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Abstract. Suppose that X be a nonempty set. Denote by T (X) the full transforma-
tion semigroup on X. For ∅ ≠ Z ⊆ Y ⊆ X, let T (X,Y, Z) = {α ∈ T (X) : Y α ⊆ Z}.
Then, T (X,Y, Z) is a subsemigroup of T (X). In this paper, we characterize the regular
elements of the semigroup T (X,Y, Z), and present a necessary and sufficient condition
under which T (X,Y, Z) is regular. Furthermore, we investigate the abundance of the
semigroup T (X,Y, Z) for the case Z ⊊ Y ⊊ X. In addition, we compute the cardinali-
ties of T (X,Y, Z), Reg(T (X,Y, Z)) and E(T (X,Y, Z)) when X is finite, respectively.
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1. Introduction

An element x of semigroup S is called a regular element of S if x = xyx for
some y ∈ S, and S is said to be a regular semigroup if every element of S is
regular. The set of all regular elements of a semigroup S is denoted by Reg(S).
An element x of semigroup S is called an idempotent of S if x2 = x. The set of
all idempotents of a semigroup S is denoted by E(S). Regular element (resp.,
idempotent) is one of the most studied topics in semigroup theory due to its
nice algebraic properties and wide applications. There have been many research
works studying regularity of semigroups (see, [1, 11, 15, 16, 18, 19, 20, 21, 29]).

Let S be a semigroup and a, b ∈ S. We say that a and b are L-related (R-
related) in S if S1a = S1b (aS1 = bS1) where S1 denotes the monoid obtained
from S by adding an identity if S has no identity, otherwise, S1 = S. If a and b
are L-related (R-related), we can write (a, b) ∈ L ((a, b) ∈ R). Again, if (a, b) ∈
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L in some oversemigroup of S, then a and b are called L∗-related and write
(a, b) ∈ L∗. The relation R∗ can be defined dually. Clearly, L ⊆ L∗, R ⊆ R∗,
and L∗ and R∗ are equivalence relations on S. Fountain [7] pointed out that a
semigroup S is said to be left abundant (right abundant) if every L∗-class (R∗-
class) contains an idempotent. Moreover, a semigroup S is called abundant if it
is both left abundant and right abundant. It is obvious that regular semigroups
are abundant, but the converse is not true. For example, Umar [27] shown that
the semigroup of order-decreasing finite full transformations is abundant but not
regular. Many papers have been written describing the abundance of various
semigroups.

For a nonempty set X, let T (X) be the full transformation semigroup on X
that is, the semigroup under composition of all maps from X into itself. It is well
known that T (X) is a regular semigroup (see [9]). Transformation semigroups
are ubiquitous in semigroup theory because of Cayley’s Theorem which states
that every semigroup S embeds in some transformation semigroup T (X) (see
[9, Theorem 1.1.2]).

Given a nonempty subset Y of X, let

T (X,Y ) = {α ∈ T (X) : Y α ⊆ Y }, T (X,Y ) = {α ∈ T (X) : Xα ⊆ Y }.

Then, T (X,Y ) is a subsemigroup of T (X) and T (X,Y ) is a subsemigroup of
T (X,Y ). In 1966, Magill [17] introduced and studied the semigroup T (X,Y ).
In 1975, Symons [25] introduced the semigroup T (X,Y ), and also described all
automorphisms of T (X,Y ). Recently, T (X,Y ) and T (X,Y ) have been studied
in a variety of contexts (see [10, 12, 13, 18, 20, 21, 22, 23, 24, 28]).

The study of the related combinatorial properties of subsemigroups of finite
full transformation semigroup has always been one of the most important topics
in the semigroup theory. Many scholars have obtained results (see [2, 3, 6, 8]).
Although they have studied semigroups T (X,Y ) and T (X,Y ) from different
perspectives, very little research has been found to deal with other literatures
have studied other related combinatorial properties of semigroups T (X,Y ) and
T (X,Y ) except that Nenthein, Youngkhong and Kemprasit [18] determined the
number of all regular elements in T (X,Y ) and T (X,Y ).

For X, Y and Z are all nonempty sets with Z ⊆ Y ⊆ X, the first author
[14] defined

T (X,Y, Z) = {α ∈ T (X) : Y α ⊆ Z}.

Clearly, for each α, β ∈ T (X,Y, Z), Y (αβ) = (Y α)β ⊆ Zβ ⊆ Y β ⊆ Z and so
αβ ∈ T (X,Y, Z). Therefore, we have T (X,Y, Z) is a subsemigroup of T (X),
and we call it the semigroup of transformations with restricted partial range on
X. The semigroup T (X,Y, Z) is a generalization of semigroups T (X), T (X,Y )
and T (X,Z), that is,

• if Z = Y , then T (X,Y, Z) = T (X,Y );
• if Y = X, then T (X,Y, Z) = T (X,Z);
• if Z = Y = X, then T (X,Y, Z) = T (X).
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For the case Z = Y = X, it is well known that T (X,Y, Z) = T (X) is a
regular semigroup and so T (X,Y, Z) is abundant.

For the case Z = Y ⊊ X, Sun [22] shown the following result.

Lemma 1.1. ([22, Theorem 4.2]) The semigroup T (X,Y ) is abundant.

For the case Z ⊊ Y = X. Then, T (X,Y, Z) = T (X,Z) contains exactly one
element if |Z| = 1. And if |Z| ≥ 2, Sun [23] presented the following result.

Lemma 1.2. ([23, Theorem 1]) The semigroup T (X,Z) is left abundant but
not right abundant.

The paper is organized as follows. In Section 2, we characterize the regular
elements of the semigroup T (X,Y, Z), and present a necessary and sufficient
condition under which T (X,Y, Z) is regular. In Section 3, we investigate the
abundance of the semigroup T (X,Y, Z) for the case Z ⊊ Y ⊊ X. In Section 4,
we compute the cardinalities of T (X,Y, Z), Reg(T (X,Y, Z)) and E(T (X,Y, Z))
when X is finite, respectively. All combinatorial formulas in T (X,Y, Z) also
apply to the semigroup T (X,Y ) (resp. T (X,Z) or T (X)).

Throughout this paper, we always write functions on the right; in particular,
this means that for a composition αβ, α is applied first. For any sets A and B,
we denote by |A| the cardinality of A, and write A \B = {a ∈ A : a /∈ B}. For
each α ∈ T (X,Y, Z), we denote by Xα the range of α. And if A is a nonempty
subset of X then the restriction of α to the set A is denoted by α|A. Moreover,
for the general background of Semigroup Theory and standard notation, we refer
the readers to Howie’s book [9].

2. Regularity

In this section, we characterize the regularity of the semigroup T (X,Y, Z). First,
we describe the regular elements of the semigroup T (X,Y, Z).

Theorem 2.1. Let α ∈ T (X,Y, Z). Then, the following conditions are equiva-
lent:

(i) α ∈ Reg(T (X,Y, Z));

(ii) Xα ∩ Y ⊆ Zα;

(iii) Xα ∩ Y = Zα.

Proof. (i) ⇒(ii). Let α ∈ Reg(T (X,Y, Z)). Then, exists β ∈ T (X,Y, Z) such
that α = αβα. For each x ∈ Xα ∩ Y , we have x ∈ Y and x = aα for some
a ∈ X. Consequently, x = aα = aαβα = xβα ∈ Y βα ⊆ Zα and so, (ii) holds.

(ii)⇒(iii). It is obvious that Zα ⊆ Y α ⊆ Xα ∩ Z ⊆ Xα ∩ Y , together with
condition (ii), we get (iii).

(iii)⇒(i). Suppose that Xα ∩ Y = Zα, and let

Xα ∩ Y = {y1, y2, . . . , ys}.
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Then, exist zi ∈ Z (i = 1, 2, . . . , s) such that ziα = yi. We consider two cases.
If Xα \ Y = ∅, we define a mapping β : X → X by

xβ =

{
zi, if x = yi for some i = 1, 2, . . . , s,

z1, otherwise.

If Xα\Y ̸= ∅. Then, for each x ∈ Xα\Y , choose and fix tx ∈ {k ∈ X : kα = x},
and define a mapping β : X → X by

xβ =


zi, if x = yi for some i = 1, 2, . . . , s,

tx, if x ∈ Xα \ Y
z1, otherwise.

For both cases, it is easy to verify that α = αβα and β ∈ T (X,Y, Z). Hence,
(i) holds.

In particular, we take Z = Y (resp., Y = X) in Theorem 2.1. Then, we get
the following Corollary 2.1 (resp., Corollary 2.2) which are proved by Nenthein,
Youngkhong and Kemprasit [18, Theorem 2.1] (resp., [18, Theorem 2.3]).

Corollary 2.1. Let α ∈ T (X,Y ). Then, the following conditions are equivalent:

(i) α ∈ Reg(T (X,Y )).

(ii) Xα ∩ Y ⊆ Y α.

(iii) Xα ∩ Y = Y α.

Corollary 2.2. Let α ∈ T (X,Z). Then, the following conditions are equivalent:

(i) α ∈ Reg(T (X,Z)).

(ii) Xα ⊆ Zα.

(iii) Xα = Zα.

Nenthein, Youngkhong and Kemprasit presented a necessary and sufficient
condition under which T (X,Z) (resp., T (X,Y )) is regular in [18] that is,

Lemma 2.1 ([18], Corollary 2.2). T (X,Z) is a regular semigroup if and only
if |Z| = 1 or X = Z.

Lemma 2.2 ([18], Corollary 2.4). T (X,Y ) is a regular semigroup if and only
if |Y | = 1 or X = Y .

Next, a necessary and sufficient condition for T (X,Y, Z) to be a regular
semigroup can be given as follows:
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Theorem 2.2. T (X,Y, Z) is a regular semigroup if and only if one of the
following statements holds:

(i) |Y | = 1.

(ii) X = Y and |Z| = 1.

(iii) Z = Y = X.

Proof. For |Y | = 1. It is note that Z be a nonempty subset of Y , then Y = Z
and so T (X,Y, Z) = T (X,Y ). According to Lemma 2.2, we have T (X,Y, Z) is
regular. For X = Y and |Z| = 1. It is easy to see that T (X,Y, Z) = T (X,Z)
and so from Lemma 2.1 it follows that T (X,Y, Z) is regular. For Z = Y = X,
we have T (X,Y, Z) = T (X) which is regular.

Conversely, suppose that T (X,Y, Z) is a regular semigroup, and let (i), (ii)
and (iii) be not established. Note that X, Y and Z are all nonempty sets with
Z ⊆ Y ⊆ X. To do this, we distinguish three cases:

Case 1. Z ⊊ Y ⊊ X. Let z be an element of Z, and choose y ∈ Y such that
y ̸= z. Since X \ Y ̸= ∅, we define a mapping α : X → X by

xα =

{
z, if x ∈ Y ,

y, if x ∈ X \ Y .

It is easy to verify that α ∈ T (X,Y, Z). However, Xα∩Y = {z, y} ⊋ {z} = Zα.
By Theorem 2.1, we immediately deduce that α is not a regular element of
T (X,Y, Z), which contradicts the fact that T (X,Y, Z) is regular.

Case 2. |Z| > 1 and Z = Y ⊊ X. Then, T (X,Y, Z) = T (X,Y ) with |Y | ≠ 1
and X ̸= Y . Also, we have T (X,Y, Z) is not regular by Lemma 2.2. This is a
contradiction.

Case 3. |Z| > 1 and Z ⊊ Y = X. Then, T (X,Y, Z) = T (X,Z) with |Z| ̸= 1
and X ̸= Z. Similar to the above, we have T (X,Y, Z) is not regular by Lemma
2.1. This is a contradiction.

3. Abundance

In this section, we investigate the abundance of the semigroup T (X,Y, Z) for
the case Z ⊊ Y ⊊ X. The following two lemmas give characterizations of L∗

and R∗ that can be found, for instance, in [7].

Lemma 3.1 ([7], Lemma 1.1). Let S be a semigroup and a, b ∈ S. Then, the
following statements are equivalent:

(i) (a, b) ∈ L∗.

(ii) For all x, y ∈ S1, ax = ay if and only if bx = by.

Dually, we have:
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Lemma 3.2. Let S be a semigroup and a, b ∈ S. Then, the following statements
are equivalent:

(i) (a, b) ∈ R∗.

(ii) For all x, y ∈ S1, xa = ya if and only if xb = yb.

To facilitate the description of the following lemma, we introduce a binary
relation Λ on T (X,Y, Z) as follows: For each α, β ∈ T (X,Y, Z), (α, β) ∈ Λ if
and only if one of the following statements holds:

(i) (X \ Y )α ∩ (Y \ Z) = ∅ and (X \ Y )β ∩ (Y \ Z) = ∅.

(ii) (X \ Y )α ∩ (Y \ Z) ̸= ∅ and (X \ Y )β ∩ (Y \ Z) ̸= ∅.

Clearly, Λ is an equivalence relation on T (X,Y, Z).

Lemma 3.3. Let Z ⊊ Y ⊊ X and α, β ∈ T (X,Y, Z). Then, the following
statements hold:

(i) for |Z| = 1, (α, β) ∈ L∗ if and only if (α, β) ∈ Λ and Xα ∩ (X \ Y ) =
Xβ ∩ (X \ Y ).

(ii) for |Z| ≥ 2, (α, β) ∈ L∗ if and only if Xα = Xβ.

Proof. (i) Suppose that (α, β) ∈ Λ and Xα ∩ (X \ Y ) = Xβ ∩ (X \ Y ). By
|Z| = 1, we say that Z = {z0}. From (α, β) ∈ Λ, we distinguish two cases:
Case 1. (X \ Y )α ∩ (Y \ Z) = ∅ and (X \ Y )β ∩ (Y \ Z) = ∅. Clearly,

Xα =Y α ∪ (X \ Y )α

={z0} ∪ {(X \ Y )α ∩ [Z ∪ (X \ Y )]}
={z0} ∪ {[(X \ Y )α ∩ Z] ∪ [(X \ Y )α ∩ (X \ Y )]}
={z0} ∪ [(X \ Y )α ∩ (X \ Y )]

={z0} ∪ [(X \ Y )α ∩ (X \ Y )] ∪ [Y α ∩ (X \ Y )] (By Y α ∩ (X \ Y ) ⊆
Z ∩ (X \ Y ) = ∅)

={z0} ∪ {[(X \ Y )α ∪ Y α] ∩ (X \ Y )}
={z0} ∪ [Xα ∩ (X \ Y )].

Similarly, we have Xβ = {z0} ∪ [Xβ ∩ (X \ Y )]. Since Xα ∩ (X \ Y ) = Xβ ∩
(X \Y ), we have Xα = Xβ. This implies that α and β are L-related in the full
transformation semigroup T (X) (see [9, page 63]). Hence, (α, β) ∈ L∗.
Case 2. (X \ Y )α ∩ (Y \ Z) ̸= ∅ and (X \ Y )β ∩ (Y \ Z) ̸= ∅. For each
η, θ ∈ T 1(X,Y, Z), we consider the following three subcases:
Case 2.1. η = 1 and θ = 1. Clearly, (α, β) ∈ L∗.
Case 2.2. η = 1 and θ ̸= 1. Then, θ ∈ T (X,Y, Z) and so Y θ ⊆ Z = {z0}. Let
γη = γθ (γ ∈ {α, β}). Then, γ = γθ and so xθ = x, for all x ∈ Xγ. This means
that (X \ Y )γ ∩ (Y \Z) = ∅ (If not, there exist bγ ∈ X \ Y and yγ ∈ Y \Z such
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that yγ = bγγ ∈ Xγ. Then, yγ = yγθ ∈ Z, this contradicts the condition that
yγ ∈ Y \ Z). This is a contradiction.
Case 2.3. η ̸= 1 and θ ̸= 1. That is, η, θ ∈ T (X,Y, Z). Then, Y η = {z0} = Y θ
and so η|Y = θ|Y . Therefore,

αη = αθ ⇔ η|Xα = θ|Xα

⇔ η|Xα∩Y = θ|Xα∩Y and η|Xα∩(X\Y ) = θ|Xα∩(X\Y )

⇔ η|Xβ∩Y = θ|Xβ∩Y and η|Xβ∩(X\Y ) = θ|Xβ∩(X\Y )

⇔ η|Xβ = θ|Xβ

⇔ βη = βθ.

By Lemma 3.1 we conclude that (α, β) ∈ L∗.
Conversely, suppose that (α, β) ∈ L∗ such that (α, β) /∈ Λ or Xα∩(X \Y ) ̸=

Xβ ∩ (X \ Y ). We distinguish two cases:
Case 1. (α, β) /∈ Λ. Then, we have ((X \ Y )α ∩ (Y \ Z) = ∅ and (X \ Y )β ∩
(Y \ Z) ̸= ∅) or ((X \ Y )α ∩ (Y \ Z) ̸= ∅ and (X \ Y )β ∩ (Y \ Z) = ∅). By
symmetry, let (X \ Y )α ∩ (Y \ Z) = ∅ and (X \ Y )β ∩ (Y \ Z) ̸= ∅. Define two
mappings η : X → X and θ : X → X by η = 1 and

xθ =

{
x, if x ∈ Xα

z0, if x /∈ Xα.

Clearly, θ ∈ T (X,Y, Z) and αη = αθ. Howerver, βη ̸= βθ. This contradicts the
fact that (α, β) ∈ L∗.
Case 2. Xα ∩ (X \ Y ) ̸= Xβ ∩ (X \ Y ). Then, exists a ∈ Xβ ∩ (X \ Y ) such
that a /∈ Xα ∩ (X \ Y ) and so a0β = a for some a0 ∈ X and xα ̸= a, for all
x ∈ X. In fact, a0 ∈ X \ Y (If not, a = a0β ∈ Z, this contradicts the fact that
a ∈ X \Y ). We consider two cases. If |X \Y | = 1. It is clear that X \Y = {a}.
Define two mappings η : X → X and θ : X → X by Xη = z0 and

xθ =

{
z0, if x ∈ Y

a0, if x ∈ X \ Y .

If |X \ Y | ≥ 2. Define two mappings η : X → X and θ : X → X by

xη =

{
z0, if x ∈ Y ∪ {a}
a0, if x ∈ X \ (Y ∪ {a})

and xθ =

{
z0, if x ∈ Y

a0, if x ∈ X \ Y .

For both cases, we have η, θ ∈ T (X,Y, Z) and αη = αθ. However,

a0βη = aη = z0 ̸= a0 = aθ = a0βθ

and so βη ̸= βθ. This contradicts the fact that (α, β) ∈ L∗.
Hence, (α, β) ∈ Λ and Xα ∩ (X \ Y ) = Xβ ∩ (X \ Y ).



SEMIGROUP OF TRANSFORMATIONS WITH RESTRICTED ... 343

(ii) Let Xα = Xβ. This implies that α, β are L-related in the full transfor-
mation semigroup T (X). Hence, (α, β) ∈ L∗.

Conversely, suppose that (α, β) ∈ L∗ and Xα ̸= Xβ. Then, exists a ∈ Xβ
such that a /∈ Xα and so a0β = a for some a0 ∈ X and xα ̸= a, for all x ∈ X.
Note that |Z| ≥ 2 and |X| ≥ 4. Then, we can take distinct z1, z2 ∈ Z, and
choose nonempty subsets X1, X2 of X with |Xi| ≥ 2 (i = 1, 2) such that X is a
disjoint union of X1 and X2. Define two mappings η : X → X and θ : X → X
by

xη =

{
z1, if x ∈ X1 ∪ {a}
z2, if x ∈ X2 \ {a}

and xθ =

{
z1, if x ∈ X1 \ {a}
z2, if x ∈ X2 ∪ {a}.

Clearly, η, θ ∈ T (X,Y, Z) and αη = αθ. However,

a0βη = aη = z1 ̸= z2 = aθ = a0βθ

and so βη ̸= βθ. This contradicts the fact that (α, β) ∈ L∗. Hence, Xα =
Xβ.

A necessary and sufficient condition for α ∈ T (X,Y, Z) to be an idempotent
can be given as follows:

Lemma 3.4. Let α ∈ T (X,Y, Z). Then, α is an idempotent if and only if the
following statements hold:

(i) Xα ⊆ Z ∪ (X \ Y ).

(ii) tα = t, for all t ∈ Xα.

Proof. Suppose that Xα ⊆ Z ∪ (X \ Y ) and tα = t, for all t ∈ Xα. For each
x ∈ X, there exists t ∈ Xα such that xα = t. Then, xα2 = (xα)α = tα = t =
xα. Hence, α is an idempotent.

Conversely, suppose that α is an idempotent, and let (i) or (ii) do not hold.
To do this, we distinguish two cases:
Case 1. (i) not holds and (ii) holds. Then, there exists y ∈ Xα such that
y ∈ Y \ Z and so yα = y /∈ Z. This is a contradiction.
Case 2. (ii) not holds. There exists t0 ∈ Xα such that t0α ̸= t0. Note that
x0α = t0 for some x0 ∈ X. Then, x0α

2 = (x0α)α = t0α ̸= t0 = x0α, which
contradicts the fact that α is an idempotent.

Lemma 3.5. Let Z ⊊ Y ⊊ X. Then, not each L∗-class of T (X,Y, Z) contains
an idempotent.

Proof. Let f ∈ T (X,Y, Z) such that (X \ Y )f ∩ (Y \ Z) ̸= ∅. Next, we prove
that the L∗-class L∗

f containing f has no idempotents. Assume that (f, e) ∈ L∗

for some idempotent e ∈ T (X,Y, Z), then two cases are considered as follows:
Case 1. |Z| = 1. Since Lemma 3.3 (1) it follows that (X \ Y )e ∩ (Y \ Z) ̸= ∅
and so Xe ∩ (Y \ Z) ̸= ∅.
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Case 2. |Z| ≥ 2. From Lemma 3.3 (2) it follows that Xe = Xf and so
Xe ∩ (Y \ Z) ̸= ∅.

However, we have Xe ⊆ Z ∪ (X \ Y ) since Lemma 3.4 (1). Note that
Z ⊊ Y ⊊ X, then Xe ∩ (Y \ Z) = ∅. This is a contradiction.

After that, we consider theR∗-relation. Let πα be the partition ofX induced
by α ∈ T (X,Y, Z), namely,

πα = {xα−1 : x ∈ Xα}.

Lemma 3.6. Let Z ⊊ Y ⊊ X and α, β ∈ T (X,Y, Z). Then, (α, β) ∈ R∗ if and
only if πα = πβ.

Proof. Let πα = πβ. This implies that α, β are R-related in the full transfor-
mation semigroup T (X) (see [9, page 63]). Hence, (α, β) ∈ R∗.

Conversely, suppose that (α, β) ∈ R∗ and x1α = x2α for some distinct
x1, x2 ∈ X. We show that x1β = x2β. There are three cases to be considered.
Case 1. x1, x2 ∈ Z. Define two mappings η : X → X and θ : X → X by

xη =

{
x1, if x ∈ Y

x, if x ∈ X \ Y
and xθ =

{
x2, if x ∈ Y

x, if x ∈ X \ Y .

Clearly, η, θ ∈ T (X,Y, Z) and ηα = θα. Then, ηβ = θβ and so x1β = Y ηβ =
Y θβ = x2β.
Case 2. x1, x2 ∈ X\Z. Choose and fix z0 ∈ Z. Define two mappings η : X → X
and θ : X → X by

xη =

{
z0, if x ∈ Y

x1, if x ∈ X \ Y
and xθ =

{
z0, if x ∈ Y

x2, if x ∈ X \ Y .

Clearly, η, θ ∈ T (X,Y, Z) and ηα = θα. Then, ηβ = θβ and so x1β = (X \
Y )ηβ = (X \ Y )θβ = x2β.
Case 3. x1 ∈ Z and x2 ∈ X\Z. Define two mappings η : X → X and
θ : X → X by Xη = x1 and

xθ =

{
x1, if x ∈ Y

x2, if x ∈ X \ Y .

Clearly, η, θ ∈ T (X,Y, Z) and ηα = θα. Then, ηβ = θβ and so x1β = (X \
Y )ηβ = (X \ Y )θβ = x2β.

For both cases, we have πα ⊆ πβ. Dually, we may show that πβ ⊆ πα.
Consequently, πα = πβ.

Lemma 3.7. Let Z ⊊ Y ⊊ X. Then, the following statements hold:

(i) for |Z| = 1, each R∗-class of T (X,Y, Z) contains an idempotent;

(ii) for |Z| ≥ 2, not each R∗-class of T (X,Y, Z) contains an idempotent.
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Proof. (i) Let α ∈ T (X,Y, Z). Then, exists an index set I such that πα = {Ai :
i ∈ I}. Note that Y α ⊆ Z and |Z| = 1, there exists i ∈ I such that Y ⊆ Ai.
Take z0 ∈ Z and aj ∈ Aj , for all j ∈ I \ {i}. Define a mapping e : X → X by

xe =

{
z0, if x ∈ Ai

aj , if x ∈ Aj , for all j ∈ I \ {i}.

Clearly, e ∈ T (X,Y, Z) is an idempotent and πα = πe. By Lemma 3.6, we have
(α, e) ∈ R∗. Hence, each R∗-class of T (X,Y, Z) contains an idempotent.

(ii) By |Z| ≥ 2, we can take distinct z1, z2 ∈ Z. Define f ∈ T (X,Y, Z) such
that Zf = z1 and (Y \ Z)f = z2. Then, Z ⊆ Ai and (Y \ Z) ⊆ Aj for some
distinct Ai, Aj ∈ πf = {Aj : j ∈ J} where J be some index set. We assert that
the R∗-class R∗

f containing f has no idempotents. Indeed, if (f, e) ∈ R∗ for
some idempotent e ∈ T (X,Y, Z). Then, by Lemma 3.6 it follows that πe = πf .
According to Lemma 3.4, |Aje ∩ Aj | = 1 and so (Y \ Z)e = Aje ∈ Aj . Note
that Z ⊆ Ai and Ai ∩ Aj = ∅. Then, (Y \ Z)e ∩ Z = ∅. This contradicts the
fact that (Y \ Z)e ⊊ Y e ⊆ Z.

By Lemmas 3.5 and 3.7, we obtain the main result in this section.

Theorem 3.1. Let Z ⊊ Y ⊊ X. Then, the following statements hold:

(i) for |Z| = 1, the semigroup T (X,Y, Z) is right abundant;

(ii) for |Z| ≥ 2, the semigroup T (X,Y, Z) is neither left abundant nor right
abundant.

As a consequence of Lemma 1.1, Lemma 1.2 and Theorem 3.1, we have the
following conclusion.

Corollary 3.1. (I) for Z = Y = X, the semigroup T (X,Y, Z) = T (X) is
abundant.

(II) for Z ⊊ Y = X,
(i) |Z| = 1, the semigroup T (X,Y, Z) = T (X,Z) is abundant;
(ii) |Z| ≥ 2, the semigroup T (X,Y, Z) = T (X,Z) is left abundant but not

right abundant.

(III) for Z = Y ⊊ X, the semigroup T (X,Y, Z) = T (X,Y ) is abundant;

(IV) for Z ⊊ Y ⊊ X,
(i) |Z| = 1, the semigroup T (X,Y, Z) is right abundant;
(ii) |Z| ≥ 2, the semigroup T (X,Y, Z) is neither left abundant nor right

abundant.

4. Some combinatorial results

The Stirling number of the second kind S(n, r) counts the number of partitions
of a set of n elements into r indistinguishable boxes in which no box is empty.
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Recall that the number of ways that r objects can be chosen from n distinct
objects written

(
n
r

)
is given by(

n

r

)
=

n!

(n− r)!r!
.

It is shown in [4, Theorem 8.26] that

S(n, r) =
1

r!

r∑
i=0

(−1)i
(
r

i

)
(r − i)n.

for integers n and r with 0 ≤ r ≤ n. In particular, S(p, 0) = 0 (p ≥ 1) and
S(0, 0) = 1. Bóna [5] also presented a formula related Stirling number, that is,

Lemma 4.1. ([5, page 32]) Let m, k ∈ N such that 1 ≤ k ≤ m. Then:

k∑
r=1

(
k

r

)
r!S(m, r) = km.

Lemma 4.2. Let |X| = n, |Y | = m and |Z| = k. Then, for each r ∈ N with
1 ≤ r ≤ k,

(1) |{α ∈ T (X,Y, Z) : |Y α| = r}| =
(
k

r

)
r!S(m, r)nn−m.

Proof. Let Z ′ be a nonempty subset of Z with |Z ′| = r, we have 1 ≤ r ≤ k
since |Z| = k. It is easy to see that the number of mappings α : X → X such
that Y α = Z ′ and (X \ Y )α ⊆ X is r!S(m, r)nn−m, that is,

|{α ∈ T (X,Y, Z) : Y α = Z ′}| = r!S(m, r)nn−m.

Consequently, Equation (1) holds for each r ∈ N with 1 ≤ r ≤ k.

Theorem 4.1. Let |X| = n, |Y | = m and |Z| = k. Then:

(2) |T (X,Y, Z)| =
k∑

r=1

(
k

r

)
r!S(m, r)nn−m = kmnn−m.

Proof. According to Lemma 4.2, we have

|{α ∈ T (X,Y, Z) : |Y α| = r}| =
(
k

r

)
r!S(m, r)nn−m,

for each r ∈ N with 1 ≤ r ≤ k. Then, |T (X,Y, Z)| =
∑k

r=1

(
k
r

)
r!S(m, r)nn−m

by the summing up over all r. Moreover, from Lemma 4.1 it follows that∑k
r=1

(
k
r

)
r!S(m, r)nn−m = kmnn−m. Hence, Equation (2) as required.
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Since Theorem 4.1, we obtain the following corollary which appears in [18,
page 311].

Corollary 4.1. Let |X| = n, |Y | = m and |Z| = k. Then:

(i) |T (X,Y )| =
∑m

r=1

(
m
r

)
r!S(m, r)nn−m = mmnn−m;

(ii) |T (X,Z)| =
∑k

r=1

(
k
r

)
r!S(n, r) = kn;

(iii) |T (X)| =
∑n

r=1

(
n
r

)
r!S(n, r) = nn.

Next, we determine the number of all regular elements in the semigroup
T (X,Y, Z) when X is finite.

Theorem 4.2. Let |X| = n, |Y | = m and |Z| = k. Then:

(3) |Reg(T (X,Y, Z))| =
k∑

r=1

(
k

r

)
r!S(k, r)rm−k(n−m+ r)n−m.

Proof. For each α ∈ Reg(T (X,Y, Z)), we have Xα ∩ Y = Zα ⊆ Y α ⊆ Z by
Theorem 2.1. Then, exists a nonempty subset Z ′ of Z with |Z ′| = r such that
Zα = Xα ∩ Y = Z ′. Clearly, (Y \ Z)α ⊆ Y α ⊆ Xα ∩ Z ⊆ Xα ∩ Y = Z ′ and so

(4) (Y \ Z)α ⊆ Z ′.

We can also assert

(5) (X \ Y )α ⊆ Z ′ ∪ (X \ Y )

(If not, there exists some y ∈ X\Y such that yα ∈ Y \Z ′, then yα ∈ Xα∩Y = Z ′.
This is a contradiction). Conversely, if a mapping α ∈ T (X,Y, Z) satisfies
Zα = Z ′, formulas (4) and (5), it is easy to see that

Xα ∩ Y = [Z ∪ (Y \ Z) ∪ (X \ Y )]α ∩ Y ⊆ [Z ′ ∪ (X \ Y )] ∩ Y = Z ′ = Zα

since Z ′ ⊆ Z ⊆ Y ⊆ X. Then, by Theorem 2.1, we have α ∈ Reg(T (X,Y, Z))
and Zα = Z ′. Hence, for each nonempty set Z ′ ⊆ Z, we have

{α ∈ Reg(T (X,Y, Z)) : Zα = Z ′}
={α ∈ T (X,Y, Z) : α satisfies Zα = Z ′, formulas (4) and (5)}.

It follows that the number of maps α ∈ T (X,Y, Z) satisfying Zα = Z ′, formulas
(4) and (5) is r!S(k, r)rm−k(n−m+r)n−m since |Z ′∪(X \Y )| = |X \Y |+ |Z ′| =
n−m+ r, that is,

|{α ∈ Reg(T (X,Y, Z)) : Zα = Z ′}| = r!S(k, r)rm−k(n−m+ r)n−m.

Consequently, for each r ∈ N with 1 ≤ r ≤ k,

|{α ∈ Reg(T (X,Y, Z)) : |Zα| = r}| =
(
k

r

)
r!S(k, r)rm−k(n−m+ r)n−m

and so Equation (3) holds by the summing up over all r.
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Since Theorem 4.2, we obtain the following corollary which appears in [18,
Theorem 2.6 and Theorem 2.7].

Corollary 4.2. Let |X| = n, |Y | = m and |Z| = k. Then,

(i) |Reg(T (X,Y ))| =
∑m

r=1

(
m
r

)
r!S(m, r)(n−m+ r)n−m.

(ii) |Reg(T (X,Z))| =
∑k

r=1

(
k
r

)
r!S(k, r)rn−k.

Moreover, we compute the cardinality of E(T (X,Y, Z)).

Theorem 4.3. Let |X| = n, |Y | = m and |Z| = k. Then:

(6) |E(T (X,Y, Z))| =
n−m+k∑
r=1

min{k,r}∑
i=max{1,m−n+r}

(
k

i

)(
n−m

r − i

)
im−irn−m−r+i.

Proof. Define an idempotent α with |Xα| = r, we have to choose a r-element
set Xα, then exists i ∈ N such that |Xα ∩ Z| = i and |Xα ∩ (X \ Y )| = r − i
by Lemma 3.4 (There are

(
k
i

)(
n−m
r−i

)
different ways). Also, we have to define a

mapping φ : X \Xα → Xα such that φ(Y \Xα) ⊆ Z and φ((X \Y )\Xα) ⊆ Xα
in an arbitrary way (This can be done in im−irn−m−r+i different ways). Note
that i meets 1 ≤ i ≤ k and 0 ≤ r − i ≤ n−m. Then, max{1,m− n+ r} ≤ i ≤
min{k, r}. Hence,

|{α ∈ E(T (X,Y, Z)) : |Xα| = r}| =
min{k,r}∑

i=max{1,m−n+r}

(
k

i

)(
n−m

r − i

)
im−irn−m−r+i

by summing up over all i. Note that

1 ≤ r = |Xα| ≤ |Y α|+ |(X \ Y )α| ≤ |Z|+ |X \ Y | = n−m+ k.

Therefore Equation (6) is now obtained by summing up over all r.

Since Theorem 4.3, we obtain the following corollary.

Corollary 4.3. Let |X| = n, |Y | = m and |Z| = k. Then:

(i) |E(T (X,Y ))| =
∑n

r=1

∑min{m,r}
i=max{1,m−n+r}

(
m
i

)(
n−m
r−i

)
im−irn−m−r+i.

(ii) |E(T (X,Z))| =
∑k

r=1

(
k
r

)
rn−r.

(iii) |E(T (X))| =
∑n

r=1

(
n
r

)
rn−r.
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