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Abstract. The main aim of this paper is to reform the Bernstein-Gelfand-Ponomarev
theory in order to characterize representations of some (non-basic) artinian algebras. All
non-isomorphic indecomposable projective and injective representations are constructed
via Coxeter functors for a generalized path algebra of acyclic quiver and then for an
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1. Introduction

Reflection functors were introduced into the representation theory of quivers by
Bernstein, Gelfand and Ponomarev in their work on the 4-subspace problem [13]
and on Gabriel’s Theorem, e.g. [5, 2, 3]. Due to the latter result, one obtains the
classifications of finite type and tame type of basic hereditary artinian algebras,
that is, acyclic quiver algebras, over an algebraically closed field. Furthermore,
there have been several generalizations, see [6, 11, 10, 4, 1, 9]. In [11, 10,
9], Bernstein-Gelfand-Ponomarev theory was generalized to hereditary tensor
algebras of quivers over division rings. In [6], the authors gave an extension of
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the concept of reflection functors and some applications to quivers with relations
(equivalently say, to some special basic non-hereditary artinian algebras). A
special case of this theory has been developed by Marmaridis [25] and applied
to certain quivers with relations. In [1], a theory of partial Coxeter functors
was developed for a basic artin algebra with a simple projective noninjective
module.

The fact that each finite dimensional basic algebra over an algebraically
closed field is some quotient of path algebra plays an important role in alge-
braical representation theory, since it characterizes the structures of basic al-
gebras and provides a method to give various examples of basic algebras using
quivers. More importantly, it can be used to characterize finitely generated mod-
ules over an algebra. However, there are limitations to this approach. Firstly,
the ground field has to be an algebraically closed field. Secondly, the character-
ization of representations of a finite dimensional algebra must be based on its
corresponding basic algebra. But, some information of representations of the
original algebra will be lost via its basic algebra. To solve this problem, Coelho
and Liu[8] first introduced the concept of generalized path algebras, so as to have
a more direct and new understanding for the structures and representations of
algebras.

It is noted that artinian algebras having be studied in all former papers
are basic. Although the module category of an artinian algebra and that of
its corresponding basic algebra are equivalent which means the representation
types of these two algebras are coherent, in usual it is difficult to consider the
relation between the dimensions of their modules. It is the motivation for us to
use the method of reflection functors to study non-basic artinian algebras and
some data of their representations which are not Morita-invariant.

The main aim of this paper is to reform the Bernstein-Gelfand-Ponomarev
theory to characterize the representation categories of some (non-basic) ar-
tinian algebras and to give a method for constructing indecomposable projective
and injective representations via reflection functors and Coxeter functors. This
makes it possible to compute the dimensions of indecomposable representations
of a (non-basic) artinian algebra. The tool we use is the natural quiver of an
artinian algebra.

In the classical setting, mathematicians dealt with the module theory of the
path algebras of quivers. In this paper, we use the natural quivers of (non-
basic) hereditary algebras and the reformed modulations via generalized path
algebras which are isomorphic to hereditary algebras, see [15, 21, 8, 7], to solve
the corresponding problems in modules over the generalized path algebras.

The natural quiver will have fewer arrows than the Ext-quiver when the
algebra A is not basic. Natural quivers are not invariant under the Morita
equivalence and much closer to reflect the structure of the algebra, rather than
just its module category. There are numerous cases even in the representation
theory that one needs the structure of the algebras, for example, the character
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values of finite groups in a block cannot be preserved through Morita equiva-
lence.

We think natural quivers and generalized path algebras are valid to study
some properties which are not Mortia invariant in representation theory.

When an artinian algebra A is of Gabriel-type [18], that is, A is isomorphic to
some quotient of the generalized path algebra of its natural quiver ∆A, then any
representations of A can be induced directly from some representations of the
generalized path algebra of ∆A. From [18], we know that any artinian algebra
splitting over its radical must be of Gabriel-type. It is more straightforward
through representations of the generalized path algebra of ∆A to set up an
approach to representations of an artinian algebra.

Associated with any representation of a quiver is a dimension vector, and
the dimension vectors of indecomposable modules are the positive roots of the
quadratic form associated to the quiver (see e.g. [5, 11, 14]). Similar results
seem to hold for certain quivers with relations. Some applications of reflection
functors involve the study of the transformations of dimension vectors they
induce. It turns out in [6] that there are applications of our functors which
make use of the analogous transformations which is considered as a change of
basis for a fixed root-system - a tilting of the axes relative to the roots which
results in a different subset of roots lying in the positive cone.

For our need, for an artinian algebra, the dimension vectors of modules and
the Cartan matrix are introduced in Section 2. First, some properties of dimen-
sion vectors are given, which are generalizations of the corresponding properties
for a basic algebra. When the global dimension of an artinian algebra is finite,
its Cartan matrix is invertible and can be computed through an integer matrix
and two diagonal matrices. The Euler characteristic and the Euler quadratic
form of an artinian algebra is defined from the Cartan matrix. On the other
hand, the Euler form and quadratic form of a pre-modulation is defined. It was
shown in [2] that the quadratic form and the Euler quadratic form coincide for a
path algebra through the homological interpretation of the Euler characteristic.
However, for a generalized path algebra, it is difficult to get the similar relation
between its Euler quadratic form and the quadratic form from its corresponding
pre-modulation in the reason that in the general case the homological interpre-
tation of the Euler characteristic can not be computed via the inverse matrix of
its Cartan matrix. So, in this paper, the homological interpretation of the Euler
form, as well as the quadratic form, is characterized directly.

As analogue of the dimension vectors of indecomposable modules of quivers,
it is interesting for one to discuss the relationship between the dimension vectors
of indecomposable representations of artinian algebras and the positive roots of
the quadratic forms associated to pre-modulations. Since the dimension vector
and Cartan matrix of an artinian algebra are not invariant under the Morita
equivalence, the mentioned relation above has only been a conjecture. This
will be our further expectation for researching with this new method given via
natural quivers and generalized modulations.
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In Section 3, first, the reflection functors are given for the representation
category rep(M,Ω) of a pre-modulationM with acyclic connected valued quiver
and using of them as a pair of mutual invertible functors ∆−

i and ∆+
i , the

categorical equivalence is obtained between the full subcategories rep(i)(M,Ω)
and rep(i)(M,Ω) for i = 1, n.

Moreover, we get the construction of all non-isomorphic indecomposable
projective and injective representations of a generalized path algebra with acyclic
quiver and then of an artinian hereditary algebra of Gabriel-type with admissible
ideal.

At last, in Section 4, as application, we discuss the relationship between
representation-type of a generalized path algebra and its natural quiver.

2. Dimension vectors of representations

2.1 Dimension vectors of modules over an artinian algebra

One attaches to each module of a basic algebra a vector with integral coordi-
nates, called its dimension vector. This allows one to use methods of linear
algebra when studying modules over a basic algebra. For example, an impor-
tant application is in the famous Kac theorem which means the relation be-
tween dimension vectors of indecomposable modules and the so-called positive
root system of a basic (hereditary) algebra. However, as we have known, the
natural quiver is a tool to characterize an artinian (non-basic) algebra. In this
paper, we try to give directly, but not through the theory of basic algebras,
the description of the relationship between indecomposable modules of artinian
(non-hereditary) algebras and the generalization of dimension vectors via nat-
ural quivers. Note that the dimension as a linear space and dimension vector
defined below of a module are not Morita-invariant. This explains the validity
of our discussion here.

Throughout this paper, we will always use k to be an algebraically closed
field.

An artinian algebra A over k with Jacobson radical r = r(A) is called split-
ting over radical if the natural homomorphism A → A/r is a splitting algebra
homomorphism. In this case, A/r can be embedded into A as a subalgebra.

For two ringsA andB, a finitely generatedA-B-bimoduleM , define rkA,B(M)
to be the minimal number of generators of M as an A-B-bimodule among all
genarating sets. Then we call rkA,B(M) the rank of M as A-B-bimodule.

The concept of generalized path algebra was introduced early in [8]. Here
we review the different but equivalent definition which is given in [18].

Let Q = (Q0, Q1) be a quiver. Given a collection of k-algebras A = {Ai | i ∈
Q0} with the identity ei ∈ Ai. Let A0 =

∏
i∈Q0

Ai be the direct product
k-algebra. Clearly, each ei is an orthogonal central idempotent of A0. For
i, j ∈ Q0, let Ω(i, j) be the subset of arrows in Q1 from i to j. Write

iMj
def
= AiΩ(i, j)Aj
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be the free Ai-Aj-bimodule with basis Ω(i, j). This is the free Ai⊗kA
op
j -module

over the set Ω(i, j). Thus,

(1) M =
⊕

(i,j)∈Q0×Q0

AiΩ(i, j)Aj

is an A0-A0-bimodule. The generalized path algebra[8, 15, 18] is defined to the
tensor algebra

T (A0,M) =
∞⊕
n=0

M⊗A0
n.

Here M⊗A0
n = M ⊗A0 M ⊗A0 . . . ⊗A0 M and M⊗A0

0 = A0. We denote by
k(Q,A) the generalized path algebra. k(Q,A) is called (semi-)normal if all Ai
are (semi-)simple k-algebras.

Suppose that A is a left artinian k-algebra and r = r(A) is its Jacobson
radical. Write A/r = A1 ⊕ . . . ⊕ As, where Ai are two-sided simple ideals of
A/r. Such a decomposition of A/r is also called a block decomposition of the
algebra A/r. Then, r/r2 is an A/r-bimodule. Let iMj = Ai · r/r2 ·Aj , which is
finitely generated as an Ai-Aj-bimodule for each pair (i, j).

Now we introduce the concept of natural quiver and corresponding general-
ized path algebra of A.

Definition 2.1 ([18]). Suppose that A is a left artinian k-algebra and r = r(A)
is its Jacobson radical. Write A/r = A1 ⊕ . . . ⊕ As, where Ai are two-sided
simple ideals of A/r.

(i) The natural quiver of A is defined by ∆A = (∆0,∆1) with the vertex
set ∆0 to be the index set {1, 2, . . . , s} of the isomorphism classes of simple
A-modules corresponding to the set of blocks of A/r; with the arrow set ∆1

consisting of ti,j arrows from i to j for i, j ∈ ∆0 where ti,j = rkAj ,Ai(jMi).
Obviously, there is no arrow from i to j if jMi = 0.

(ii) Denote A = {Ai | i ∈ Q0}. The generalized path algebra k(∆A,A) is
called the corresponding generalized path algebra of A.

By Definition 2.1, the natural quiver of artinian algebra A is always finite.

In [18], we have known the following characterization of an artinian algebra
A splitting over radical via its generalized path algebra.

Theorem 2.1 ([18]). An artinian k-algebra A is splitting over radical if and
only if there is an ideal I of the corresponding generalized path algebra k(∆A,A)
of A and a positive integer s such that A ∼= k(∆A,A)/I with Js ⊂ I ⊂ J where
J is the ideal of k(∆A,A) generated by all A-paths of length 1.

This means that an artinian k-algebra splitting over radical is of Gabriel-
type.
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Definition 2.2. Suppose that A is an artinian algebra splitting over radical r
with ideal I satisfying A ∼= k(∆A,A)/I due to Theorem 2.1. Write (∆A)0 =
{1, 2, . . . , s}. Let A/r = A1 ⊕ . . .⊕As where Ai are simple ideals of A/r. For a
right A-module M , the dimension vector of M is defined to be the vector

dimM =


dimkMA1
dimkA1

...
dimkMAs

dimkAs


in Qs for the field of rational numbers Q, where Ai acts on M as subalgebras of
A.

The notion of dimension vectors of modules of a basic algebra in [2] is in the
special case of this definition. Clearly, dimension vector is not Morita-invariant.

Lemma 2.1. Let A be an artinian k-algebra splitting over radical r such A/r =
A1 ⊕ . . . ⊕ As where Ai are simple ideals of A/r, and M be a right A-module.
Embedding Ai into A, consider AiA and AiAAi through the multiplication of A.
Then, for any i = 1, . . . , s,

(i) the k-linear map

(2) θ
(i)
M : HomA(AiA,M) →MAi

defined by the formula φ 7→ φ(1Ai) = φ(1Ai)1Ai for φ ∈ HomA(AiA,M), is an
isomorphism of right AiAAi-modules, and it is functorial in M ;

(ii) the isomorphism θ
(i)
AiA

: End(AiA)
∼=→ AiAAi of right AiAAi-modules

induces an isomorphism of k-algebras.

Proof. (i) For any āixb̄i ∈ AiAAi,

θ
(i)
M (φāixb̄i) = (φāixb̄i)(1Ai) = φ(āixb̄i) = φ(1Ai)āixb̄i = (θ

(i)
M (φ))āixb̄i.

Then, θ
(i)
M is a homomorphism of right AiAAi-modules. And, θ

(i)
M is functorial

in M from the following commutative diagram:

HomA(AiA,M) MAi

HomA(AiA,N) NAi

-
θ
(i)
M

?
HomA(AiA, f)

?

fAi

-
θ
(i)
N

where f : M → N is an A-homomorphism and fAi is the restriction of f on
MAi.

In order to prove θ
(i)
M is invertible, define a map ζ

(i)
M : MAi → HomA(AiA,M)

by the formula ζ
(i)
M (māi)(b̄ix) = māib̄ix for āi, b̄i ∈ Ai, x ∈ A. It is easy to check

that ζ
(i)
M (māi) : AiA→M is well-defined and is an A-homomorphism.
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For any māi ∈MAi, b̄ixc̄i ∈ AiAAi, d̄ib ∈ AiA,

ζ
(i)
M (māib̄ixc̄i)(d̄ib) = māib̄ixc̄id̄ib = ζ

(i)
M (māi)(b̄ixc̄id̄ib) = (ζ

(i)
M (māi)b̄ixc̄i)(d̄ib),

then ζ
(i)
M (māib̄ixc̄i) = ζ

(i)
M (māi)b̄ixc̄i, which means ζ

(i)
M is a homomorphism of

AiAAi-modules.
Moreover, for f ∈ HomA(AiA,M), d̄ib ∈ AiA,

(ζ
(i)
M θ

(i)
M )(f)(d̄ib)=(ζ

(i)
M (θ

(i)
M (f)))(d̄ib)=θ

(i)
M (f)d̄ib=θ

(i)
M (fd̄ib)=(fd̄ib)(1Ai)=f(d̄ib)

then ζ
(i)
M θ

(i)
M = idHomA(AiA,M). Similarly, θ

(i)
M ζ

(i)
M = idMAi . Hence, θ

(i)
M is an

isomorphism.
(ii) This follows from (i) for M = AiA.

Lemma 2.2. Let A ∼= k(∆A,A)/I as in Definition 2.2. For each right A-module
and i ∈ ∆0, the k-linear map (2) induces functorial isomorphisms of k-vector
spaces

HomA(P (i),M)
∼=→MAi

∼=→ DHomA(M, I(i)).

where D is the standard duality Homk(−, k), P (i)=AiA and I(i)=Homk(AAi, k).

Proof. The first isomorphism follows directly from Lemma 2.1 (i). The second
isomorphism is the composition

DHomA(M, I(i)) = DHomA(M,D(AAi)) ∼= DHomA(D(D(M)), D(AAi))
∼= DHomAop(AAi, D(M))∼=D(AiD(M)) (by Lemma 2.1)
∼= Homk(AiD(M), k) ∼= Homk(D(M), k)Ai = D(D(M))Ai
∼= MAi.

This lemma yields dimM =


dimkHomA(P (1),M)

dimkA1
...

dimkHomA(P (s),M)
dimkAs

 =


dimkHomA(M,I(1))

dimkA1
...

dimkHomA(M,I(s))
dimkAs

.

When A is an artinian k-algebra splitting over radical r, i.e. A = r+A/r, we
have 1A = r0+1A/r for some r0 ∈ r. Then, 1A/r = 1A1A/r = r01A/r+1A/r, thus,
r01A/r = 0. Similarly, 1A/rr0 = 0. Then, 1A = 12A = (r0 + 1A/r)

2 = r20 + 1A/r.
Moreover, we can get 1A = rt0 + 1A/r for any natural number t. But, r is
nilpotent, so there is t such that rt0 = 0. Hence,

1A = 1A/r.

For A/r = A1 + . . .+As, we have A ⊇ A1A+ . . .+AsA ⊇ (A1 + . . .+As)A ⊇
1A/rA = 1AA = A. Therefore,

A = A1A+ . . .+AsA

which means that for all i = 1, . . . , s, P (i) = AiA are projective right A-modules.
It follows that HomA(P (i),−) are exact functors for i = 1, . . . , s.
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Proposition 2.1. Let A ∼= k(∆A,A)/I as in Definition 2.2 and 0 → L →
M → N → 0 be a short exact sequence of right A-modules. Then, dimM =
dimL+ dimN.

Proof. Using of the exact functor HomA(P (i),−) to the short exact sequence
0 → L→M → N → 0, we get the exact sequence of k-vector spaces:

0 → HomA(P (i), L) → HomA(P (i),M) → HomA(P (i), N) → 0.

By Lemma 2.2, this short exact sequence becomes to the following:

0 → LAi →MAi → NAi → 0.

Hence, for each i ∈ (∆A)0,

dimkMAi = dimkLAi + dimkNAi.

The statement follows from the definition of dimension vectors.

Since Ai is isomorphic to the matrix algebra of order ni over a division k-
algebra Di, in the sequel of this section we always let ni denote this notation of
the order of the matrix algebra. We know that there are primitive idempotents
ei1, ei2, . . . , eini of Ai such that P (i) = AiA = ei1A ⊕ ei2A ⊕ . . . ⊕ einiA but
ei1A ∼= ei2A ∼= . . . ∼= einiA as right A-modules. So, we can write P (i) ∼= ⊕niei1A.
Here, for i = 1, . . . , s, Pi = ei1A are all indecomposable projective right A-
modules. Moreover, Si = Pi/Pir, i = 1, . . . , s, are all simple A-modules.

It is easy to see that dimkSi = nidimkDi and dimkAi = n2i dimkDi.

Since AiAj = 0 for i ̸= j, we have SiAj =

{
Si, if i = j

0, if i ̸= j.
Therefore, for

i = 1, . . . , s,

(3) dimSi =



0
...
0

nidimkDi

n2
i dimkDi

0
...
0


=



0
...
0
1
ni

0
...
0


which we denote as Xi. For an artinian k-algebra A, denote by K0(A) the
Grothendieck group of A, [M ] the corresponding element in K0(A) for an A-
module M .

Proposition 2.2. Let A ∼= k(∆A,A)/I as in Definition 2.2 and let S1, . . . , Ss
be a complete set of the isomorphism classes of simple right A-modules. Then,
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the Grothendieck group K0(A) of A is a free abelian group having as a basis the
set {[S1], . . . , [Ss]}. Define dim[M ] = dimM as the dimension vector of [M ] for
each A-module M and moreover dim(−[M ]) = −dimM , then dim is a group
homomorphism from K0(A) to Qs and the set of dimension vectors is, i.e. the
image of dim,

dimK0(A) = {u1X1 + . . .+ usXs : u1, . . . , us ∈ Z}.

Proof. Let M be a module in modA and let 0 = M0 ⊂ M1 ⊂ . . . ⊂ Mt = M
be a composition series for M . By the definition of K0(A), we have

[M ] = [Mt/Mt−1] + [Mt−1] = [Mt/Mt−1] + [Mt−1/Mt−2] + [Mt−2] = . . .

=
t∑

j=1

[Mj/Mj−1] =
s∑
i=1

ci(M)[Si]

where ci(M) is the number of composition factors Mj/Mj−1 of M that are
isomorphic to Si. Hence, {[S1], . . . , [Ss]} generates the free abelian groupK0(A).

Thus, by the definition of dim on K0(A) and Proposition 2.1, we know dim
is a group homomorphism.

Since K0(A) of A is a free abelian group with rank s having as a basis the
set {[S1], . . . , [Ss]}, it is also isomorphic to Zs as groups, but not through dim.

As a consequence, we show the relation between the dimension vector of a
module M and the number of simple composition factors of M that are isomor-
phic to each simple modules Si.

Corollary 2.1. Let A ∼= k(∆A,A)/I as in Definition 2.2 and let S1, . . . , Ss be
a complete set of the isomorphism classes of simple right A-modules. For any
module M in modA, let ci(M) be the number of composition factors Mj/Mj−1

of M that are isomorphic to Si and let l(M) be the composition length of M .
Then,

ci(M) = (dimkMAi)/(nidimkDi)

and thus l(M) =
∑s

i=1(dimkMAi)/(nidimkDi), where Di is the division k-
algebra such that Ai is isomorphic to the matrix algebra of order ni over Di for
A/r = A1 ⊕ . . .⊕As where Ai are simple ideals of A/r.

Proof. In the proof of Proposition 2.2, we have [M ] =
∑s

i=1 ci(M)[Si]. Then,
dimM = dim[M ] =

∑s
i=1 ci(M)dim[Si] =

∑s
i=1 ci(M)dimSi. By (3), we get

dimkMAi = ci(M)nidimkDi.

Thus, l(M) =
∑s

i=1 ci(M) =
∑s

i=1(dimkMAi)/(nidimkDi).
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Definition 2.3. Let A be an artinian k-algebra splitting over radical r with
A/r = A1 ⊕ . . .⊕As. The Cartan matrix of A is the s× s matrix

CA =

c11 . . . c1s
...

. . .
...

cs1 . . . css

 ,

where cji = dimkAiAAj for i, j = 1, . . . , s.

Let e1, . . . , es be the complete set of primitive orthogonal idempotents. Then
AiA ∼= nieiA as right A-modules where nieiA means the direct sum of ni copies
of eiA, that is, P (i) = niPi for the indecomposable projective A-modules Pi =
eiA (i = 1, . . . , s).

By Lemma 2.2,

AiAAj ∼= HomA(P (j), AiA) ∼= HomA(AjA,AiA)
∼= HomA(njejA,nieiA) ∼= njniHomA(ejA, eiA).

Thus, dimkHomA(Pj , Pi) = cji/(njni) for i = 1, . . . , s.
On the other hand, by Lemma 2.2,

I(i) = Homk(AAi, k) ∼= Homk(niAei, k) ∼= niHomk(Aei, k) = niIi,

where Ii = Aei (i = 1, . . . , s) are the indecomposable injective A-modules.
Moreover, by Lemma 2.2,

HomA(P (j), P (i)) ∼= DHomA(P (i), I(j)) ∼= DDHomA(I(j), I(i))
∼= HomA(I(j), I(i)) ∼= ninjHomA(Ij , Ii).

Thus,

(4) AiAAj ∼= HomA(I(j), I(i))

and AiAAj ∼= ninjHomA(Ij , Ii). Hence, dimkHomA(Ij , Ii) = cji/(njni).
Therefore, through modulo ninj for each cij , the Cartan matrix of A records

the numbers of linearly independent homomorphisms between the indecompos-
able projective A-modules and the numbers of linearly independent homomor-
phisms between the indecomposable injective A-modules.

Below we discuss some elementary facts on the Cartan matrix.

Proposition 2.3. Let CA be the Cartan matrix of an artinian algebra A ∼=
k(∆A,A)/I as in Definition 2.3. Then,

(i) The i-th column of CA is

 n21dimkD1

. . .

n2sdimkDs

dimP (i) and

 n21dimkD1

. . .

n2sdimkDs

dimP (i) = niCAdimSi;
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(ii) The i-th row of CA is (dimI(i))t

 n21dimkD1

. . .

n2sdimkDs

 and

 n21dimkD1

. . .

n2sdimkDs

dimI(i) = niC
t
AdimSi.

Proof. (ii) (dimI(i))t = (dimkI(i)A1

dimkA1
, . . . , dimkI(i)As

dimkAs
). By Lemma 2.2, we have

I(i)Aj ∼= DHomA(I(i), I(j)). By (4), HomA(I(i), I(j)) ∼= AjAAi. But,

dimkDHomA(I(i), I(j)) = dimkHomA(I(i), I(j)).

Thus,
dimkI(i)Aj

dimkAj
=

dimkAjAAi

dimkAj
for j = 1, . . . , s, which means the first result.

From this and (3), the second result follows.

(i) Its proof is similar, since it is easy to be obtained from the definition of
dimP (i) and (3).

Proposition 2.4. Let A be an artinian algebra as in Definition 2.2 with A ∼=
k(∆A,A)/I. Suppose the global dimension of A is finite. Then, the Cartan
matrix CA is invertible and there exists B ∈ Ms(Z) such that

C−1
A =


1

n3
1dimkD1

. . .
1

n3
sdimkDs

B

 n1
. . .

ns


where Ms(Z) denotes the s× s full matrix ring over the integer ring Z.

Proof. Here s =| ∆0 |. Since A is of finite global dimension, for any i ∈
{1, . . . , s} and the corresponding simple A-module Si there is a projective reso-
lution

0 → Qmi → . . .→ Q1 → Q0 → Si → 0

in modA for a positive integer mi.

From Proposition 2.1, it follows that dimSi =
∑mi

l=1(−1)ldimQl. Because
P1, . . . , Ps are the complete set of non-isomorphic indecomposable projective A-
modules, each Ql is a direct sum of finitely many copies of P1, . . . , Ps. Thus,
for each i, dimSi is a linear combination of the vectors dimP1, . . . ,dimPs with
integral coefficients. Thus, there exists B ∈ Ms(Z) such that n−1

1
. . .

n−1
s

 =
(
dimS1 . . . dimSs

)
=

(
dimP1 . . . dimPs

)
B.
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But, P (i) = niPi, so dimP (i) = nidimPi for i = 1, . . . , s. Hence,n
−1
1

. . .

n−1
s

 =
(
n−1
1 dimP (1) . . . n−1

s dimP (s)
)
B

=
(
CAdimS1 . . . CAdimSs

)
1

n2
1dimkD1

. . .
1

n2
sdimkDs

B

= CA


1

n3
1dimkD1

. . .
1

n3
sdimkDs

B.

Thus,

C−1
A =


1

n3
1dimkD1

. . .
1

n3
sdimkDs

B

n1 . . .

ns

 .

Note that, when ni = 1 and dimkDi = 1 for all i, A is a basic algebra and
C−1
A = B is an integer matrix.

We use the Cartan matrix CA to define a nonsymmetric Z-bilinear form on
the Zs.

Definition 2.4. Let A be an artinian algebra with radical r of finite global
dimension such that A/r = A1 ⊕ . . .⊕As where each Ai is simple ideals of A/r
which is isomorphic to the matrix algebra of order ni over a division k-algebra
Di. Let CA be the Cartan matrix of A.

(i) The Euler characteristic of A is the Z-bilinear form ⟨−,−⟩A : Zs×Zs → Z
defined by

⟨x,y⟩A = xt

 n−1
1

. . .

n−1
s

 (C−1
A )t

 n31dimkD1

. . .

n3sdimkDs

y

for x,y ∈ Zs;
(ii) The Euler quadratic form of A is the quadratic form qA : Zs → Z defined

by qA(x) = ⟨x,x⟩A for x ∈ Zs.

This definition makes sense due to Proposition 2.4.
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2.2 Dimension vectors of representations of a pre-modulation

Given a valued quiver (G, D, Ω) and a vertex i ∈ G, define an operation, denoted
by δi, on the orientation Ω to get the orientation δiΩ as follows: we reverse all
arrows along edges containing i and leave all others unchanged in Ω.

With respect to the orientation Ω, call admissible sequence of sinks an or-
dering

(k1, k2, . . . , kn)

of all the vertices of G such that k1 is a sink with respect to Ω, k2 a sink with
respect to δk1Ω, and so on, that is, kt is a sink with respect to δkt−1 . . . δk1Ω
for 2 ≤ t ≤ n. Similarly, admissible sequence of sources can be defined. We
shall call an orientation admitting an admissible sequence of sinks admissible.
As known in [10], the orientation Ω is admissible if and only if the valued quiver
(G, D, Ω) has no oriented cycle. In general, there are many different admissible
sequences with respect to a given orientation.

Suppose that M = (Ai, iMj) is a k-pre-modulation of a valued quiver
(G,D,Ω) whose orientation Ω is admissible. Let k(Q,A) = T (M,A0) be the
constructed corresponding normal generalized path algebra in [16], where M =⊕

i,jAiΩ(i, j)Aj for AiΩ(i, j)Aj ∼= iMj and A0 = ⊕i∈Q0Ai. Then, Q0 = G =
{1, 2, . . . , s} and the arrow set Q1 =

⋃
i,j Ω(i, j) is decided by the number tij of

generators in the Ai-Aj-basis of iMj as free Ai-Aj-bimodule.
Denote A = k(Q,A). Q is a finite acyclic quiver since the orientation Ω is

admissible. Then, A is artinian. Due to [15], k(Q,A) is just the corresponding
generalized path algebra k(∆A,A), that is, the ideal I is zero in Theorem 2.1.

Let V = (Vi, jφi) be a representation of M. Then, V = ⊕i∈Q0Vi is a right
module over A = k(Q,A) with right Ai-module Vi such that V Ai = Vi but
ViAj = 0 for i, j ∈ Q0, i ̸= j. However, A/r ∼= A0 = ⊕i∈Q0Ai for the radical of
A. So, let Q0 = G = {1, 2, . . . , s}, the dimension vector of V

dimV =


dimkV A1
dimkA1

...
dimkV As

dimkAs

 =


dimkV1
dimkA1

...
dimkVs
dimkAs


in Qs. We call dimV the dimension vector of the representation V = (Vi, jφi)

of M, denoted as dimV =


dimkV1
dimkA1

...
dimkVs
dimkAs

.

For a k-pre-modulation M = (Ai, iMj) of a valued quiver (G,D,Ω), we
define the bilinear forms B(x,y) and (x,y) by

B(x,y) =
∑
i∈G

xiyidimkAi −
∑
i→j

dijxiyjdimkAj ,

(x,y) = B(x,y) +B(y,x),
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where x = (xi)i∈G and y = (yi)i∈G in Qs. We call B(−,−) the Euler form
and (−,−) the symmetric Euler form respectively. Moreover, we can define the
quadratic form qM : Qs → Qs by qM(x) = B(x, x) for x ∈ Qs, which is called
the quadratic form of the pre-modulation M.

In the trivial case that Ai = k for all i ∈ G, we can get a quiver Q with
Q0 = G and Q1 consisting of tij arrows from i to j by tij = dij/εi = dji/εj .
Then, the quadratic form qM is just that of the quiver Q defined in [2]. In this
trivial case, it was shown in Lemma VII4.1 of [2] that this quadratic form qM
and the Euler quadratic form qA coincide for A = kQ. The proof of this result in
[2] was dependent on the homological interpretation of the Euler characteristic.

However, for a general A = k(Q,A), it is difficult for us to try to get the
similar relation between the quadratic form qM and the Euler quadratic form qA
in the reason that the inverse matrix of the Cartan matrix CA is so complicated
for computing that we cannot give the homological interpretation of the Euler
characteristic ⟨−,−⟩A. Hence, on the other hand, we will give the homological
interpretation of the Euler form B(−,−) as follows.

Theorem 2.2. Assume that M = (Ai, iMj) is a pre-modulation over a field
k of a valued quiver (G,D,Ω). For two representations X = (Xi, iφj) and
Y = (Yi, iψj) in rep(M),

B(dimX ,dimY) = dimkHom(X ,Y)− dimkExt
1(X ,Y).

Proof. Firstly, define a map:

∆X , Y :
⊕
i∈G

HomAi(Xi, Yi) −→
⊕
j→i

HomAi(Xj ⊗Aj jMi, Yi)

with ∆X , Y((αi)i∈G) = ( iψj(αj ⊗ 1)− αi iφj)j→i, for any

(αi)i∈G ∈
⊕
i∈G

HomAi(Xi, Yi).

Due to the definition of morphisms between representations, it is easy to see
that Ker∆X ,Y = Hom(X ,Y).

Secondly, we can show that Coker∆X ,Y = Ext1(X ,Y) as follows.

Let Σ = (iσj) belong to
⊕

j→iHomAi(Xj ⊗ jMi, Yi). Then we can get

an extension E(Σ) = (Yj ⊕ Xj ,

(
iψj iσj
0 iφj

)
) of representations X and Y.

Conversely, any extension of X and Y can be denoted as this form. So, there
exists the one-one correspondence between all elements of

⊕
j→iHomAi(Xj ⊗

jMi, Yi) and all of extensions of representations X and Y.

Let Σ′ = (iσ
′
j) be another element in

⊕
j→iHomAi(Xj ⊗ jMi, Yi) with its

corresponding extension E(Σ′) = (Yj ⊕Xj ,

(
iψj iσ

′
j

0 iφj

)
).
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Then E(Σ) and E(Σ′) are equivalent if and only if there exists an invertible
morphism τ of rep(M) such that the diagram

0 −→ Y i−→ E(Σ)
p−→ X −→ 0

↓ id ↓ τ ↓ id
0 −→ Y i′−→ E(Σ′)

p′−→ X −→ 0

commutes where i and i′ are both embedding maps, p and p′ are both projectors.

It can be easily checked that τ must be the form of τ = {
(

1 τi
0 1

)
: i ∈ G}

where τi is an Ai-homomorphism from Xi to Yi, i ∈ G. And, obviously, for any
such τi, the given τ always makes this diagram to be commutative. Hence, E(Σ)

and E(Σ′) are equivalent if and only if there exists a morphism τ = {
(

1 τi
0 1

)
:

i ∈ G} of rep(M) for an Ai-homomorphism τi from Xi to Yi, i ∈ G.
Since the τ is admitted to be a morphism in rep(M), the following square

commutes:

(Yj ⊕Xj)⊗ jMi Yi ⊕Xi

(Yj ⊕Xj)⊗ jMi Yi ⊕Xi

?

 1 τj
0 1

⊗1

-

 iψj iσj
0 iφj



?

1 τi
0 1


-iψj iσ

′
j

0 iφj


Then (

iψj iσ
′
j

0 iφj

)
(

(
1 τj
0 1

)
⊗ 1) =

(
1 τi
0 1

)(
iψj iσj
0 iφj

)
.

It follows that iσj + τi iφj = iψj(τj ⊗ 1) + iσ
′
j , hence

iσj − iσ
′
j = iψj(τj ⊗ 1)− τi iφj .

It means that Σ− Σ′ ∈ Im(∆X ,Y) due to the definition of ∆X ,Y .
Hence, we get that E(Σ) and E(Σ′) are equivalent if and only if Σ − Σ′ ∈

Im(∆X ,Y), which implies that Cok(∆X ,Y) ∼= Ext1(X ,Y).
Next, we need the following lemma:

Lemma 2.3. Suppose A and B are simple algebras over a field k and X, Y
are both right A-modules, Z is a right B-module and M is a free B-A-bimodule.
Then,

dimkHomA(X,Y ) = (dimkX dimkY )/dimkA,(5)

dimkHomA(Z ⊗B M,Y ) = (rankAMdimkZdimkY )/dimkB.(6)
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Proof. Since A is a simple algebra, we have A ∼= Mn(D) for some positive
integer n and D a divisible k-algebra.

It is easy to see that for any simple A-modules X and Y , we have X ∼=
Y , then HomA(X,Y ) ∼= D and dimkHomA(X,Y ) = dimkD; simultaneously,
dimkX = ndimkD, dimkY = ndimkD and dimkA = n2dimkD. Therefore,

dimkHomA(X,Y ) = (dimkX dimkY )/dimkA = dimkD.

In general, let A-modules X and Y be any A-modules which are not nec-
essarily simple. Since A is simple, X and Y are semisimple A-modules. Let
X = X1 ⊕ · · · ⊕Xs and Y = Y1 ⊕ · · · ⊕ Yt.

Then, dimkHomA(X,Y ) = dimkHomA(X1 ⊕ · · · ⊕ Xs, Y1 ⊕ · · · ⊕ Yt) =
dimk ⊕i,j HomA(Xi, Yj) = ⊕i,jdimkHomA(Xi, Yj) = (st)dimkD.

On the other hand,

(dimkX dimkY )/dimkA = (dimk(X1 ⊕ · · · ⊕Xs) dimk(Y1 ⊕ · · · ⊕ Yt))/dimkA

= (⊕s
i=1dimkXi)(⊕t

i=1dimkYi)/dimkA

= ((sn)dimkD(tn)dimkD)/(n2dimkD) = (st)dimkD.

Therefore, we get dimkHomA(X,Y ) = (dimkX dimkY )/dimkA.
According to the adjoint-isomorphism theorem,

HomA(Z ⊗B M,Y ) ∼= HomB(Z,HomA(M,Y )).

Hence, due to (5), we have

dimkHomA(Z ⊗B M,Y ) = dimkHomB(Z,HomA(M,Y ))

= dimkZdimkHomA(M,Y )/dimkB

= dimkZ(dimkMdimkY/dimkA)/dimkB

= (rankAMdimkZdimkY )/dimkB.

Now, return to the proof of the proposition:
By the definition of B, we have

B(dimX ,dimY) =
∑
i∈G

dimkAi
dimkXi

dimkAi

dimkYi
dimkAi

−
∑
j→i

djidimkAi
dimkXj

dimkAj

dimkYi
dimkAi

=
∑
i∈G

(dimkXidimkYi)/dimkAi

−
∑
j→i

(rankAi(iMj)dimkXjdimkYi)/dimkAj

=
∑
i∈G

dimkHomAi(Xi, Yi)−
∑
j→i

dimkHomAi(Xj ⊗Aj jMi, Yi)
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= dimk

⊕
i∈G

HomAi(Xi, Yi)−dimk

⊕
j→i

HomAi(Xj ⊗Aj jMi, Yi)

= dimkKer∆X ,Y−dimkCoker∆X ,Y

= dimkHom(X ,Y)− dimkExt
1(X ,Y).

According to the discussion above before this theorem, we leave as a question
as follows.

Problem 2.1. Characterize the relationship between the Euler characteristic
and the Euler form and that between their corresponding quadratic forms.

3. Berstein-Gelfand-Ponomarev theory in category of
pre-modulations

3.1 Reflection functors of a pre-modulation

A k-pre-modulation M = (Ai, iMj) of a valued graph (G,D) is defined in [16]
as a set of artinian k-algebras {Ai}i∈G , together with a set {iMj}(i,j)∈G×G of
finitely generated free unital Ai-Aj-bimodules iMj such that rank(iMj)Aj = dij
and rankAi(iMj) = dji.

Assume that M = (Ai, iMj) is a k-pre-modulation over a connected val-
ued quiver (G,D,Ω) with the admissible sequence of sinks {1, 2, . . . , n}, that is,
(G,D,Ω) has no oriented cycles. Let dimkAi = fi which is finite by the defi-
nition for any i ∈ G, and let rank(iMj)Aj = dij and rankAi(iMj) = dji. Then
djifi = dimkiMj = dijfj .

Denote by Al the representation of rep(M) corresponding to the vertex l ∈ G

defined by Al = (Xi, iφj) where Xi =

{
Al, if i = l

0, if i ̸= l
and iφj = 0 for all i→ j.

All Al (l ∈ G) are called the elementary representations of rep(M).
Since Al (l ∈ G) is a simple algebra, let dimkAl = s2l for a positive integer

sl. As Al-module, Al can be decomposed into a direct sum of sl simple Al-
modules which are isomorphic each other, that is, every Al has a unique simple
Al-submodule under isomorphism. Equivalently, every Al can be decomposed
into a direct sum of some simple representations which are isomorphic each
other, that is, we have:

Fact 3.1. For any vertex l ∈ G, Al in the category rep(M) has a unique simple
direct summand under isomorphism.

Lemma 3.1. A1 is projective and An is injective in rep(M).

Proof. Since A1 is non-zero only in the first coordinate, suppose there is the
diagram:
where βi = 0 for any i ̸= 1 and the row sequence is exact. Thus, it follows that:
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A1

?

β = (βi)

X -π Y - 0

A1

?

β1

X1
-

π1
Y1 - 0

But, since A1 is a simple algebra, A1 is projective as A1-module. So, there
is γ1 such that the following diagram commutes:

A1

?

β1
�

�
�

�	

γ1

X1
-

π1
Y1 - 0

Hence, the first diagram can be completed by γ = (γi) with γi = 0 for i ̸= 1,
that is, the following diagram commutes:

Moreover, it is necessary to explain that γ is a morphism in rep(M). Indeed,
since 1 is a sink, there exists no arrow 1 → i for any i. If there is an arrow j → 1
for some j, the following diagram is always commutative:

0⊗Aj jM1 A1

Xj ⊗Aj jM1 X1

-0

?
0⊗id

?

γ1

-jψ1

From this diagram and Aj = 0, γj = 0 for any j ̸= 1, it follows that γ is a
morphism in rep(M).

Therefore A1 is projective in rep(M).

Dually, it can be proved similarly that An is injective in rep(M) since An is
injective as An-module.

Corollary 3.1. In the category rep(M), the unique simple direct summand S1
under isomorphism of A1 is projective and that of An is injective.
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A1

?

β = (βi)
�

�
�

�	

γ

X -π Y - 0

Corollary 3.2. For i, j ∈ G, dimkExt
1(Ai, Aj) = dijfj, dimkExt

1(Ai, Aj) =
djifi.

Proof. If i→ j, by the definition, we have

B(dimAi, dimAj) = −dijfj .

Since Hom(Ai, Aj) = 0, by the Theorem 2.2 we deduce that

dimkExt
1(Ai, Aj) = −B(dimAi, dimAj) = dijfj ,

and hence the first equality follows. On the other hand, if there is no arrow
i→ j, the first equality are trivial as 0 = 0.

The second equality is an immediate consequence of the fact that dijfj =
djifi.

Given any vertex k ∈ G of a valued quiver (G, D, Ω), we define a reflection
δk : QG → QG satisfying that if x = (xi)i∈G , then δkx = y = (yi)i∈G is given by:

yi = xi, ∀i ̸= k,

yk = −xk +
∑
i∈G

dikxi.

Corollary 3.3. (i) Let X be a representation with no direct summand isomor-
phic to the unique simple direct summand of A1, then

(δ1(dimX ))1 =
dimkExt

1(X , A1)

dimkA1
.

(ii) Let X be a representation with no direct summand isomorphic to An,
then

(δn(dimX ))n =
dimkExt

1(An, X )

dimkAn
.

Proof. (i) If X has no direct summand isomorphic to the unique simple direct
summand of A1, then Hom(X , A1) = 0. Hence

B(dimX , dim A1) = −dimkExt
1(X , A1).



322 WANWAN JIA and FANG LI

On the other hand,

B(dimX , dim A1) = f1
dimkX1

f1
−
∑
i→1

di1f1
dimkXi

fi

= −f1(−
dimkX1

f1
+
∑
i∈G

di1
dimkXi

fi
)

= −f1(δ1(dimX ))1,

where the second equality uses the fact that the vertex 1 is a sink.
(ii) can be proved dually.

Now, to any sink (respectively, source) k of the graph G, we shall associate a
functor ∆+

k (respectively, ∆−
k ) of rep(M, Ω) into rep(M, δkΩ), which are called

the reflection functors of the pre-modulation M = (Ai, iMj).
In accordance with our convention, 1 is a sink, and n a source of Ω, thus we

shall content ourselves with defining ∆+
1 and ∆−

n .
Let X = (Xi, iφj) be an object of rep(M, Ω), we recall that iφj : Xj ⊗Aj

jMi → Xi is an Ai-map. We can attach to it an Aj-map iφj : Xj → Xi⊗Ai iMj

in the following way.
By the adjoint isomorphism theorem, we have

HomAi(Xj ⊗Aj jMi, Xi) ∼= HomAj (Xj , HomAi(jMi, Xi)).

Lemma 3.2. Let A be a semisimple algebra and B another finite-dimensional
algebra over a field k, X be right an A-module and M a left-right free B-A-
bimodule with basis of a finite number of generators. Then, as right B-modules,

HomA(M,X) ∼= X ⊗A HomA(M,A).

Proof. Define π : X ⊗A HomA(M,A) → HomA(M,X) satisfying

π(
∑
i

xi ⊗ fi)(m) = xifi(m),

for all xi ∈ X, fi ∈ HomA(M,A) and m ∈M . Then, π is a right B-module ho-
momorphism. In fact, π((

∑
i xi⊗fi)b)(m) = π(

∑
i xi⊗fib)(m) =

∑
i xi(fib)(m) =∑

i xifi(bm) = π(
∑

i xi ⊗ fi)(bm) = (π(
∑

i xi ⊗ fi)b)(m),
it follows that π((

∑
i xi ⊗ fi)b) = π(

∑
i xi ⊗ fi)b.

Let {ε1, . . . , εs} be the basis of M as right A-module. Define fi be from

M to A satisfying fi(εj) =

{
1, if i ̸= j

0, otherwise
. Then fi can be expended into

a right A-homomorphism and {f1, . . . , fs} is the basis of HomA(M,A) as left
free A-module. For any g ∈ HomA(M,X), let χ =

∑s
i=1 g(εi) ⊗ fi, then χ ∈

X ⊗A HomA(M,A) satisfying π(χ) = g. Therefore, π is surjective.
Write MA

∼= ⊕λAA, thus, we get the following right A-isomorphisms:
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HomA(M,X) ∼= HomA(⊕λAA, X) ∼= ⊕λHomA(AA, X) ∼= ⊕λXA
∼= ⊕λXA⊗

A ∼= XA ⊗ (⊕λAA) ∼= XA ⊗Hom(⊕λAA, A) ∼= XA ⊗Hom(M,A).
Then, dimk(HomA(M,X)) = dimk(X ⊗A HomA(M,A)).

Hence from the fact that the surjective right B-module homomorphism π is
also a surjective k-linear map of spaces, we know that π is an isomorphism.

Dealing with finite-dimensional modules, by Lemma 3.2, we get that

HomAi(jMi, Xi) ∼= Xi ⊗Ai HomAi(jMi, Ai) ∼= Xi ⊗Ai iMj ,

giving a canonical isomorphism

(7) HomAi(Xj ⊗Aj jMi, Xi) ∼= HomAj (Xj , Xi ⊗Ai iMj).

Thus to iφj there corresponds iφj : Xj → Xi ⊗Ai iMj which will be referred to
as the adjoint of iφj . Now we can define ∆+

1 X = Y = (Yi, iψj) as follows:
If j ̸= 1, take Yj = Xj , and iψj = iφj .
If j = 1,for every i ∈ G such ∃ i→ 1, we have a mapping 1φi : Xi⊗Ai iM1 →

X1. Let φ1 =
⊕

j→1 1φj :
⊕

j→1Xj ⊗Aj jM1 → X1. Let Y1 = Kerφ1, κ1
the embedding map from Kerφ1 to

⊕
j→1Xj ⊗Aj jM1 and iκ1 = πiκ1 : Y1 →

Xi⊗Ai iM1 = Yi⊗Ai iM1 (where πi is the canonical projection if there exists an
arrow i→ 1):

Xi ⊗Ai iM1

0 Y1

⊕
j→1

(Xj ⊗Aj jM1) X1

Q
Q
Q

Q
Q
Qs

1φi

-
�
�

�
�

�
��3

iκ1

-κ1

6
πi

-φ1

According to (7), we put iψ1 = iκ1 : Y1 ⊗A1 1Mi → Xi = Yi. Thus we have
defined ∆+

1 X = Y in rep(M, δ1Ω).
If α : X → X ′ is a morphism of rep(M, Ω), β = ∆+

1 α is defined as follows:
if j ̸= 1, take βj = αj and β1 : Y1 → Y ′

1 is the restriction to Y1 of the mapping⊕
i→1

(αi ⊗ 1) :
⊕
i→1

Xi ⊗Ai iM1 →
⊕
i→1

X ′
i ⊗Ai iM1.

If ∃ arrow i→ 1 in Ω, then

0 Y1

⊕
j→1

Xj ⊗Aj jM1 X1

0 Y ′
1

⊕
j→1

X ′
j ⊗Aj jM1 X ′

1

-

?

β1

-κ1

?

⊕
j→1(αj⊗1)

-φ1

?

α1

- -
κ′1 -

φ′
1
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Thus,

Y1 Yi ⊗Ai iM1

Y ′
1 Y ′

i ⊗Ai iM1

-iκ1

?
β1

?
βi⊗1

-iκ
′
1

It follows that

Y1 ⊗A1 1Mi Yi

Y ′
1 ⊗A1 1Mi Y ′

i

-iψ1

?
β1⊗1

?
βi

-iψ
′
1

And, if i ̸= 1, βi = αi which are morphisms in rep(M, Ω).
Hence, all βi are morphisms in rep(M, δ1Ω). Thus, β is a morphism of

rep(M, δ1Ω).
In summary, ∆+

1 is a functor from rep(M, Ω) to rep(M, δ1Ω).
Dually, ∆−

nX = Y = (Yi, iψj) is the object of rep(M, δnΩ) defined as fol-
lows:
(i) If i ̸= n, take Yi = Xi, and iψj = iφj ; (ii) If i = n, let Yn be the cokernel
in the diagram:

Xn
-

(jφ̄n)

���
���

��*
jφ̄n 6

πj ιj
?

Xj ⊗Aj jMn

HHH
HHH

HHj

nηi

⊕n→j(Xj ⊗Aj jMn) ηn
-Yn

- 0

and nψj = nηj .
For a morphism α : X → X ′, we define β = ∆−

nα by letting βi = αi for
i ̸= n, while βn : Yn → Y ′

n is the mapping induced on the cokernels by⊕
n→j

(αj ⊗ 1) :
⊕
n→j

Xj ⊗Aj jMn →
⊕
n→j

X ′
j ⊗Aj jMn.

In summary, ∆−
n is a functor from rep(M, Ω) to rep(M, δnΩ).

As a direct consequence of the definition, ∆+
1 preserves monomorphisms,

while ∆−
n preserves epimorphisms, and both preserve finite direct sums.

3.2 Construction of indecomposable projectives/injective
representations

In this part, we use reflection functors to construct indecomposable projec-
tive/injective representations of a hereditary algebra.
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Lemma 3.3. Let (G, D, Ω) be a connected valued quiver with admissible ori-
entation Ω and M be a k-pre-modulation. Then for every representation X of
M:

(i) X ∼= ∆−
1 ∆

+
1 X ⊕ P, where P = (Pi, iπj) with Pi = 0 if i ̸= 1 and P1

is a (semisimple) A1-module. Thus if X is indecomposable, either (a) X ∼= P
(equivalently, ∆+

1 X = 0) in which case P is the unique simple direct summand of
A1 under isomorphism or (b) X ∼= ∆−

1 ∆
+
1 X (equivalently, ∆+

1 X ̸= 0) in which
case End(∆+

1 X ) ∼=End(X ) and thus ∆+
1 X is indecomposable and dim(∆+

1 X ) =
δ1(dimX );

(ii) X ∼= ∆+
n∆

−
nX ⊕ I, where I = (Ii, iτj) with Ii = 0, if i ̸= n and In

is a (semisimple) An-module. Thus, if X is indecomposable, either (a) X ∼= I
(equivalently, ∆−

nX = 0) in which case I is the unique simple direct summand of
An under isomorphism or (b) X ∼= ∆+

n∆
−
nX (equivalently, ∆−

nX ̸= 0) in which
case End(∆−

nX ) ∼=End(X ) and thus ∆−
nX is indecomposable and dim(∆−

nX ) =
δn(dimX ).

Proof. Firstly, We give the prove of (i).
Since X ∈ rep(M, Ω) and 1 is a sink in Ω, Y = ∆+

1 X ∈ rep(M, δ1Ω) and 1
is a source in δ1Ω. Then, by the definition of ∆−

1 , we have

(∆−
1 ∆

+
1 X )1 = cokY1 = cok(kerφ1) = Imφ1

µ1
↪→ X1.

Thus, we obtain the following diagram in the first coordinate from the construc-
tion of ∆−

1 ∆
+
1 X :

0 (∆+
1 X )1 ⊕j→1(Xj ⊗Aj jM1) X1

(∆−
1 ∆

+
1 X )1

0

- -κ1

?

-φ1

?

���
����*

µ1

Due to the above mention, (∆−
1 ∆

+
1 X )1 can be seen as an A1-submodule of

X1. But, since A1 is a simple algebra, all its modules are projective and then
(∆−

1 ∆
+
1 X )1 is a direct summand ofX1 as an A1-module. LetX1

∼= (∆−
1 ∆

+
1 X )1⊕

P1 where P1 is a semisimple A1-module. Thus, by the definition of ∆−
1 ∆

+
1 X ,

X ∼= ∆−
1 ∆

+
1 X ⊕ P, where P = (Pi, iπj) with Pi = 0 if i ̸= 1.

Hence, if X is indecomposable, we have either (a) X ∼= P, equivalently,
∆−

1 ∆
+
1 X = 0 or (b) X ∼= ∆−

1 ∆
+
1 X , equivalently, P = 0.

In the case (a), if ∆+
1 X = 0, clearly ∆−

1 ∆
+
1 X = 0; conversely, if ∆−

1 ∆
+
1 X = 0,

then in the above diagram all Xj = 0 (j ̸= 1) which means (∆+
1 X )1 = 0 and it

follows that ∆+
1 X = 0. Therefore, X ∼= P is equivalent to ∆+

1 X = 0.
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Moreover, in the case (b), X ∼= ∆−
1 ∆

+
1 X is equivalent to ∆+

1 X ̸= 0. Then,
∆+

1 ∆
−
1 ∆

+
1 X ∼= ∆+

1 X and φ1 is surjective.
From X1 to get (∆+

1 X )1, we have the following:

0 (∆+
1 X )1

⊕
j→1

Xj ⊗Aj jM1 X1

0 (∆+
1 X )1

⊕
j→1

Xj ⊗Aj jM1 X1

-

?

f̃1

-κ1

?

⊕
j→1(fj⊗1)

-φ1

?

f1

- -κ1 -φ1

From (∆+
1 X )1 to get (∆−

1 ∆
+
1 X )1, we have the following:

0 (∆+
1 X )1

⊕
j→1

Xj ⊗Aj jM1 (∆−
1 ∆

+
1 X )1

0 (∆+
1 X )1

⊕
j→1

Xj ⊗Aj jM1 (∆−
1 ∆

+
1 X )1

-

?

f̃1

-κ1

?

⊕
j→1(fj⊗1)

-φ1

?

˜̃
f1

- -κ1 -φ1

where (∆−
1 ∆

+
1 X )1 = Imφ1 is embedded into X1 by µ1. But, φ1 is surjective

in the case (b), (∆−
1 ∆

+
1 X )1 = Imφ1 is isomorphic to X1. So, f1 and

˜̃
f1 are

one-one correspondence via ∆−
1 ∆

+
1 . Therefore, in the series of maps:

End(X )
∆+

1−→ End(∆+
1 X )

∆−
1−→ End(∆−

1 ∆
+
1 X )

∆+
1−→ End(∆+

1 ∆
−
1 ∆

+
1 X ),

we get End(X )
∆−

1 ∆+
1∼= End(∆−

1 ∆
+
1 X ) and similarly,

End(∆+
1 X )

∆+
1 ∆−

1∼= End(∆+
1 ∆

−
1 ∆

+
1 X ).

From them, it follows that End(∆+
1 X )

∆−
1∼= End(∆−

1 ∆
+
1 X ), and then End(X )

∆+
1∼=

End(∆+
1 X ). Naturally, the above isomorphisms still hold under the meaning of

the endomorphism algebras of these representations.
Now the indecomposability of X implies that End(X ) is local, hence so is

End(∆+
1 X ) through the isomorphism and then ∆+

1 X is indecomposable.
Lastly, we verify that dim(∆+

1 X ) = δ1(dimX ) in the case (b). By the

definitions of ∆+
1 X and δ1, it is enough to show that

dimk(∆
+
1 X )1

dimkA1
= (δ1(dimX ))1.
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On the one hand,

(δ1(dimX ))1 = −dimkX1

dimkA1
+
∑
i→1

di1
dimkXi

dimkAi
.

On the other hand, in this case, φ1 is surjective, then we have the short
exact sequence

0 −→ (∆+
1 X )1 −→

⊕
i→1

(Xi ⊗Ai iM1) −→ X1 −→ 0

which gives dimk(∆
+
1 X )1 =

∑
i→1 dimk(Xi ⊗Ai iM1)− dimkX1. Thus,

dimk(∆
+
1 X )1

dimkA1
= −dimkX1

dimkA1
+
∑
i→1

dimk(Xi ⊗Ai iM1)

dimkA1
.

Hence, it is enough for us to prove that for any arrow i→ 1, dimk(Xi⊗iM1)
dimkA1

=

di1
dimkXi
dimkAi

.

In fact, dimk(iM1) = di1dimkA1, so di1
dimkXi
dimkAi

= dimk(iM1)
dimkA1

dimkXi
dimkAi

. Since Ai
is a simple algebra over k and Xi is its right module, there is dimkAi = s2i for
some positive integer si, Xi =W1⊕. . .⊕Wt for some right Ai-simple submodules
W1, . . . , Wt and dimkWi = si for all i. And, iM1 is a left free Ai-module with
d1i the rank of a basis which we write d1i = rankAi(iM1). Then, iM1 = ⊕ d1iAi
and

Xi⊗Ai iM1 = (⊕t
j=1Wj)⊗Ai(⊕ d1iAi) = ⊕ d1i(⊕t

j=1Wj⊗AiAi) = ⊕ d1i(⊕t
j=1Wj).

Thus, dimk(Xi ⊗Ai iM1) = d1itsi.
On the other hand, (dimk(iM1)dimkXi)/dimkAi = rankAi(iM1)dimkXi =

d1itsi.

Hence, dimk(Xi⊗iM1)
dimkA1

= di1
dimkXi
dimkAi

, then
dimk(∆

+
1 X )1

dimkA1
= (δ1(dimX ))1. It

means that dim(∆+
1 X ) = δ1(dimX ).

The proof of (ii) can be given dually by considering the following diagram:

Xn ⊕n→i(Xi ⊗Ai iM1) (∆−
nX )n 0

(∆+
n∆

−
nX )n = ker(iφ̄n)

0

-
(iφ̄n) -ηn -

6

6

The direct sum X ∼= ∆+
n∆

−
nX⊕I is from the fact An is a simple algebra and then

Xn is projective as An-module. The further discussion is similar in dual.
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Theorem 3.2. (i) The full subcategory rep(1)(M, Ω) of all representations in
rep(M, Ω) with no direct summand isomorphic to the unique projective simple
direct summand (under isomorphism) of A1 is equivalent to the full subcategory
rep(1)(M, Ω) of all representations in rep(M, δ1Ω) with no direct summand
isomorphic to the unique injective simple direct summand (under isomorphism)
of A1.

(ii) The full subcategory rep(n)(M, Ω) of all representations in rep(M, Ω)
with no direct summand isomorphic to the unique injective simple direct sum-
mand (under isomorphism) of An is equivalent to the full subcategory
rep(n)(M, Ω) of all representations in rep(M, δnΩ) with no direct summand
isomorphic to the unique projective simple direct summand (under isomorphism)
of An.

Proof. By Lemma 3.1, A1 is projective and An is injective in rep(M, Ω). Then
by the definitions of δ1 and δn, in rep(M, δ1Ω) and rep(M, δnΩ) respectively,
A1 is injective and An is projective. Then, so are their direct summands respec-
tively.

Any X ∈ rep(M, Ω) can be written as X = P(1)+. . .+P(s)+X (1)+. . .+X (t)

where all P(i)are indecomposable and ∆+
1 P(i) = 0, all X (j)are indecomposable

and ∆+
1 X (j) ̸= 0. Then by Lemma 3.3, P(1), . . . ,P(s) are all the (possible)

direct summands of X isomorphic to the unique simple direct summand of A1,
and ∆−

1 ∆
+
1 X = ∆−

1 ∆
+
1 X (1) + . . . +∆−

1 ∆
+
1 X (t) = X (1) + . . . + X (t). Therefore,

X = ∆−
1 ∆

+
1 X if and only if X has no direct summands isomorphic to the

unique simple direct summand of A1. It means X ∈ rep(1)(M, Ω) if and only
if X = ∆−

1 ∆
+
1 X . Moreover, through the functors ∆−

1 , ∆
+
1 in rep(1)(M, Ω), for

any morphism α : X → X ′, we get also α = ∆−
1 ∆

+
1 α.

Similarly, Y = ∆−
1 ∆

+
1 Y for any object Y in rep(1)(M, Ω) and β = ∆+

1 ∆
−
1 β

for a morphism β in rep(1)(M, Ω). Thus, X ∈ rep(1)(M, Ω) means ∆+
1 X =

∆+
1 ∆

−
1 (∆

+
1 X ). So, ∆+

1 X is in rep(1)(M, Ω). Similarly, for any morphism

α in rep(1)(M, Ω), ∆+
1 α is in rep(1)(M, Ω). That is, ∆+

1 is a functor from

rep(1)(M, Ω) to rep(1)(M, Ω).

Similarly, ∆−
1 is a functor from rep(1)(M, Ω) to rep(1)(M, Ω).

Trivially, ∆−
1 and ∆+

1 are mutual invertible. Hence, ∆+
1 and ∆−

1 implement
the desired equivalence.

The part (ii) can be discussed similarly.

The following corollary can be got easily from the relations X = ∆−
1 ∆

+
1 X

and α = ∆−
1 ∆

+
1 α:

Corollary 3.4. (i) For two objects X , X ′ in rep(1)(M,Ω),

Ext1(X ,X ′) ∼= Ext1(∆+
1 X ,∆

+
1 X

′);

(ii) For two objects Y, Y ′ in Rep(1)(M,Ω),

Ext1(Y,Y ′) ∼= Ext1(∆−
1 Y,∆

−
1 Y

′).
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Now, define the functors:

∆+ = ∆+
n∆

+
n−1 . . .∆

+
2 ∆

+
1 : rep(M,Ω) → rep(M,Ω)

and

∆− = ∆−
1 ∆

−
2 . . .∆

−
n−1∆

−
n : rep(M,Ω) → rep(M,Ω).

These endofunctors are called the Coxter functors. For each u ∈ G, define
the representations P u = ∆−

1 ∆
−
2 . . .∆

−
u−1Au with Au ∈ rep(M, δuδu+1 . . . δnΩ),

Q
u
= ∆+

n∆
+
n−1 . . .∆

+
u+1Au with Au ∈ rep(M, δuδu−1 . . . δ1Ω).

Since Au is a simple algebra over k, let dimAu = s2u for a positive in-

teger su, then Au = W
(1)
u + . . . + W

(su)
u with the mutual-isomorphic simple

Au-modules W
(1)
u , . . . ,W

(su)
u , and Au = W

(1)
u + . . . +W

(su)
u where all mutual-

isomorphic simple representations W
(i)
u are defined by W

(i)
u = (Xj , jφl) for

Xj =

{
W

(i)
u , if j = u

0, if j ̸= u
and jφl = 0 for all j → l.

It is clear to understand that the set {W (1)
u }1≤u≤n consists of the set of

all mutual non-isomorphic simple representations in rep(M,Ω). Then, P u =

P(1)
u ⊕ . . . ⊕ P(su)

u and Q
u
= Q(1)

u ⊕ . . . ⊕ Q(su)
u with mutual-isomorphic inde-

composable representations P(i)
u = ∆−

1 ∆
−
2 . . .∆

−
u−1W

(i)
u for i = 1, . . . , su and

Q(i)
u = ∆+

n∆
+
n−1 . . .∆

+
u+1W

(i)
u for i = 1, . . . , su by Lemma 3.3.

For any distinct u, v, P(i)
u and P(j)

v are non-isomorphic each other for all i, j,

since W
(i)
u and W

(j)
v are so. Now, we can obtain:

Theorem 3.3. The set {P(1)
u }1≤u≤n (respectively, {Q(1)

u }1≤u≤n) consists of the
set of all non-isomorphic indecomposable projective (respectively, injective) rep-
resentations in rep(M,Ω) for a connected valued quiver (G,D,Ω) with the ad-
missible orientation Ω and the admissible sequence of sinks {1, 2, . . . , n}.

Proof. According to the one-one correspondence between simple representa-
tions and indecomposable projective representations via modulo the latter radi-

cal in rep(M,Ω) and the above fact all P(i)
u are indecomposable representations,

it suffices to prove all P(1)
u are projective, for this implies these indecomposable

representations are, indeed, all non-isomorphic indecomposable projective ones.

We use induction u. First, for u = 1, P(1)
1 is just the unique simple di-

rect summand under isomorphism of A1 which is projective by Corollary 3.1.

Next, assume that for all l < u, P(1)
l is projective for its corresponding admis-

sible orientation of the graph. Then, in particular, P̃(1)
u = ∆−

2 . . .∆
−
u−1W

(1)
u is

projective. We have P(1)
u = ∆−

1 P̃
(1)
u .

Firstly, since P̃(1)
u is indecomposable, we have

(8) ∆−
1 ∆

+
1 P

(1)
u = ∆−

1 (∆
+
1 ∆

−
1 P̃

(1)
u ) = ∆−

1 P̃
(1)
u = P(1)

u
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P(1)
u

?

β

X -α Y - 0

by Lemma 3.3, which means P(1)
u is indecomposable. In order to prove the

projectivity of P(1)
u , consider the diagram

whose row is exact. We show that it may be assumed that such a diagram is in
the category rep(1)(M,Ω) in Theorem 3.2.

Indeed, by Lemma 3.3, we have X ∼= ∆−
1 ∆

+
1 X ⊕P, where P = (Pi, iπj) with

Pi = 0 if i ̸= 1 and P1 is a (semisimple) A1-module. We claim that

α(∆−
1 ∆

+
1 X ) = ∆−

1 ∆
+
1 Y.

In fact, clearly ∆−
1 ∆

+
1 X ∈ rep(1)(M,Ω), then α(∆−

1 ∆
+
1 X ) ⊆ ∆−

1 ∆
+
1 Y. If this

inclusion is proper, the fact that α is an epimorphism implies that some copy of
the unique simple direct summand S1 of A1 lies in ∆−

1 ∆
+
1 Y. It is a contradiction.

Also, β(P(1)
u ) ⊆ ∆−

1 ∆
+
1 Y. Otherwise, there would exist a non-zero map

P(1)
u → S1. This map must be an epimorphism since S1 is simple and thus S1

is a direct summand of P(1)
u since S1 is projective by Corollary 3.1. But, due to

(8), P(1)
u is indecomposable and non-isomorphic to S1. This is a contradiction.

Thus, without loss of generality, assume that the above diagram lies in the

category rep(1)(M,Ω) in Theorem 3.2. Then, applying ∆+
1 , we have ∆+

1 P
(1)
u =

∆+
1 ∆

−
1 P̃

(1)
u

∼= P̃(1)
u and get the following diagram:

P̃(1)
u

?

∆+
1 β

�
�

�
�	

γ+

∆+
1 X -∆+

1 α∆+
1 Y - 0

where γ+ exists by the projectivity of P̃(1)
u which makes this diagram to be

commutative.

By Theorem 3.2, ∆−
1 and ∆+

1 are mutual invertible between rep(1)(M,Ω) and

rep(1)(M,Ω). So, ∆−
1 ∆

+
1 X ∼= X , ∆−

1 ∆
+
1 Y ∼= Y, ∆−

1 ∆
+
1 α

∼= α, ∆−
1 ∆

+
1 β

∼= β.

But, P(1)
u = ∆−

1 P̃
(1)
u . Thus, we get the following commutative diagram:

which means the projectivity of P(1)
u .

The statement on {Q(i)
u }1≤i≤su; 1≤u≤n can be shown in dual, according to

the one-one correspondence between simple representations and indecomposable
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P(1)
u

?

β
�

�
�

�	

∆−
1 γ

+

X -α Y - 0

injective representations via the frontal, as the socles, are embedded into the
latter in rep(M,Ω).

According to Theorem 3.3 and the mutual constructions between a normal
generalized path algebra and the corresponding pre-modulation in Section 2, we
can give all indecomposable projective or injective representations of a normal
generalized path algebra as follows:

Corollary 3.5. Let k(Q,A) be a normal A-path algebra over a field k with con-
nected acyclic quiver Q and the corresponding k-pre-modulation M = (Ai, iMj).

Denote by {1, 2, . . . , n} the admissible sequence of sinks in Q and {P(1)
u }1≤u≤n

(respectively, {Q(1)
u }1≤u≤n) the set of all mutual non-isomorphic indecompos-

able projective (respectively, injective) representations in rep(M,Ω) as in The-

orem 3.3. Write P(1)
u = (X

(u)
j , jφi)i,j∈Q0 and Q(1)

u = (Y
(u)
j , jψi)i,j∈Q0, let

Pu =
∑

j∈Q0
X

(u)
j and Qu =

∑
j∈Q0

Y
(u)
j for u = 1, . . . , n. Then, in the cate-

gory modk(Q,A), under isomorphism, {Pu}1≤u≤n (respectively, {Qu}1≤u≤n) is
the set of all indecomposable projective (respectively, injective) modules.

We have known in [18] that if an artinian algebra A of Gabriel-type with
admissible ideal is hereditary, then A is isomorphic to its related generalized path
algebra k(∆A,A). Therefore, we can construct all indecomposable projective
and injective modules over this kind of artinian hereditary algebras using of the
method given in Corollary 3.5.

Remark 3.4. In [11], V.Dlab and C.M.Ringel generalize the Bernstein-Gelfand-
Ponomarev theory in two directions. On one hand, they use valued graphs
instesd of graphs, and show the relationship between the dimension vectors of
indecomposable representations of elementary artinian algebras over skew-fields
and the positive roots of the quadratic forms which is a bijection. On the
other hand, they discuss the extended Dynkin diagrams and describe all there
indecomposable representations. Note when the skew-fields are fields then the
elementary artinian algebras are basic.

In our work, we use the natural quiver of a (non-basic) hereditary artinian
algebra and the reformed modulations via generalized path algebras isomorphic
to the hereditary algebras to construct all non-isomorphic indecomposable pro-
jective and injective representations of the generalized path algebras with acyclic
quivers.
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4. Representation-type of a generalized path algebra and its natural
quiver

As one knows, according to Gabriel theory, representation type of a classical
path algebra over an algebraically closed field or the modulation of a valued
quiver is decided by the type of the quiver. Naturally, it is motivated to consider
representation type of a generalized path algebra, equivalently, of a generalized
modulation through the type of the corresponding natural quiver. First let us
review the discussion given in [18].

We say a quiver to be of almost Dynkin-affine type provide that when one
looks upon all arrows with same direction between an ordered pair of vertices
as an arrow then the quiver becomes a quiver of either Dynkin or affine type;
moreover, if it is of neither Dynkin nor affine type, we call this proper almost
Dynkin-affine type. Respectively, we can give the definitions of (proper) almost
Dynkin type and (proper) almost affine type.

By the classical Gabriel theory, if A is a hereditary k-spitting artinian alge-
bra, A is of finite type if and only if ΓA is of Dynkin type, A is of tame type
if and only if ΓA is of affine type. About the natural quiver ∆A, it firstly was
given that:

Proposition 4.1 ([18]). For a hereditary k-splitting artinian algebra A, let mij

be the number of arrows from a vertex i to another vertex j in the Ext-quiver ΓA
of A. Then, the natural quiver ∆A = ΓA if mij ≤ 1 for any i, j ∈ ΓA. Moreover,
if A is of either finite type or tame type, then its natural quiver ∆A is of either
Dynkin type or affine type respectively.

By Drozd’s tame-and-wild Theorem, a finite-dimensional algebra A over an
algebraically closed field k, which is not of finite type, is of either tame type or
wild type. Then, the following holds:

Corollary 4.1 ([18]). A finite-dimensional hereditary algebra A over an alge-
braically closed field k is of wild type if its natural quiver ∆A is of neither Dynkin
type nor affine type.

The converse result is not true, that is, when A is of wild type, ∆A is also
possible to be of either Dynkin type or affine type.

Motivated by this discussion, it is asked how to characterize the kind of
finite-dimensional (more generally, artinian) hereditary algebras of wild type
whose natural quivers are of either Dynkin type or affine type?

As a part of this question, a class of wild algebras whose natural quivers are
of either Dynkin type or affine type was constructed as in the following:

Proposition 4.2 ([18]). For a normal generalized path algebra k(Q,A) over an
algebraically closed field k with Q a finite acyclic quiver, let A = {Ai : i ∈ Q0}
and ni =

√
dimkAi for any i ∈ Q0.

(i) If there is an arrow from i to j in Q with ninj > 1, then k(Q,A) is of
wild type;
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(ii) If the quiver Q is of either Dynkin or affine type and there is an arrow
from i to j in Q with ninj > 1, then the Ext-quiver of k(Q,A) is of proper
almost Dynkin-affine type.

Theorem 4.1. For a normal generalized path algebra k(Q,A) over an alge-
braically closed field k with Q a finite connected acyclic quiver, let A = {Ai :
i ∈ Q0} and ni =

√
dimkAi for any i ∈ Q0. If Q is of Dynkin type (resp. affine

type), then
(i) k(Q,A) is of finite type (resp. tame type) if and only if Ai ∼= k for each

vertex i ∈ Q0, or equivalently say, k(Q,A) ∼= kQ;
(ii) in the otherwise case, k(Q,A) is of wild type.

Proof. (i) “if”: It is trivial according to the classical Gabriel theory.
“only if”: As we have known in [17, 18], Q is just the natural quiver of

k(Q,A). Let Γ denote the Ext-quiver of k(Q,A). Then, the relation is given in
[21, 18] that gij = ninjtij for the numbers gij and tij arrows from i to j in Γ
and Q respectively.

Suppose there is one p ∈ Q0 such that Ap ̸∼= k, that is, np > 1. Since Q is
connected, p is either a head or a tail of some arrow in Q. No loss of generality,
let p be the head of an arrow α : p → q in Q. Then, gpq = npnqtpq > 1 due to
np > 1. Thus, Γ is neither of Dynkin type nor of affine type. By Gabriel theory,
k(Q,A) is neither of finite type nor of tame type.

(ii): It follows from the proof of “only if” above and Drozd’s tame-and-wild
Theorem.

In the case of basic hereditary algebras, Gabriel’s theorem tell us the heredi-
tary algebra KQ is representation-finite if and only if the underlying graph of Q
is one of the Dynkin diagrams. Theorem 4.1 discusses the representation type
of normal generalized path algebra k(Q,A), where Q is Dynkin quiver. It shows
that a normal generalized path algebra k(Q,A) to be representation-finite type
in the case the quiver is of Dynkin type if and only if all algebras at the vertices
are isomorphic to fields. As analogue for affine type, we also discuss the condi-
tion for a generalized path algebra to be of tame type in the case the quiver is
of affine type.

It is easy to see that in the case of Theorem 4.1 (ii), the Ext-quiver of k(Q,A)
is certainly of proper almost Dynkin-affine type.
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