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Abstract. Let D be a bounded strongly pseudoconvex domain in Cn, δ(z) = d(z, ∂D)
the Euclidean distance from the point z to the boundary ∂D and H(D) the set of all
holomorphic functions on D. For given β ∈ R, the weighted Hilbert Bergman space on
D, denoted by A2(D,β), consists of all f ∈ H(D) such that

∥f∥2,β =
[ ∫

D

|f(z)|2δ(z)βdv(z)
] 1

2

< +∞,

where dv is the Lebesgue measure on D. The aim of the paper is to completely char-
acterize the Schatten class of weighted composition operators on A2(D,β) when δ(z)
satisfies certain integrable condition.

Keywords: weighted composition operator, strongly pseudoconvex domain, weighted
Hilbert Bergman space, Schatten class.

1. Introduction

Let Ω be a domain in Cn and H(Ω) the set of all holomorphic functions on Ω.
Let φ be a holomorphic self-map of Ω and u ∈ H(Ω). The well-known weighted
composition operator on some subspaces of H(Ω) is defined by

Wφ,uf(z) = u(z)f(φ(z)), z ∈ Ω.

When u(z) ≡ 1, it is reduced to the composition operator, usually denoted
by Cφ. While φ(z) = z, it is reduced to the multiplication operator, usually
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denoted by Mu. Weighted composition operators have been widely studied (see,
for example, [4, 5, 8, 9, 10, 15, 16, 17] and the related references therein).

Let D ⊆ Cn be a bounded strongly pseudoconvex domain, δ(z) = d(z, ∂D)
the Euclidean distance from the point z to the boundary ∂D and dv the Lebesgue
measure on D. The authors in [2] introduced the following weighted Bergman
space by considering the distance function δ(z) as a weight on D. For given
β ∈ R and p ∈ [1,+∞), the weighted Bergman space Ap(D,β) consists of all
f ∈ H(D) such that

∥f∥p,β =
[ ∫

D
|f(z)|pδ(z)βdv(z)

] 1
p
< +∞.

With the norm ∥ · ∥p,β, Ap(D,β) becomes a Banach space. If β = 0, then
Ap(D,β) is abbreviated to Ap(D), usually called the Bergman space. In this
paper, we consider the case of p = 2. For this case, it is a Hilbert space with
the inner product

⟨f, g⟩β =

∫
D
f(z)g(z)δ(z)βdv(z).

For a given separable Hilbert space H, the Schatten p-class of operators on
H, Sp(H), consists of those compact operators T on H with its sequence of
singular numbers λn belonging to ℓp, the p-summable sequence space. When
p = 1, it is usually called the trace class, and p = 2 is usually called the
Hilbert-Schmidt class (see [22]). The theory of Schatten p-class of operators
on the holomorphic function spaces has been widely studied (see, for example,
[18, 7, 19, 14, 23, 12, 13, 6, 20] and the references therein). In particular,
the authors in [20] characterized the Schatten p-class of weighted composition
operators on A2(D).

Motivated by previous mentioned studies (in especial [20]), it is natural
to consider how to characterize the Schatten p-class of weighted composition
operators on A2(D,β). After a long time of careful consideration, we find that
if the parameter β satisfies the condition∫

D
K(z, z)δ(z)βdv(z) = +∞,

then it is a difficult problem. However, if β satisfies the condition∫
D
K(z, z)δ(z)βdv(z) < +∞,

we can completely characterize the Schatten p-class of weighted composition
operators on A2(D,β) by borrowing the methods obtained in [2] and [21]. We
hope that this paper can attract people’s more attention to such problems.

Let K(z, w) : D ×D → C be the Bergman kernel of D. For every w ∈ D,
the normalized Bergman kernel of D, denoted by kw(z), is defined by

kw(z) =
K(z, w)√
K(w,w)

=
K(z, w)

∥K(·, w)∥2,β
.
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For µ a finite complex Borel measure on D, the Berezin transform µ̃(z) is defined
by

µ̃(z) =

∫
D
|kz(w)|2dµ(w).

Let β(z, w) be the Kobayashi distance function on D. For z ∈ D and r ∈ (0, 1),
let

B(z, r) = {w ∈ D : β(z, w) < r}
denote the Kobayashi ball with center z and radius 1

2 ln
1+r
1−r . We define vβ(B(z, r))

by

vβ(B(z, r)) =

∫
B(z,r)

δ(w)βdv(w).

The function µ̂r(z) on D is defined by

µ̂r(z) =
µ(B(z, r))

vβ(B(z, r))
.

For φ the holomorphic self-map of D and u ∈ H(D), we define dv2,β(z) =
|u(z)|2δ(z)βdv(z) and µ2,β = v2,β ◦ φ−1, respectively. In this paper, we will use
the Berezin transform µ̃2,β and the function µ̂r

2,β to characterize the Schatten

p-class of weighted composition operators on A2(D,β).
In this paper, the positive constants are denoted by C which may differ from

one occurrence to the next.

2. Preliminary results

In this section, we present some results from [1] on the Kobayashi geometry of
bounded strongly pseudoconvex domain.

Lemma 2.1. Let D ⊆ Cn be a bounded strongly pseudoconvex domain. Then,
for z0 ∈ D and r ∈ (0, 1), there exists a positive constant C independent of
z ∈ B (z0, r) such that

1− r

C
δ (z0) ≤ δ(z) ≤ C

1− r
δ (z0) .

Lemma 2.2. Let D ⊆ Cn be a bounded strongly pseudoconvex domain. Then,
for β ∈ R and r ∈ (0, 1), there exist two positive constants C1 and C2 such that

C1δ(·)n+1+β ≤ vβ(B(·, r)) ≤ C2δ(·)n+1+β.

By using Lemma 2.1 and Lemma 2.2, we have the following result.

Corollary 2.1. For r, s, R ∈ (0, 1), there exists a positive constant C indepen-
dent of z1, z2 with β(z1, z2) ≤ R such that

C−1 ≤
vβ(B(z1, r))

vβ(B(z2, s))
≤ C.
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We also need the following result on the Bergman kernel obtained in [1] and
[11].

Lemma 2.3. Let D ⊆ Cn be a bounded strongly pseudoconvex domain. Then,
for r ∈ (0, 1), there exist positive constants C and δ such that, if z0 ∈ D satisfies
δ(z0) < δ, then

C

δ(z0)n+1
≤ |K(z, z0)| ≤

1

Cδ(z0)n+1

and

C

δ(z0)n+1
≤ |kz0(z)|2 ≤

1

Cδ(z0)n+1
,

for all z ∈ B(z0, r).

From Lemmas 2.2 and 2.3, the following result follows.

Corollary 2.2. Let D ⊆ Cn be a bounded strongly pseudoconvex domain. Then,
for r ∈ (0, 1), there exist positive constants C and δ such that, if z0 ∈ D satisfies
δ(z0) < δ, then

C

vβ(B(z0, r))
≤ |K(z, z0)| ≤

1

Cvβ(B(z0, r))

and

C

vβ(B(z0, r))
≤ |kz0(z)|2 ≤

1

Cvβ(B(z0, r))
,

for all z ∈ B(z0, r).

We also need the following cover of D (see [1]).

Lemma 2.4. Let D ⊆ Cn be a bounded strongly pseudoconvex domain. Then,
for r ∈ (0, 1), there exist an m ∈ N and a sequence {zi} ⊆ D such that D =⋃∞

i=1B(zi, r) and any point in D belongs to at most m balls of the form B(zi, R)
where R = 1

2(1 + r).

3. Main results and proofs

First, we have the following result.

Lemma 3.1. If T ∈ S1(A
2(D,β)), then

tr(T ) =

∫
D

〈
TK(·, z),K(·, z)

〉
β
δ(z)βdv(z).
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Proof. Let {ej(z)} be an orthonormal basis for A2(D,β). We have

K(z, w) =
∞∑
j=1

ej(z)ej(w).

Then, from this it follows that

tr(T ) =
∞∑
j=1

⟨Tej , ej⟩β =
∞∑
j=1

∫
D
Tej(z)ej(z)δ(z)

βdv(z)

=
∞∑
j=1

∫
D
⟨Tej ,K(·, z)⟩β ej(z)δ(z)

βdv(z)

=
∞∑
j=1

∫
D
⟨ej , T ∗K(·, z)⟩β ej(z)δ(z)

βdv(z)

=

∫
D
δ(z)β

∫
D

( ∞∑
j=1

ej(w)ej(z)
)
T ∗K(·, z)(w)δ(w)βdv(w)dv(z)

=

∫
D
δ(z)β

∫
D
K(w, z)T ∗K(·, z)(w)δ(w)βdv(w)dv(z)

=

∫
D
⟨K(·, z), T ∗K(·, z)⟩β δ(z)

βdv(z) =

∫
D
⟨TK(·, z),K(·, z)⟩β δ(z)

βdv(z).

From this, the desired result follows. This completes the proof.

In the following result, we give an estimate for the finite positive Borel
measure on D.

Lemma 3.2. Let D ⊆ Cn be a bounded strongly pseudoconvex domain, µ a
finite positive Borel measure on D and r ∈ (0, 1). Then, there exists a positive
constant C depending on r such that

µ(B(a, r)) ≤ C

vβ(B(a, r))

∫
B(a,r)

µ(B(z, r))δ(z)βdv(z).

Proof. For any a ∈ D, we have∫
B(a,r)

µ(B(z, r))δ(z)βdv(z) =

∫
B(a,r)

δ(z)βdv(z)

∫
B(z,r)

dµ(w)

=

∫
B(a,r)

δ(z)βdv(z)

∫
D
χB(z,r)(w)dµ(w) =

∫
D
dµ(w)

∫
B(a,r)

χB(z,r)(w)δ(z)
βdv(z).

Noting that χB(w,r)(z) = χB(z,r)(w), for all w and z in D, we have∫
B(a,r)

µ(B(z, r))δ(z)βdv(z) =

∫
D
dµ(w)

∫
B(a,r)

χB(w,r)(z)δ(z)
βdv(z)

=

∫
D
vβ(B(a, r) ∩B(w, r))dµ(w) ≥

∫
B(a,r)

vβ(B(a, r) ∩B(w, r))dµ(w),
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where χB(w,r)(z) is the characteristic function of the set B(w, r). Let α(t) (0 ≤
t < 1) be the geodesic (in the Bergman metric) from a to w and m(a,w) = α(12).
By using Lemma 3 in [21], we obtain∫

B(a,r)
µ(B(z, r))δ(z)βdv(z) ≥

∫
B(a,r)

vβ

(
B(m(a,w),

r

2
)
)
dµ(w).

From Corollary 2.1, it follows that there exists a positive constant C depending
only on r such that

Cvβ

(
B
(
m(a,w),

r

2

))
≥ vβ(B(a, r)),

for all w ∈ B(a, r). Therefore, we have

C

∫
B(a,r)

µ(B(z, r))δ(z)βdv(z) ≥
∫
B(a,r)

vβ(B(a, r))dµ(w),

that is,

µ(B(a, r)) ≤ C

vβ(B(a, r))

∫
B(a,r)

µ(B(z, r))δ(z)βdv(z).

This completes the proof.

Corollary 3.1. Let D ⊆ Cn be a bounded strongly pseudoconvex domain, µ a
finite positive Borel measure on D and r ∈ (0, 1). Then, there exists a positive
constant C depending on r such that

[µ2,β(B(zj , r))]
p
2 ≤ C

vβ(B(zj , r))

∫
B(zj ,r)

[µ2,β(B(zj , r))]
p
2 δ(z)βdv(z).

Corollary 3.2. Let D ⊆ Cn be a bounded strongly pseudoconvex domain, µ a
finite positive Borel measure on D and r ∈ (0, 1). Then, for every r,R ∈ (0, 1),
there exists a positive constant C depending on r and R such that[

µ2,β(B(zj , r))

vβ(B(zj , r))

] p
2

≤ C

vβ(B(zj , r))

∫
B(zj ,r)

[
µ2,β(B(z, r))

vβ(B(z, r))

] p
2

δ(z)βdv(z),

for all zj, z with β(zj , z) ≤ R.
As an application of Corollary 3.2, we can introduce the following complex

measure. For p ∈ [2,+∞), the complex measure µ2,β,ζ is defined by

µ2,β,ζ(z) =

∞∑
j=1

[
µ2,β(B(zj , r))

vβ(B(zj , r))

] p
2
ζ−1

χB(zj ,r)(z)µ2,β(z),

where ζ is a complex number with 0 ≤ Reζ ≤ 1 and χB(zj ,r)(z) is the charac-
teristic function of the set B(zj , r).

Lemma 3.3. Let ζ = 2
p . Then, it follows that

Tµ2,β
≤ Tµ

2,β, 2p

≤ mTµ2,β
.
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Proof. Obviously, it follows that

µ2,β, 2
p
(z) =

∞∑
j=1

χB(zj ,r)(z)µ2,β(z) ≥ µ2,β(z).

Then, we have

Tµ
2,β, 2p

f(z)=

∫
D
f(w)K(w, z)dµ2,β, 2

p
(w)≥

∫
D
f(w)K(w, z)dµ2,β(w)=Tµ2,β

f(z),

which shows Tµ
2,β, 2p

≥ Tµ2,β
.

Conversely, it follows from Lemma 2.4 that µ2,β, 2
p
(z) ≤ mµ2,β(z). Similarly,

we can get Tµ
2,β, 2p

≤ mTµ2,β
. This completes the proof.

Lemma 3.4. Let T1, T2 be two compact operators on Hilbert space H and
0 ≤ T1 ≤ T2. Then

∥T1∥Sp(H) ≤ ∥T2∥Sp(H).

Proof. By Lemma 14 in [21], we have sj(T1) ≤ sj(T2) for j ∈ N. Since

∥T∥Sp =

 ∞∑
j=1

(sj(T ))
p

 1
p

,

we have

∥T1∥Sp(H) =

 ∞∑
j=1

(sj(T1))
p

 1
p

≤

 ∞∑
j=1

(sj(T2))
p

 1
p

= ∥T2∥Sp(H).

This completes the proof.

Now, we prove the main result of this paper. We assume that β satisfies the
condition ∫

D
K(z, z)δ(z)βdv(z) < +∞.(1)

Remark 3.1. We consider the condition (1) for the special case D = {z ∈ C :
|z| < 1}, the open unit disk. For this case, we have (see, for example, [22])

K(z, w) =
1

(1− zw)2
.

For the case, it is easy to see that δ(z) = 1− |z|2. Then, we have∫
D
K(z, z)δ(z)βdv(z) =

∫
D
(1− |z|2)β−2dv(z) = 2π

∫ 1

0
(1− r2)β−2rdr.(2)
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From a direct calculation, it follows that (2) is finite if and only if β ∈ (1,+∞).
This shows that Theorem 3.1 excludes the result of the Bergman space (that is,
corresponding to β = 0). Maybe it is caused by the different definitions of the
weights. For example, in [21] the author defined the weighted Bergman space
on bounded symmetric domains by the weight K(z, z)λ.

Theorem 3.1. Let D ⊆ Cn be a bounded strongly pseudoconvex domain, p ∈
[2,+∞), φ a holomorphic self-map of D and u ∈ H(D). Then, the following
statements are equivalent:

(i) Wφ,u ∈ Sp(A
2(D,β));

(ii) µ̃2,β ∈ L
p
2 (D,K(z, z)δ(z)βdv(z));

(iii) µ̂r
2,β ∈ L

p
2 (D,K(z, z)δ(z)βdv(z));

(iv)
∑∞

j=1

(
µ̂r
2,β(zj)

) p
2
< +∞, where {zj} is the sequence in Lemma 2.4.

Proof. For f, g ∈ A2(D,β), we have

⟨(Wφ,u)
∗(Wφ,u)f, g⟩β= ⟨(Wφ,u)f, (Wφ,u)g⟩β =

∫
D
|u(z)|2f(φ(z))g(φ(z))δ(z)βdv(z)

=

∫
D
f(φ(z))g(φ(z))dv2,β(z) =

∫
D
f(w)g(w)dµ2,β(w).

Considering the Toeplitz operator on A2(D,β)

Tµ2,β
f(z) =

∫
D
f(w)K(w, z)dµ2,β(w),

we have 〈
Tµ2,β

f, g
〉
β
=

∫
D

∫
D
f(w)K(w, z)dµ2,β(w)g(z)δ(z)

βdv(z)

=

∫
D
f(w)

∫
D
K(z, w)g(z)δ(z)βdv(z)dµ2,β(w)

=

∫
D
f(w)g(w)dµ2,β(w),

which shows that

Tµ2,β
= (Wφ,u)

∗(Wφ,u).

This implies that Tµ2,β
is a positive operator on A2(D,β).
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(i) ⇒ (ii). From Theorem 1.4.6 in [22], we know that Wφ,u ∈ Sp(A
2(D,β))

if and only if Tµ2,β
∈ S p

2
(A2(D,β)). Since Tµ2,β

is positive, by using Lemma 3.1,
we have

∥Tµ2,β
∥

p
2
S p

2

= tr(T
p
2
µ2,β ) =

∫
D

〈
T

p
2
µ2,βK(·, z),K(·, z)

〉
β
δ(z)βdv(z)

=

∫
D
K(z, z)

〈
T

p
2
µ2,βk(·, z), k(·, z)

〉
β
δ(z)βdv(z).

Since p
2 ≥ 1 and each kz is a unit vector in A2(D,β), by Proposition 6.4 in [3]

we get

∥Tµ2,β
∥

p
2

S p
2
(A2(D,)

¯
)
≥

∫
D
K(z, z)

[ 〈
Tµ2,β

k(·, z), k(·, z)
〉
β

] p
2
δ(z)βdv(z)

=

∫
D
K(z, z)(µ̃2,β(z))

p
2 δ(z)βdv(z),

which shows that µ̃2,β ∈ L
p
2 (D,K(z, z)δ(z)βdv(z)).

(ii) ⇒ (iii). Form Corollary 2.2, there exists a positive constant C such that

Cµ̃2,β(z0) = C

∫
D
|kz0(z)|2dµ2,β(z) ≥ C

∫
B(z0,r)

|kz0(z)|2dµ2,β(z)

≥ 1

vβ(B(z0, r))

∫
B(z0,r)

dµ2,β(z) = µ̂r
2,β(z0).

Thus∫
D
(µ̂r

2,β(z))
p
2K(z, z)δ(z)βdv(z) ≤ C

∫
D
(µ̃2,β(z))

p
2K(z, z)δ(z)βdv(z) < +∞.

(iii) ⇒ (iv). Let {zj} be the sequence in Lemma 2.4. By Corollary 3.2, we
have[

µ2,β(B(zj , r))

vβ(B(zj , r))

] p
2

≤ C

vβ(B(zj , r))

∫
B(zj ,r)

[
µ2,β(B(z, r))

vβ(B(z, r))

] p
2

δ(z)βdv(z).

From Corollary 2.2, letting z0 = z, there exists a positive constant C such that[
µ2,β(B(zj , r))

vβ(B(zj , r))

] p
2

≤ C

∫
B(zj ,r)

[
µ2,β(B(z, r))

vβ(B(z, r))

] p
2

K(z, z)δ(z)βdv(z).

By Lemma 2.4, there exists an m ∈ N such that

∞∑
j=1

[
µ2,β(B(zj , r))

vβ(B(zj , r))

] p
2

≤ Cm

∫
D

[
µ2,β(B(z, r))

vβ(B(z, r))

] p
2

K(z, z)δ(z)βdv(z),
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that is,

∞∑
j=1

(
µ̂r
2,β(zj)

) p
2 ≤ Cm

∫
D

(
µ̂r
2,β(z)

) p
2 K(z, z)δ(z)βdv(z).

(iv) ⇒ (i). We use the complex interpolation method in [21] to prove this
statement. We want to show that Tµ2,β

∈ S p
2
(A2(D,β)) and

∥Tµ2,β
∥

p
2

S p
2
(A2(D,)

¯
)
≤ C

∞∑
j=1

(
µ̂r
2,β(zj)

) p
2 .

For p = 2, by Corollary 2.2, there exists a positive constant C such that

∥Tµ2,β
∥S1(A2(D,β)) =

∫
D

〈
Tµ2,β

K(·, z),K(·, z)
〉
β
δ(z)βdv(z)

=

∫
D
K(z, z)

〈
Tµ2,β

kz(·), kz(·)
〉
β
δ(z)βdv(z) =

∫
D
K(z, z)(µ̃2,β(z))δ(z)

βdv(z)

=

∫
D
K(z, z)

∫
D
|kz(w)|2dµ2,β(w)δ(z)

βdv(z)=

∫
D

∫
D
|K(w, z)|2dµ2,β(w)δ(z)

βdv(z)

=

∫
D

∫
D
|K(w, z)|2δ(z)βdv(z)dµ2,β(w) =

∫
D
K(w,w)dµ2,β(w)

=

∫
D
K(z, z)dµ2,β(z) ≤

∞∑
j=1

∫
B(zj ,r)

|K(z, z)|dµ2,β(z) ≤ C
∞∑
j=1

µ2,β(B(zj , r))

vβ(B(zj , r))
,

for all zj ∈ B(z, r) and j ∈ N. For 1 < p
2 < +∞, since

∑∞
j=1

(
µ̂r
2,β(zj)

) p
2
< +∞,

we can assume that

µ2,β(B(zj , r))

vβ(B(zj , r))
< 1,

for all j ∈ N. By Corollary 2.2 and Lemma 2.4, we have

|µ2,β,ζ |(D) ≤
∞∑
j=1

[
µ2,β(B(zj , r))

vβ(B(zj , r))

] p
2
Reζ−1

µ2,β(B(zj , r))

≤
∞∑
j=1

[
µ2,β(B(zj , r))

vβ(B(zj , r))

]−1

µ2,β(B(zj , r)) =
∞∑
j=1

vβ(B(zj , r))

≤ C

∞∑
j=1

∫
B(zj ,r))

K(z, z)δ(z)βdv(z) ≤ Cm

∫
D
K(z, z)δ(z)βdv(z) < +∞.

For every ζ with 0 ≤ Reζ ≤ 1, we consider the Toeplitz operator Tµ2,β,ζ
on

A2(D,β) defined by

Tµ2,β,ζ
f(z) =

∫
D
K(z, w)f(w)dµ2,β,ζ(w).
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By Lemma 3.3 and Lemma 3.4, we have

∥Tµ2,β
∥Sp(A2(D,β)) ≤ ∥Tµ

2,β, 2p

∥Sp(A2(D,β)) ≤ m∥Tµ2,β
∥Sp(A2(D,β)).

Thus, Tµ2,β
∈ S p

2
(A2(D,β)) is equivalent to Tµ

2,β, 2p

∈ S p
2
(A2(D,β)). By complex

interpolation (see [21]), we have

∥Tµ
2,β, 2p

∥S p
2
(A2(D,β)) ≤ M

1− 2
p

0 M
2
p

1 ,

where

M0 = sup
{
∥Tµ2,β,ζ

∥ : Reζ = 0
}

and M1 = sup
{
∥Tµ2,β,ζ

∥S1 : Reζ = 1
}
.

Now, we show that M0 and M1 are bounded. For Reζ = 0,

|µ2,β,ζ |(B(zk, r)) ≤
∞∑
j=1

[
µ2,β(B(zj , r))

vβ(B(zj , r))

]−1 ∫
B(zk,r)

χB(zj ,r)(z)dµ2,β(z)

=
∞∑
j=1

[
µ2,β(B(zj , r))

vβ(B(zj , r))

]−1

µ2,β(B(zk, r) ∩B(zj , r)).

Since B(zk, r) ∩ B(zj , r) ̸= 0, by Lemma 2.4, for any fixed positive integer k,
there exists Nk ≤ N such that

|µ2,β,ζ |(B(zk, r)) ≤
Nk∑
i=1

[
µ2,β(B(zji , r))

vβ(B(zji , r))

]−1

µ2,β(B(zk, r) ∩B(zji , r))

≤
Nk∑
i=1

[
µ2,β(B(zji , r))

vβ(B(zji , r))

]−1

µ2,β(B(zji , r))

=

Nk∑
i=1

vβ(B(zji , r)).

Since B(zji , r) ∩ B(zk, r) ̸= 0, by Corollary 2.1 there exists a positive constant
C such that

vβ(B(zji , r)) ≤ Cvβ(B(zk, r)).

Thus, for all k ∈ N, we have

|µ2,β,ζ |(B(zk, r)) ≤ CNkvβ(B(zk, r)) ≤ CNvβ(B(zk, r)).

From Theorem 3.4 in [1], we know that |µ2,β,ζ | is a Carleson measure of A2(D,β).
By Corollary and Theorem 7 in [21], there exists a positive constant C such that∫

D
|f(z)|2d|µ2,β,ζ |(z) ≤ C

∫
D
|f(z)|2δ(z)βdv(z),
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for all f in A2(D,β). Therefore,∣∣⟨Tµ2,β,ζ
f, g⟩β

∣∣ = ∣∣∣ ∫
D
f(z)g(z)d|µ2,β,ζ |(z)

∣∣∣
≤

[∫
D
|f(z)|2d|µ2,β,ζ |(z)

] 1
2
[∫

D
|g(z)|2d|µ2,β,ζ |(z)

] 1
2

≤ C

[∫
D
|f(z)|2δ(z)βdv(z)

] 1
2
[∫

D
|g(z)|2δ(z)βdv(z)

] 1
2

,

which implies that ∥Tµ2,β,ζ
∥ ≤ C, for all ζ with Reζ = 0, that is, M0 is bounded.

For Reζ = 1, by Corollary 2.2, there exists a positive constant C such that∫
D
K(z, z)d|µ2,β,ζ |(z) ≤

∞∑
j=1

[
µ2,β(B(zj , r))

vβ(B(zj , r))

] p
2
−1 ∫

B(zj ,r)
K(z, z)dµ2,β(z)

≤ C

∞∑
j=1

[
µ2,β(B(zj , r))

vβ(B(zj , r))

] p
2
−1 µ2,β(B(zj , r))

vβ(B(zj , r))

= C
∞∑
j=1

[
µ2,β(B(zj , r))

vβ(B(zj , r))

] p
2

.

For any orthonormal bases {fj} and {gj} of A2(D,β) and Reζ = 1, we have

∞∑
j=1

∣∣⟨Tµ2,β,ζ
fj(z), gj(z)⟩β

∣∣ ≤ ∫
D

∞∑
j=1

|fj(z)||gj(z)|d|µ2,β,ζ |(z)

≤
∫
D

 ∞∑
j=1

|fj(z)|2
 1

2
 ∞∑
j=1

|gj(z)|2
 1

2

d|µ2,β,ζ |(z)

=

∫
D
K(z, z)|d|µ2,β,ζ |(z)

≤ C

∞∑
j=1

[
µ2,β(B(zj , r))

vβ(B(zj , r))

] p
2

.

Therefore, for all Reζ = 1, we have

∥Tµ2,β,ζ
∥S1(A2(D,β)) ≤ C

∞∑
j=1

[
µ2,β(B(zj , r))

vβ(B(zj , r))

] p
2

,

that is,

M1 ≤ C

∞∑
j=1

[
µ2,β(B(zj , r))

vβ(B(zj , r))

] p
2

= C

∞∑
j=1

(
µ̂r
2,β(zj)

) p
2 .
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Hence,

∥Tµ2,β
∥Sp(A2(D,β)) ≤ M

1− 2
p

0 M
2
p

1 ≤ C

 ∞∑
j=1

(
µ̂r
2,β(zj)

) p
2

 2
p

.

This completes the proof.
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