x, 1

n ,
1
n)} : n =

1, 2, 3, 4, ...
}
, which is a local countable basis at x = (xk). As a result, the

topology τN f

I(S) on the space N f
I0(S) is first countable.

Theorem 3.5. The spaces N f
I(S) and N f

I0(S) are Hausdorff spaces.

Proof. We know that N f
I0(S) ⊂ N f

I(S).

We will only show the solution for N f
I(S). Suppose x = (xk), y = (yk) ∈ N f

I(S)

as well as x ̸= y. Then, for any n ∈ N and γ > 0, implies 0 < U(N f
n (x) −

N f
n (y), γ) < 1, 0 < V(N f

n (x)−N f
n (y), γ) < 1 and 0<W(N f

n (x)−N f
n (y), γ)<1.

Putting ϵ1 = U
(
N f

n (x) − N f
n (y), γ

)
, ϵ2 = V

(
N f

n (x) − N f
n (y), γ

)
, ϵ3 =

W
(
N f

n (x)−N f
n (y), γ

)
and ϵ = max{ϵ1, 1−ϵ2, 1−ϵ3}. Then, for each ϵ0 ∈ (ϵ, 1)

there exist ϵ4, ϵ5, ϵ6 ∈ (0, 1), such that ϵ4∗ϵ4 ≥ ϵ0 , (1−ϵ5)⋄(1−ϵ5) ≤ (1−ϵ0) and
(1−ϵ6)⋄(1−ϵ6) ≤ (1−ϵ0). Once again putting ϵ7 = max{ϵ4, 1−ϵ5, 1−ϵ6, }, think
about the open balls. B(x, 1− ϵ7,

γ
2

)
and B(y, 1− ϵ7,

γ
2

)
respectively centred at

x and y. Then, it is obvious that Bc(x, 1− ϵ7,
γ
2

)
∩ Bc(y, 1− ϵ7,

γ
2

)
= ϕ.

If possible let x = {xk} ∈ Bc(x, 1− ϵ7,
γ
2

)
∩ Bc(y, 1− ϵ7,

γ
2

)
. Then, we have

ϵ1 = U
(
N f

n (x)− N f
n (y), γ

)
≥ U(N f

n (x)− N f
n (z),

γ

2
) ∗ U(N f

n (z)− N f
n (y),

γ

2
)

> ϵ7 ∗ ϵ7
≥ ϵ4 ∗ ϵ4
≥ ϵ0

> ϵ1,

(9)

ϵ2 = V
(
N f

n (x)− N f
n (y), γ

)
≤ V(N f

n (x)− N f
n (z),

γ

2
) ⋄ V(N f

n (z)− N f
n (y),

γ

2
)

< (1− ϵ7) ⋄ (1− ϵ7)

≤ (1− ϵ5) ⋄ (1− ϵ5)

≤ (1− ϵ0)

< ϵ2

(10)
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and

ϵ3 = W
(
N f

n (x)− N f (y), γ
)

≤ W(N f
n (x)− N f

n (z),
γ

2
) ⋄W(N f

n (z)− N f
n (y),

γ

2
)

< (1− ϵ7) ⋄ (1− ϵ7)

≤ (1− ϵ6) ⋄ (1− ϵ6)

≤ (1− ϵ0)

< ϵ3.

(11)

We have a contradiction from equations (9), (10) and (11). Therefore,

Bc(x, 1 − ϵ7,
γ
2

)
∩ Bc(y, 1 − ϵ7,

γ
2

)
= ϕ. Hence, the space N f

I(S) is a Hausdorff
space.

Theorem 3.6. Suppose τN f

I(S) be a topology on a neutrosophic norm spaces

N f
I(S), then a sequence x = {xk} ∈ N f

I(S), such that (xk) −→ α, iff U(N f
n (x)−

α) −→ 1,V(N f
n (x)− α) −→ 0 and W(N f

n (x)− α) −→ 0 as n −→ ∞.

Proof. Consider a sequence {xk} → α, and Fix γ0 > 0, then for γ ∈ (0, 1), ∃
n0 ∈ N s.t. {xk} ∈ B(x, γ, ϵ), ∀ k ≥ n0, then for a γ > 0, B(x, γ, ϵ) = {x =

(xk) ∈ ω : U(N f
n (x)−α, γ) ≤ 1−ϵ or V(N f

n (x)−α, γ) ≥ ϵ , W(N f
n (x)−α, γ) ≥

ϵ} ∈ I, such that Bc(x, γ, ϵ) ∈ F (I) then

1− U(N f
n (x)− α, γ) < ϵ,V (N f

n (x)− α, γ) < ϵ,W(N f
n (x)− α, γ) < ϵ.

Hence, U(N f
n (x)− α, γ) → 1,V(N f

n (x)− α, γ) → 0, and W(N f
n (x)− α, γ) →

0 as n → ∞. Conversely, if ∀ γ > 0, U(N f
n (x)− α, γ) → 1,V(N f

n (x)− α, γ) →
0, and W(N f

n (x)−α, γ) → 0 as n → ∞. Then, for each ϵ ∈ (0, 1), ∃ n0 ∈ N s.t.

1−U(N f
n (x)−α, γ) < ϵ,V(N f

n (x)−α, γ) < ϵ,W(N f
n (x)−α, γ) < ϵ ∀ n ≥ n0.

Hence, we have

U(N f
n (x)−α, γ) > 1− ϵ,V(N f

n (x)−α, γ) < ϵ,W(N f
n (x)−α, γ) < ϵ,∀ n ≥ n0.

Thus, {xk} ∈ Bc(x, γ, ϵ), ∀ k ≥ n0 and hence {xk} → α.

Now, we establish results about the relationship between Nörlund I-conver-
gent and Nörlund I-Cauchy sequence in NNS.

Definition 3.1. In an NNS V . A sequence x = {xn} ∈ V is said to be Nörlund
I-convergent to α ∈ C with regard to neutrosophic norms S = (U ,V,W), de-
noted by xn → α, if for every ϵ ∈ (0, 1) and γ > 0, where

N1 =
{
n ∈ N : U

(
N f

n (x)− α, γ
)
≤ 1− ϵ

or V
(
N f

n (x)− α, γ
)
≥ ϵ,W

(
N f

n (x)− α, γ
)
≥ ϵ

}
∈ I

and we write IS– lim(xn) = α.
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Definition 3.2. A sequence x = {xn} ∈ V is said to Nörlund I-Cauchy with
respect to neutrosophic norms S = (U ,V,W), if for every ϵ ∈ (0, 1) and γ > 0,
∃ k ∈ N, such that

N2 =

{
n ∈ N : U

(
N f

n (x)− N f
k (x), γ

)
≤ 1− ϵ

or V
(
N f

n (x)− N f
k (x), γ

)
≥ ϵ,W

(
N f

n (x)− N f
k (x), γ

)
≥ ϵ

}
∈ I.

Theorem 3.7. Let N f
I(S) be an NNS. If a sequence x = {xk} ∈ is Nörlund

I–convergent w.r.t NN S, then the I(S)–lim(x) is unique.

Proof. Let x = {xk} is Nörlund I–convergent in NNS. Let on contrary that α1

and α2 are two distinct elements, thus I(S)– lim(xk) = α1 and I(S)– lim(xk) = α2.
For a given ϵ > 0, choose p > 0 such that (1− p) ∗ (1− p) > 1− ϵ, p ⋄ p < ϵ and
p ⋄ p < ϵ, for γ > 0.

We show that α1 = α2. We define P1 = {n ∈ N : U(N f
n (x)−α1, γ) ≤ 1− ϵ},

P2 = {n ∈ N : V(N f
n (x)− α1, γ) ≥ ϵ}, P3 = {n ∈ N : W(N f

n (x)− α1, γ) ≥ ϵ},
Q1 = {n ∈ N : U(N f

n (x)−α2, γ) ≤ 1−ϵ}, Q2 = {n ∈ N : V(N f
n (x)−α2, γ) ≥ ϵ},

Q3 = {n ∈ N : W(N f
n (x)−α2, γ) ≥ ϵ}, where A = (P1∪Q1)∩ (P2∪Q2)∩ (P3∪

Q3) sets P1, P2, P3, Q1, Q2, Q3 and A must be belongs to I, since {xk} has two
distinct I-limits with regard to neutrosophic norm S = (U ,V,W), i.e. α1, α2.
As a result, Ac ∈ F (I) implies that Ac is not empty. Let us write some n0 ∈ Ac

then either n0 ∈ P c
1 ∩Qc

1 or n0 ∈ P c
2 ∩Qc

2 or n0 ∈ P c
3 ∩Qc

3.

If n0 ∈ P c
1 ∩Qc

1, it follows that

U
(

N f
n0
(x)− α1,

γ

2

)
> 1− p and U

(
N f

n0
(x)− α2,

γ

2

)
> 1− p.

Hence,

U
(
α1 − α2, γ

)
≥ U

(
N f

n0
(x)− α1,

γ

2

)
∗ U

(
N f

n0
(x)− α2,

γ

2

)
> (1− p) ∗ (1− p)

> (1− ϵ).

Because ϵ > 0 was arbitrary, U(α1 − α2, γ) = 1 was given to all γ > 0. Thus,
we have α1 = α2, which is a contradiction.

If n0 ∈ P c
2 ∩Qc

2, it follows that

V
(

N f
n0
(x)− α1,

γ

2

)
< p and V

(
N f

n0
(x)− α2,

γ

2

)
< p.
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Hence,

V
(
α1 − α2, γ

)
≤ V

(
N f

n0
(x)− α1,

γ

2

)
⋄ V

(
N f

n0
(x)− α2,

γ

2

)
< p ⋄ p
< ϵ.

Because ϵ > 0 was arbitrary, V(α1 − α2, γ) = 0 was given to all γ > 0. Thus,
we have α1 = α2, which is a contradiction.

If n0 ∈ P c
3 ∩Qc

3, it follows that

W
(

N f
n0
(x)− α1,

γ

2

)
< p and W

(
N f

n0
(x)− α2,

γ

2

)
< p.

Hence,

W
(
α1 − α2, γ

)
≤ W

(
N f

n0
(x)− α1,

γ

2

)
⋄W

(
N f

n0
(x)− α2,

γ

2

)
< p ⋄ p
< ϵ.

Because ϵ > 0 was arbitrary, W(α1 − α2, γ) = 0 was given to all γ > 0. Thus,
we have α1 = α2, which is a contradiction.

As an outcome, in all cases, α1=α2, implying that the I(S)–limit is unique.

Now, we establish results about the relationship between Nörlund I-convergent
and Nörlund I-Cauchy sequence in NNS.

Theorem 3.8. A sequence x = {xk} ∈ N f
I(S) is I–convergent with regard to

neutrosophic norms S = (U ,V,W) if and olny if it is I–Cauchy with respect to
the same norms.

Proof. Let x = (xk) is Nörlund I–convergent with regard to neutrosophic
norms (S) such that I(S)– lim(xk) = α. For given ϵ ∈ (0, 1) there exists
p1 ∈ (0, 1), such that (1 − p1) ∗ (1 − p1) > 1 − ϵ and p1 ⋄ p1 < ϵ. Since

I(S)– lim(xk) = α therefore, for all γ > 0, A1 =
{
n ∈ N : U

(
N f

n (x) − α, γ
)
≤

1 − p1 or V
(
N f

n (x) − α, γ
)

≥ p1,W
(
N f

n (x) − α, γ
)

≥ p1
}

∈ I, that im-

plies Ac
1 =

{
n ∈ N : U

(
N f

n (x) − α, γ
)

> 1 − p1 and V
(
N f

n (x) − α, γ
)

<

p1,W
(
N f

n (x) − α, γ
)
< p1

}
∈ F (I). Let a natural number J ∈ Ac

1, we have

U
(
N f

J (x)− α, γ
)
> 1− p1 and V

(
N f

J (x)− α, γ
)
< p1,W

(
N f

J (x)− α, γ
)
< p1.

Now, we show that for x ∈ N f
I(S) ∃ a natural number J = J(x, ϵ, γ) s.t. the

set A2 =
{
n ∈ N : U

(
N f

n (x)− N f
J (x), γ

)
≤ 1− ϵ or V

(
N f

n (x)− N f
J (x), γ

)
≥

ϵ,W
(
N f

n (x)−N f
J (ϑ), γ

)
≥ ϵ

}
∈ I. For this, we need prove that A2 ⊂ A1., Let
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on contrary that A2 ⊈ A1. Then, ∃ l ∈ A2, but not in A1 we have U
(
N f

l (x)−
N f

J (x), γ
)
≤ 1− ϵ. Then, U

(
N f

l (x)− α, γ2
)
> 1− p1.

In particular, U
(
N f

l (x)− α, γ2
)
> 1− p1. Then

1− ϵ ≥ U
(
N f

l (x)− N f
J (x), γ

)
≥ U

(
N f

l (x)− α,
γ

2

)
∗ U

(
N f

J (x)− α,
γ

2

)
> (1− p1) ∗ (1− p1)

> (1− ϵ)

which is a contradiction.

=⇒ U
(
N f

l (x)− α, γ2
)
≤ 1− p1.

Similarly, consider V
(
N f

l (x)− N f
J (x), γ

)
≥ ϵ. Then, V

(
N f

l (x)− α, γ2
)
< p1.

In particular, V
(
N f

n (x)− α, γ2
)
< p1. Then

ϵ ≤ V
(
N f

l (x)− N f
J (x), γ

)
≤ V

(
N f

l (x)− α,
γ

2

)
⋄ V

(
N f

J (x)− α,
γ

2

)
< p1 ⋄ p1
< ϵ

which is a contradiction.

=⇒ V
(
N f

l (x)−α, γ2
)
≥ p1 and similarly considerW

(
N f

l (x)−N f
J (x), γ

)
≥

ϵ. Then, W
(
N f

l (x)− α, γ2
)
< p1.

In particular W
(
N f

l (x)− α, γ2
)
< p1. Then

ϵ ≤ W
(
N f

l (x)− N f
J (x), γ

)
≤ W

(
N f

l (x)− α,
γ

2

)
⋄W

(
N f

J (x)− α,
γ

2

)
< p1 ⋄ p1
< ϵ

which is again a contradiction.

=⇒ W
(
N f

l (x)− α, γ2
)
≥ p1.

Therefore, for l ∈ A2, we have U
(
N f

l (x) − α, γ
)
≤ 1 − p1 or V

(
N f

l (x) −
α, γ

)
≥ p1,W

(
N f

l (x)− α, γ
)
≥ p1.

=⇒ l ∈ A1. Hence, A2 ⊂ A1. Since A1 ∈ I, so A2 ∈ I. Consequently, the
sequence x = {xk} is Nörlund I–Cauchy with regard to norms S = (U ,V,W).

Conversely, suppose the sequence x = {xk} is Nörlund I–Cauchy with regard

to the norms S = (U ,V,W). Then, ∃ j ∈ N such that B1 =
{
n ∈ N : U

(
N f

n (x)−
N f

j (x), γ
)
≤ 1−ϵ or V

(
N f

n (x)−N f
j (x), γ

)
≥ ϵ,W

(
N f

n (x)−N f
j (x), γ

)
≥ ϵ

}
∈

I. But, on the other hand, the sequence x = (xk) is not Nörlund I–convergent
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denoted by B2,

B2 =

{
n ∈ N : U

(
N f

n (x)− α,
γ

2

)
> 1− p1 or V

(
N f

n (x)− α,
γ

2

)
< p1,

W
(

N f
n (x)− α,

γ

2

)
< p1

}
∈ I,

=⇒

1− ϵ ≥ U
(

N f
n (x)− N f

j (x), γ

)
≥ U

(
N f

n (x)− α,
γ

2

)
∗ U

(
N f

j (x)− α,
γ

2

)
> (1− p1) ∗ (1− p1)

> 1− ϵ

which is a contradiction. Now,

ϵ ≤ V
(

N f
n (x)− N f

j (x), γ

)
≤ V

(
N f

n (x)− α,
γ

2

)
⋄ V

(
N f

j (x)− α,
γ

2

)
< p1 ⋄ p1
< ϵ

which is again a contradiction and

ϵ ≤ W
(

N f
n (x)− N f

j (x), γ

)
≤ W

(
N f

n (x)− α,
γ

2

)
⋄W

(
N f

j (x)− α,
γ

2

)
< p1 ⋄ p1
< ϵ.

This again contradicts it. Therefore, B2 ∈ F (I), and hence x = {xk} is Nörlund
I–convergent.

The following theorems are easy to prove.

Theorem 3.9. In NNS V , a sequence x = {xk} ∈ V is Nörlund Cauchy with

regard to NN S. and N f
I(S) cluster to α in Z then {xk} is Nörlund I-convergent

to α with regard to same NN S.

Theorem 3.10. In NNS V , a sequence x = {xk} ∈ V is Nörlund Cauchy with
regard to NN S then it is Nórlund I-Cauchy with regard to NN S.
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Now, follows the notations:

The space of all sequences whose Nf− transform is neutrosophic bounded
sequence is denoted as l∞

(S)
(N f ).

N f
I∞
(S)

indicates the space containing all sequences with neutrosophic bounded

Nf− transforms and neutrosophic Norland ideal convergent sequences.

Theorem 3.11. Space N f
I∞
(S)

is closed linear space of l∞
(S)

(N f ).

Proof. The given space is a subspace of l∞
(S)

(N f ), as we are aware. Now, that

N f
I∞
(S)

must be proved to be closed, we demonstrate that N f
I∞
(S)

=N f
I∞
(S)

. (where

N f
I∞
(S)

denoted the closure of N f
I∞
(S)

).

It is clear that N f
I∞
(S)

⊂ N f
I∞
(S)

.

Conversely, we show that N f
I∞
(S)

⊂ N f
I∞
(S)

.

Let x ∈ N f
I∞
(S)

then , B(x, γ, ϵ) ∩ N f
I∞
(S)

̸= ϕ, for evey open ball B(x, γ, ϵ) of

any radius γ > 0 and ϵ > 0 centred at x. So, let x ∈ B(x, γ, ϵ) ∩ N f
I∞
(S)

and

0 < p < 1 and γ > 0, choose ϵ ∈ (0, 1) s.t. (1− p) ∗ (1− p) > 1− ϵ and p ⋄ p < ϵ.

Since y ∈ B(x, γ, ϵ)∩N f
I∞
(S)

so, there exits a subset A of N s.t A ∈ F (I) and

∀n ∈ A, we have U(N f
n (x)−N f

n (y), γ2 ) > 1−p and V(N f
n (x)−N f

n (y), γ2 ) < p ,

W(N f
n (x)−N f

n (y), γ2 ) < p and U(N f
n (y)−α, γ2 ) > 1−p and V(N f

n (y)−α, γ2 ) <

p , W(N f
n (y)− α, γ2 ) < p.

Hence, ∀n ∈ A, we obtain

U(N f
n (x)− α,

γ

2
) = U(N f

n (x)− N f
n (y) + N f

n (y)− α, γ)

≥ U(N f
n (x)− N f

n (y),
γ

2
) ∗ U(N f

n (y)− α,
γ

2
)

> (1− p) ∗ (1− p)

> 1− ϵ,

V(N f
n (x)− α,

γ

2
) = V(N f

n (x)− N f
n (y) + N f

n (y)− α, γ)

≤ U(N f
n (x)− N f

n (y),
γ

2
) ⋄ V(N f

n (y)− α,
γ

2
)

< p ⋄ p
< ϵ
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and

W(N f
n (x)− α,

γ

2
) = W(N f

n (x)− N f
n (y) + N f

n (y)− α, γ)

≤ W(N f
n (x)− N f

n (y),
γ

2
) ⋄W(N f

n (y)− α,
γ

2
)

< p ⋄ p
< ϵ.

Thus, A ⊂ {n ∈ N : U(N f
n (x) − α, γ) > 1 − ϵ and V(N f

n (x) − α, γ) <

ϵ , W(N f
n (x)− α, γ) < ϵ}.

As A ∈ F (I), which implies that {n ∈ N : U(N f
n (x) − α, γ) > 1 −

ϵ and V(N f
n (x) − α, γ) < ϵ , W(N f

n (x) − α, γ) < ϵ} ∈ F (I). Therefore,

x ∈ N f
I∞
(S)

. Hence, N f
I∞
(S)

⊂ N f
I∞
(S)

.

Theorem 3.12. Let x = {xk} ∈ ω be a sequence. If ∃ a sequence y = {yk} ∈
N f

I(S), such that N f
n (x) = N f

n (y) for almost all n relative to neutrosophic I,

then x ∈ N f
I(S).

Proof. Consider N f
n (x) = N f

n (y) for almost all n relative to I. Then
{
n ∈

N : N f
n (x) ̸= N f

n (y)
}
∈ I. This implies

{
n ∈ N : N f

n (x) = N f
n (y)

}
∈ F (I).

Therefore, for n ∈ F (I) ∀ γ > 0, U
(
N f

n (x) − N f
n (y), γ2

)
= 1, V

(
N f

n (x) −
N f

n (y), γ2
)

= 0 and W
(
N f

n (x) − N f
n (y), γ2

)
= 0. Since {yk} ∈ N f

I(S), let

I(S)– lim(yk) = α. Then, for any ϵ ∈ (0, 1) and γ > 0,

A1 =
{
n ∈ N : U

(
N f

n (y)− α,
γ

2

)
> 1− ϵ and V

(
N f

n (y)− α,
γ

2

)
< ϵ,

W
(
N f

n (y)− α,
γ

2

)
< ϵ

}
∈ F (I).

Consider the set A2 =
{
n ∈ N : U

(
N f

n (x)−α, γ
)
> 1−ϵ and V

(
N f

n (x)−α, γ
)
<

ϵ,W
(
N f

n (x)− α, γ
)
< ϵ

}
.

We show that A1 ⊂ A2. So, for n ∈ A1 we have

U
(
N f

n (x)− α, γ
)
≥ U

(
N f

n (x)−N f
n (y),

γ

2

)
∗ U

(
N f

n (y)− α,
γ

2

)
> 1 ∗ (1− ϵ)

= 1− ϵ,

V
(
N f

n (x)− α, γ
)
≤ V

(
N f

n (x)− N f
n (y),

γ

2

)
⋄ V

(
N f

n (y)− α,
γ

2

)
< 0 ⋄ ϵ
= ϵ
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and

W
(
N f

n (x)− α, γ
)
≤ W

(
N f

n (x)− N f
n (y),

γ

2

)
⋄W

(
N f

n (y)− α,
γ

2

)
< 0 ⋄ ϵ
= ϵ.

This implies that n ∈ A2 and hence A1 ⊂ A2. Since A1 ∈ F (I), therefore

A2 ∈ F (I). Hence, x = {xk} ∈ N f
I(S).

Conclusion

In this research, we investigated the ideal convergence of extended Nörlund
sequences in NNS and defined a new type of sequence space N f

I0(S)
, N f

I(S)

and N f
I∞(S)

utilising the previously studied Nörlund matrix N f . In NNS, the
concepts of Nörlund ideal convergence and Nörlund ideal Cauchy sequence are
examined, and significant findings are established. We may also investigate the
topological properties of these spaces, which will give a better technique for deal-
ing with ambiguity and inexactness in numerous fields of science, engineering,
and economics.
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[23] T. Śalát, B.C. Tripathy, Miloś, On some properties of I-convergence, Tatra
Mt. Math. Publ, 28 (2004), 274-286.
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