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1. Introduction

In mathematics, a Diophantine equation is a polynomial equation, usually in-
volving two or more unknowns, such that the only solutions of interest are the
integer ones (an integer solution is such that all the unknowns take integer
values).

Recall that an elliptic curve is a plane curve over a finite field (rather than
the real numbers) which consists of the points satisfying the equation y? =
23 + ax + b, along with a distinguished point at infinity. The coordinates here
are to be chosen from a fixed finite field of characteristic not equal to 2 or 3.
This set together with the group operation of elliptic curves is an Abelian group,
with the point at infinity as an identity element.

Pursuing this point of view further, in this paper we focused on the set of
the points satisfying the equation x? + nzy + £y? = 1,,, where the coordinates
are to be chosen from a commutative ring R with the identity element 1,. We
prove that this set together with a suitable group operation is an Abelian group,
with e = (1,,0,) as the identity element. Also, by using this result we study
the set of all integer solutions of the Diophantine equation 2 + may +ny? = 1,
where m,n € Z. Recall that one special case of these equations is the Pell’s
equation, which has a historical background.

We prove that in general the Abelian group of all integer solutions of the
Diophantine equation z? + mzy + ny? = 1 is isomorphic to one of the groups
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Zo, L4, Zg and Zs x Z. Also, we show that the set of all integer solutions of the
Pell’s equation as an Abelian group is isomorphic to Zy X Z.

Throughout this paper, for each element g of a given group (G, *) we denote
the order of g by o(g). Also, for each subgroup H of G we denote the order of
H by |H|. For any unexplained notation and terminology, we refer to [1] and

[2].
2. The results
We start this section with the following theorem.

Theorem 2.1. Let (R,+,-) be a commutative ring with the identity element 1,
and n, £ be two arbitrary elements of R. Set

G(R,n,€) =={(a,b) e Rx R : a*+nab+ &b* = 1.}

Define the binary operation * on G(R,n,§) as (a,b) * (c,d) := (ac — £bd, be +
ad + nbd), for each (a,b),(c,d) € G(R,n,§). Then, (G(R,n,§),*) is an Abelian
group with the identity element e = (1,,0,,) such that (a,b)™! = (a + nb, —b),
for each (a,b) € G(R,n,§).

Proof. For each g = (a,b), ¢’ = (¢,d) € G(R,n,§), by the definition we have
a? +nab + 6% =1, = ¢ + ned + £d°.
Therefore,

R (1R)(1R)
= (a® +nab+§b2)(02 +ncd+§d2)
= (ac— €bd)? + n(ac — €bd)(be + ad + nbd) + £(be + ad + nbd)?,

1

which shows that g * ¢’ = (ac — £bd, bc + ad + nbd) € G(R,n, ).
We show that * is associative. For each g = (a,b), ¢’ = (¢,d), ¢" = (u,v) €
G(R,n,&), one sees that

(gxg)xg" = (ac— Ebd,bc+ ad + nbd) * (u,v)
= (T> 3)
= (a,b) * (cu — &dv, du + cv + ndv)

= g* (g/ * g”)v
where
r = (ac—&bd)u — &(be + ad + nbd)v
acu — &Ebdu — Ebcv — Eadv — Enbdv
acu — Eadv — Ebdu — Ebcv — Enbdv
= a(cu — &dv) — &Eb(du + cv + ndv),
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and

s = (bc+ ad+ nbd)u + (ac — £bd)v + n(be + ad + nbd)v
= beu + adu + nbdu + acv — Ebdv + nbev 4+ nadv + n*bdv
= beu — Ebdv + adu + acv + nadv + nbdu 4 nbcv 4 n*bdv
= b(cu — &dv) + a(du + cv + ndv) + nb(du + cv + ndv).

Moreover, for each g = (a,b), ¢’ = (¢,d) € G(R,n,§), it is clear that
g* g = (ac— €bd,bc + ad + nbd) = (ca — £db, cb + da + ndb) = ¢’ * g.

Hence, the binary operation * is commutative.
Also, for each g = (a,b) € G(R,n,§), we see that

exg=g=g=xe,

where e = (1,,0,). So e is the identity element of G(R,n,§) with respect to
the binary operation x.

Let ¢ = (a,b) € G(R,n,§) and put h = (¢,d) := (a + nb,—b). By the
definition from the assumption g = (a,b) € G(R,n, &) it follows that a? + nab +
€? =1, and so

(a+nb)* +n(=b)(a +nb) + &(~b)?
= %+ 2nab + ?*b* — nab — n’b? + €b?
a® + nab + £v* = 1,.
Therefore, h = (¢,d) € G(R,n,§). Also, we have

¢ 4+ ned + £d?

ac — £bd = a(a +nb) — Eb(—=b) = a® + nab + &b* = 1,
and
be + ad + nbd = b(a + nb) + a(—b) + nb(—b) = ab + nb* — ab — nb* = 0,,.
Thus, h = (¢,d) = (a + nb, —b) is an element of G(R, 7, &) such that
hxg=g*h=(ac—&bd,bc+ ad +nbd) = (1,,0,) = e.

Hence, every element g = (a,b) € G(R,n,£) has an inverse in G(R, 7, &) and
g_l = (a+nb,—b)

Now, we are ready to deduce that (G(R,n,§),*) is an Abelian group with
the identity element e = (1,,0,). O

The following lemma is needed in the proof of Lemma 2.3.

Lemma 2.1. Let (R,+,-) be a commutative ring with an identity element and
n, & be two arbitrary elements of R. Then, for each g = (a,b) € G(R,n,§) and
each integer k > 2, there are elements ug, vy € R such that

g* = (ak + upb?, kba* 1 + vb?).
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Proof. We use induction on k. Since for k£ = 2 we have
9> =gxg=(a®— &%, 2ab + nb*),

it is clear that the elements us = —¢ and ve = 1 satisfy the desired condition.
Now, let &k > 2 and assume that the result has been proved for k — 1. Then, by
inductive assumption there are elements uy_1,v5_1 € R such that

gF1= (ak—l + up_1 b, (k — 1)bak_2 + Uk71b2>-

Therefore,
g* = gxg!
= (a,b) * (a* T + up_10%, (k — 1)ba* "2 4+ v_1b?)
(aF + upb?, kbaF 1 4+ vpb?),
where

up = aup_1 —Ebvp_y —&(k—1)a*"2, and vy, = bug_ +(a+nb)vp_1 +n(k—1)a*2.
This completes the inductive step. O

In the sequel for each pair of integers m and n let (B, p,*) denote the
Abelian group (G(Z,m,n),*). The remainder of this section will be devoted to
a discussion about the basic properties of the Abelian groups (B, », *), where
m,n € 7.

Lemma 2.2. Let m and n be two integers. Then, the following statements hold:
i) Suppose that g = (a,b) € By, . Then, o(g) =2 if and only if g = (—1,0).

i) Assume that g = (a,b) € By, is an element of finite order k for some
k> 3. Then, b divides k.

iii) Let p be a prime integer. If there is an element g = (a,b) € By, n of order
p, then either p =2 orp = 3.

Proof. (i) If o(g) = 2, then it is clear that (a,b) = g = g~ = (a + mb, —b).
Hence, b =0 and g = (a,0). Since

(170) == 92 = (CL?O) * (a,O) = (a2a0)7

we see that a = +1. Also, from the hypothesis o(g) = 2, we get g # (1,0),
which implies that a = —1 and g = (—1,0). Conversely, if g = (—1,0) €
then we see that o(g) = 2. Thus, o(g) = 2 if and only if g = (—1,0).

(ii) We claim that b # 0. Assume the opposite. Then, g = (a,0) and so

(1,0) = e = ¢* = (a*,0).
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Hence, a = +1 and so g = e or g = (—1,0). Thus, g = e and so k = o(g) < 2,
which is a contradiction. By the definition we have ¢¥ = ¢ = (1,0) and by
Lemma 2.2 there are elements u,v € Z such that

g% = (a® + ub® kba* =t 4 vb?).

Therefore, kba*~!+vb? = 0. Since a®>+mab+nb®> = 1, it is clear that the integers
a and b are relatively prime and so the integers a*~! and b are relatively prime
as well. Also, from the assumption b # 0 and the relation kba*~! + vb® = 0, we
can deduce that ka*~! = —vb. Therefore, b divides k.

(iii) Assume the opposite. Then, there is a prime integer p > 3 such that
o(g) = p for some element g = (a,b) € By, . We claim that b = £1. Assume
the opposite. Then, we have b # +1. By (ii) we know that b divides p. Since
p is a prime integer and b # +1, it is concluded that b = +p. Furthermore, by
Lemma 2.2 there are integers ', v’ such that

(1,0) = e = gP = (aP? 4 u'b%, pbaP~! 4+ v'b?) = (aP 4 p*u/, £p*aP~ + p*0').

From the relation a? + p?u’ = 1 it follows that a” is congruent to 1 (mod p).
Also, by Fermat’s Theorem we know that a? is congruent to a (mod p). Thus, a
is congruent to 1 (mod p) and hence 2a is congruent to 2 (mod p). Furthermore,
since p is an odd prime it can be seen that the following element

g* = (a* — nb?,2ab + mb*) = (a® — p*n, +2pa + p°m),

is of order p as well. Now, if £2pa + p?>m # £1 then by the same argument it
follows that
+2pa + p2m = +p.

Consequently, +2a + mp = +1. Therefore, 2a is congruent to +1 (mod p).
Thus, 2 is congruent to +1 (mod p). Hence, we must have p = 3, which is a
contradiction. Therefore, +£2pa + p?>m = £1. So, we have p(£2a + pm) = +1.
Hence, p = +1, which is a contradiction. Therefore, g = (a,b) = (a,£1) and
b%? = 1. Moreover, since the element g% = (a? — nb?,2ab +mb?) = (a® — n, 2ab +
m) € By, is of order p, by the same argument we see that 2ab +m = +1.
Hence, ab = 71277” or ab = kTm By using the assumption b = £1, from these
relations we obtain

@i e {5 R G

Hence, there are at most four elements g = (a,b) of order p in B, ,,. Clearly,
all of the p — 1 distinct elements g, g2, ..., g?~! are of order p. This observation
shows that the only possible case is p = 5. Also, in this situation the set
{(=72, 1), (H2, —1), (352,1), (ZH2, —1) } is a subset of B,,,, and all of its
elements are of order p. Set h = (u,v) := (=™,1) and ¢ := (—1,0). Then,
we have h,t € By, and t x h = (152, —1). Therefore, o(h) = o(t x h) = p.
Hence, tP = tP x e = tP x h? = (t x h)P = e. Therefore, o(t) divides p, which is a
contradiction since o(t) = 2 and p > 3 is a prime integer. O
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The following lemma and its corollary will be quite useful in this paper.

Lemma 2.3. Let m and n be two integers. If H is a finite subgroup of By, n,
then there are non-negative integers o and B such that |H| = 2% x 35,

Proof. Assume the opposite. Then, there is a prime integer p > 3 such that p
divides |H|. So, in view of Cauchy’s Theorem, (see [3]), the group H contains
an element h of order p. But, by Lemma 2.3 this is a contradiction. 0

Corollary 2.1. Let m and n be two integers. If g € B, is an element of finite
order, then there are non-negative integers a and B such that o(g) = 2% x 35.

Proof. Let H := (g). Then, H is a subgroup of B, , with |[H| = o(g) < oc.
Now the assertion follows from Lemma 2.4. O

The following lemmas are of assistance in the proof of Theorem 2.14.

Lemma 2.4. Let m and n be two integers. Then, each finite 2-subgroup of
Bn s cyclic.

Proof. Assume the opposite. Then, there is a finite 2-subgroup H of B, ,, such
that H is not cyclic. Therefore, by the Fundamental Theorem of Finite Abelian
Groups we have

k
H ~ H Lge;,
i=1

for some positive integers 1 < fo < - - < £}, with the property |H| = 26+ +
and k > 2. Furthermore, in this situation H has a subgroup K such that

Thus, K contains exactly 2 — 1 distinct elements of order 2. Since k > 2
it follows that B,,,, contains at least 3 distinct elements of order 2. But, by
Lemma 2.3 there is precisely one element g = (a, b) € B, , with o(g) = 2, which
is a contradiction. O

Lemma 2.5. Let m and n be two integers. Then, each finite 3-subgroup of
Bnn s cyclic.

Proof. Assume the opposite. Then, there is a finite 3-subgroup H of ‘B, ,, such
that H is not cyclic. Therefore, by the Fundamental Theorem of Finite Abelian
Groups we have

k
H~ H Lige;
i=1
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for some positive integers £1 < fo < --- < £} with the property |H| = 301 Hf2++
and k > 2. Furthermore, in this situation H has a subgroup K such that

k
K ~ Hzg.
=1

Thus, K contains exactly 3*¥ — 1 distinct elements of order 3. Since k > 2
it follows that B8,,, has at least 8 distinct elements of order 3. Assume that
g = (a,b) € By, is an element of order 3. Then, by Lemma 2.3 we know that
b divides 3. Hence, b € {£1,£3}. Moreover, from the relation o(g) = 3, we get
g% = g~ 1. Thus, (a® —nb?,2ab+ mb?) = (a +mb, —b). So, 2ab + mb®> = —b, and
by using the hypothesis b # 0, we obtain a = _1%7”1’. This observation shows
that there are at most 4 distinct elements g = (a,b) € B, , with o(g) = 3,
which is a contradiction. O

Lemma 2.6. Let m and n be two integers. Then, each finite subgroup of By,
1s cyclic.

Proof. Let H be a finite subgroup of B,,,. Then, by Lemma 2.4 there are
non-negative integers o and 3 such that |H| = 2% x 35. Let P and @ denote
the Sylow 2-subgroup and the Sylow 3-subgroup of H respectively. Then, by
Lemmas 2.6 and 2.7, P and @ are cyclic groups. Therefore, from the relations
H=P®Q and (|P|,|Q]) =1, it is concluded that H is a cyclic group. O

Corollary 2.2. Let m,n € Z and k € N. Then, Hy := {g € By : g* = ¢}
is a finite subgroup of By, n. In particular, Sy = {g € By : 0o(g) =k} is a
finite set.

Proof. Assume the opposite. Then, we can find a finite subgroup K of Hy with
|K| > k. Therefore, by Lemma 2.8, K is a cyclic group. So, there exists an
element g € K such that K = (g). By the hypothesis we have g* = e and hence
|K| = o(g) < k, which is a contradiction. Since Sy C Hy, we see that Sy is a
finite set as well. O

Lemma 2.7. Let m,n € Z and k € N. Then, for each b € Z there is at most
one integer a such that (a,b) € B, and o((a,b)) = k.

Proof. Assume that g = (a,b) € B,,, and o(g) = k. Then, by the definition
we have

(1,0) = " = (P(a,b,m,n),Q(a,b,m,n)),

for some polynomials P(X7, X, X3, X4), Q(X1, X2, X3, X4) € Z[X1, X2, X3, X4].
Since a? = 1 —mab—nb?, we can write P(a,b,m,n) = Hy(b,m,n)+aHz(b,m,n)
and Q(a,b,m,n) = Hs(b,m,n)+aH4(b, m,n), for some Hy (X1, X9, X3), Ha(X1,
Xo, X3), H3(X1, X9, X3), H4(X1, Xo, X3) € Z[ X1, X2, X3].

By Corollary 2.9, there are only a finite number of elements g € B,, ,, with
o(g) = k. Therefore, for each element b € Z, there are only a finite number of
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integers a such that (a,b) € By, ,, and o((a,b)) = k. This observation implies
that for each b € Z, Ha(b,m,n) # 0 or Hy(b,m,n) # 0. So, we can find at
most one integer a such that Hi(b,m,n) + aHz(b,m,n) = 1 and Hs(b,m,n) +
aH4(b,m,n) = 0. Thus, for each b € Z, there is at most one integer a such that
(a,b) € By, and o((a, b)) = k. O

Let m and n be two integers. In the sequel, we will denote the torsion
subgroup of 9B,,, by %,,,. We recall that the torsion subgroup of B,,, is
defined as:

T ={9 € Bmn : 0(g) < oo}

Lemma 2.8. Let m and n be two integers. Then, the following statements hold:
i) Let g1 = (a1,b1) € T be an element of order 4. Then, by divides 2.

ii) Suppose that g2 = (ag,b2) € Ty, p is an element of order 8. Then, by divides
2.

iii) Assume that g3 = (a3, b3) € Ty, is an element of order 6. Then, by divides
3.

iv) Let g1 = (a4,bs) € Ty be an element of order 12. Then, by divides 3.

Proof. (i) By Lemma 2.3, b; divides 4 and so by # 0. Since o(g1) = 4, it is
clear that o(g?) = 2. Thus, by Lemma 2.3 we have g7 = (—1,0). Hence, (a? —
nb?,2a1b1+mb?) = (—1,0). So, from the relations by # 0 and by (2a; +mb;) = 0,
it follows that 2a; + mb; = 0. Since a% + mai1by + nb% =1, it is clear that the
integers a; and by are relatively prime. Therefore, the relation 2a; = —mb;
shows that b; divides 2.

(ii) Since o(ge) = 8, it is clear that o(g3) = 4. Also, the relation g3 =
(a3 — nb2, 2asby + mb3) together with (i) implies that 2asby + mb3 divides 2.
Since by divides 2agby + mb%, it follows that by divides 2.

(iii) Since o(gs) = 6, it follows that o(g3) = 2. Thus, by Lemma 2.3 we have
g3 = (—1,0). Put t :== (—1,0). Since o(g3) = 6, it can be seen that

(nb2 — a3, —2aszbz —mb3) = txg3
= g3%63
= 4
= g3°
= (a3 + mbsz, —b3),

which shows that —2agbs — mb% = —bs. By Lemma 2.3, b3 divides 6 and so
bs # 0. Thus, mbs = —2a3 + 1 and hence 2 doesn’t divide b3. Therefore, b3
divides 3.

(iv) Since o(g4) = 12, it is clear that o(g2) = 6. Also, the relation g2 =
(a3 — nb3, 2a4by + mb3) together with (iii) implies that 2a4by + mb3 divides 3.
Since by divides 2a4by + mbz, it is concluded that b4 divides 3. O]
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Lemma 2.9. Let m and n be two integers. Then, the following statements hold:

i) Assume that g € Ty, 5, is an element of order 2F for some k € Ng. Then,
k<2.

ii) Suppose that h € T, ,, is an element of order 3% for some k € Ng. Then,
k<2

Proof. (i) Assume the opposite. Then, we have o(g) = 2* for some k > 3.
Therefore, 0(g2k_3) = 8. By replacing g with g2 ~°, we may assume that o(g) =
8. Let g1 = (a,b) € T, be an element of order 8. Then, by Lemma 2.11 we
see that b divides 2. Thus, b € {£1,+2}. Since o(g) = 8, one sees that there
are exactly 4 distinct elements of order 8 in the subgroup (g) of T, ,. Thus, by
Lemma 2.10 for each b € {£1,+2} there is a unique integer a such that g; =
(a,b) € (g) and o(g1) = 8. Let g2 = (¢, d) be an element of (g) with o(g2) = 4.
Then, by Lemma 2.11 we see that d divides 2. Hence, d € {£1,+2}. So, there is
a unique integer a such that g3 = (a,d) € (¢g) and o(g3) = 8. From the relations
a? +mad +nd? = 1 and ¢ + med + nd? = 1, we get (a — c¢)(a + ¢+ md) = 0.
Since o(g2) = 4 and o(g3) = 8, it follows that go # g3 and so a # c¢. Thus,
from the relations a — ¢ # 0 and (a — ¢)(a + ¢ + md) = 0, it is concluded that
a+c+md = 0. Therefore, g3+ = (a +md, —d) = (—c, —d) = (—1,0) * ga, which
implies that (g3 1)* = (—1,0)* * g5 = e. Hence, 8 = 0(g3) = o(g3"') < 4, which
is a contradiction.

(i) Assume the opposite. So, we have o(h) = 3* for some k > 3. Hence,
o(h3k73) = 27. By replacing h with h3k73, we my assume that o(h) = 27. Let
hi = (r,s) € T be an element of order 27. Then, by Lemma 2.3 we see
that s divides 27. Hence, s € {£1,+3,49, £27}. Therefore, by Lemma 2.10
there are at most 8 elements h; = (r,s) € T, ,, with the property o(h1) = 27.
Since o(h) = 27, one sees that there are exactly 18 elements of order 27 in the
subgroup (h) of T, ,, which is a contradiction. O

Lemma 2.10. Let m and n be two integers. Suppose that h € T, is an
element of order 3% for some k € Ng. Then, k < 1.

Proof. Assume the opposite. Since by Lemma 2.12 we have k < 2, it follows
that k = 2. Let hy = (a,b) € T,,,,, be an element of order 9. Then, by Lemma
2.3 we see that b divides 9. Hence, b € {£1,+£3,£9}. Since o(h) = 9, one sees
that there are exactly 6 elements of order 9 in the subgroup (h) of ¥,, ,,. Thus, by
Lemma 2.10 for each b € {£1, £3,4+9} there is a unique integer a such that h; =
(a,b) € (h) and o(h1) = 9. Let ho = (¢, d) be an element of (h) with o(hg) = 3.
Then, by Lemma 2.3 we see that d divides 3. Hence, d € {£1,+3}. So, there is
a unique integer a such that hz = (a,d) € (h) and o(h3) = 9. From the relations
a? +mad +nd? = 1 and ¢® + med + nd*> = 1, we get (a — c¢)(a + ¢ +md) = 0.
Since o(hg) = 3 and o(hs) = 9, it follows that hy # hs and so a # ¢. Thus,
from the relations a — ¢ # 0 and (a — ¢)(a + ¢ + md) = 0, it is concluded that
a+c+md = 0. Therefore, h;' = (a+md, —d) = (—c, —d) = (—1,0) * hy, which
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implies that (h3')® = (—1,0)% * S = e. Hence, 9 = o(h3) = o(hz') < 6, which
is a contradiction. O

The following result plays a key role in the proof of our main theorem.

Theorem 2.2. Let m and n be two integers. Then, the Abelian group T, , is
isomorphic to Zy, for some k € {2,4,6}.

Proof. We claim that |T,,,| < 12. Assume the opposite. Then, we have
|Tm.n| > 12. Therefore, we can find a finite subgroup H of T, ,, with |H| > 12.
By Lemma 2.8, H is a cyclic group. Thus, there is an element gy € H with
H = (g1). In view of Corollary 2.5, there are integers ay, 51 € Ny such that
o(g1) = 2%t x 381, Since 2°1 x 31 = o(gy) = |H| > 12 = 22 x 3, we can deduce
that aq > 3 or f1 > 2. Moreover, it is clear that

o(gi") = 3% and o(g}") = 2.

Therefore, by Lemma 2.12 and Lemma 2.13 we get o1 < 2 and 81 < 1, which is
a contradiction. So, we have |, ,| < 12. Hence, by Lemma 2.8 it is concluded
that T, , is a cyclic subgroup of B,, ,,. Therefore, there exists an element go €
T With T, , = (g2). In view of Corollary 2.5, there are integers as, f2 € Ny
such that 0(ga2) = |Tpm.n| = 292 x 372, Since

0(g3™) = 372 and o(gg’ﬁQ) =272,

by Lemma 2.12 and Lemma 2.13 we can deduce that as < 2, 82 < 1 and
80 |%p,n| divides 12. Since the element ¢ = (—1,0) € T, is of order 2, it
follows that 2 divides |%,,,|. Therefore, |T,,,| € {2,4,6,12}. We claim that
|Tmon| # 12. Assume the opposite. Then, there exists an element h € T, ,
such that T,,,, = (h) and o(h) = 12. Let h; = (a,b) € (h) be an element of
order 12. Then, by Lemma 2.11 we see that b divides 3. Hence, b € {£1, +3}.
Since o(h) = 12, one sees that there are exactly 4 distinct elements of order
12 in the group (h) = %,,,. Thus, by Lemma 2.10 for each b € {£1,+3}
there is a unique integer a such that hy = (a,b) € (h) and o(h;) = 12. Let
ha = (¢,d) be an element of (h) with o(h2) = 6. Then, by Lemma 2.11 we see
that d divides 3. Hence, d € {£1,£3}. So, there is a unique integer a such
that hg = (a,d) € (h) and o(h3) = 12. From the relations a? + mad + nd* = 1
and ¢ + med + nd? = 1, we get (a — ¢)(a + ¢ + md) = 0. Since o(h2) = 6
and o(hs) = 12, it follows that hg # hs and so a # c¢. Thus, from the relations
a—c#0and (a —c)(a+ ¢+ md) =0, it is concluded that a + ¢+ md = 0.
Therefore, hz' = (a +md, —d) = (—c,—d) = (—1,0) % h, which implies that
(h31)8 = (=1,0)% % h§ = e. Hence, 12 = o(h3) = o(hz') < 6, which is a
contradiction. Therefore, ,,,, is a finite cyclic group with %, | € {2,4,6}.
Consequently, T, ,, is isomorphic to Zj, for some k € {2,4,6}, as required. O

The following auxiliary lemmas are needed in the proof of Theorem 2.20.
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Lemma 2.11. Let m and n be two integers and set 6 :== m?> —4n. If § < 0,
then the Abelian group By, , is isomorphic to Zy, for some k € {2,4,6}.

Proof. By Theorem 2.14 it is enough to prove that B,, , = %, 5. Also, in order
to prove this assertion, it suffices for us to prove that %B,,, is a finite group.
Assume that (a,b) € B,, . Then, by the definition we have a® +mab+nb* = 1.
Therefore, (2a + mb)? — 6b> = 4(a? + mab + nb?) = 4. Hence,

0 < (2a+mb)? < (2a+mb)*—0b* = 4, and 0 < b? < —5b* < (2a+mb)*—6b* = 4.

Therefore, {2a + mb, b}C{0, £1, £2}. Thus, B, ,, is a finite group, as required.
O

Lemma 2.12. Let m and n be two integers and set 6 == m? —4n. If§ = 0,
then the Abelian group By, is isomorphic to Zy X 7.

Proof. Assume that (a,b) € B, . Then, by the definition we have a* +mab+
nb? = 1. Therefore, (2a + mb)? = (2a + mb)? — §b> = 4(a® + mab + nb?) = 4.
Hence, 2a +mb = +2 and so (a, b) is a solution to one of the two-variable linear
Diophantine equations 2x + my = 2 or 2z + my = —2. By solving these linear
Diophantine equations we obtain, (a,b) = (+1 + mTk, _T%) € By, n, Where k € Z
and pu is the greatest common divisor of the integers 2 and m.

Set t := (—1,0) and g := (1 + %, _72) Then, by using induction on k& and
applying the relation m? — 4n = 0, it can be seen that
¢ =+ ™ T gk = - TR 2

Koo B
for each k € N. Therefore, g* = (1+ mTk, _T%) and tx g% = (=14 mTk, _72’“), for
each k € 7Z. Hence,

Bn = {(iHM,H) : keZ} - {t L E,keZ}_ (@) * {g).
Furthermore, from the relations o(g) = oo and o(t) = 2, we can deduce that
(t) N (g) = {e}. Therefore, B, ,, = (t) ® (g) ~ Zy X Z, as required. O

Lemma 2.13. Let m and n be two integers and set § := m? —4n. If 6 is a
positive perfect square integer, then the Abelian group By, p is isomorphic to Zs.

Proof. By assumption there is a positive integer A such that m? —4n = § = \2.
Suppose that (a,b) € By, 5. Then, by the definition we have a +mab+nb* = 1.
Therefore,

(2a 4+ mb + Ab)(2a + mb — \b) = (2a + mb)* — 5b* = 4(a® + mab + nb*) = 4.

In fact, there are precisely six cases. In the following four cases:
Case 1. 2a +mb+ Ab =1 and 2a + mb — \b = 4.
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Case 2. 2a4+mb+ Ab =4 and 2a + mb— Ab = 1.

Case 3. 2a+mb+ Ab= —1 and 2a + mb — \b = —4.

Case 4. 2a+mb+ Ab = —4 and 2a +mb— \b = —1, we see that 2a +mb = :l:%,
contradicting the fact that 2a + mb is an integer. Also, in the following two
remainder cases,

Case 5. 2a+mb+ \b =2 and 2a + mb — \b = 2, Case 6. 2a + mb+ \b = —2
and 2a +mb — X\b = —2, we see that (a,b) = (£1,0). Therefore, B,,, =
{(1,0),(—=1,0)} ~ Zy, as required. O

Recall that Pell’s equation, also called the Pell-Fermat equation, is any Dio-
phantine equation of the form 22 —ny? = 1, where n is a given positive nonsquare
integer. It is well-known that Pell’s equation has a infinite solutions. Also, this
equation has a solution (aj, b;) with a; > 1 and b3 > 1 which has some special
properties and is called the fundamental solution. Furthermore, once the funda-
mental solution is found, all remaining solutions may be calculated algebraically
from

ar, + bpv/n = (ay + biv/n)*,

expanding the right side, equating coefficients of \/n on both sides, and equating
the other terms on both sides. This yields the recurrence relation

(aks1,brr1) = (aray + nbiby, arby + brag).

2

In this situation, the set of all solutions of the equation z? — ny? = 1 is equal to

{(£1,0)} U {(£ap, £by) : k € N},

For more details see [1]. In order to establish our next lemma, we use a proof
similar to the proof of [1, p. 180, Theorem 7].

Lemma 2.14. Let m and n be two integers and set § := m?> —4n. If § is a
positive nonsquare integer, then the Abelian group By, , is isomorphic to Zo X Z.

Proof. Let (u1,v1) denote the fundamental solution of the Pell’s equation x% —

sy = 1. Set (o, B) := (u1—mw1,2v1). Then, it is easy to see that (a, ) € Bp.n,
a+m75 =u >0and§:v1 > 0. SetM::a+m75+g\/5. If (/,5) € B
is an element such that o + mTB’ > 0 and % > 0, then the condition

o/—l—

ms B s < M,

2 2
implies that o' + mTﬁ/ < M and %/ < M. Therefore, 1 < 8/ <2M and —|m|M <
o' < (14 |m|)M. Thus, in particular, there are only finitely many choices for
the integers o’ and . Let us choose g = (a1,b1) € By, for which a; —|—me1 >0,
%1 >0 and a1 + mel + %1\/5 is least. This is possible since there are only finitely
many elements (o/, ') € B, ,, such that o/ + mTﬁ’ > 0 and %l > 0, and

! !
a’+m26 +%\/5§M.
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For each positive integer k, define a; and b by
by b bi b F
(2.1) ak+ka+2k\/3:(a1+m2l+21\/g> .

Indeed, since by the hypothesis § is a positive nonsquare integer, we see that Ve
is an irrational number. Therefore, for each positive integer k, the elements ay
and by can be calculated algebraically from (2.18.1), expanding the right side,
equating coefficients of v/§ on both sides, and equating the other terms on both
sides.

By using induction on k, we prove that ag + me’“ > 0, %’“ > 0 and (ag,bg) =
g* e B,,n, for each £ € N. For k = 1 the assertion holds by the hypoth-
esis. Now, let £ > 1 and assume that the result has been proved for k — 1.
Then, by inductive assumption we know that ag_1 + mbg‘l > 0, b’“2‘ L' >0 and

(ar—1,br—1) = g*~! € B,,,.,. By using the fact that /4 is an irrational number,
from the relations

P b mh b
T Ty -\ Ty Ty
. mbl b1 mb1 b1 k-l
= (a1+2+2\/5><a1—|—2+2\/g>

b b br.— b
= <a1+7nl+21\/g> <ak1+mk 1+k1\/g>,

2 2 2

we obtain, by = a1bp_1 4+ brag_1 + mbibr_1 and

mby m(arby_1 +brag_1) = m2biby_1  Obiby_q

W T A 2 R 1
m(arbe—1 +brag-1) | mbibp-y  (m® = 4n)bibi-
= a10f—1 + (al k—1 1L 1) + m~=010r—1 (m n) 1bk_1

2 4 1
bp—1 + brag_1 + mbiby—
— ayap_1 — nbibg_q + m(aiby_1 + 1a2k L+ mbib_1)
b
= aiap_1 —nbibp_1 + %7

which implies that a = a1ar_1 — nbibr_1. Thus,
(ag,br) = (a1ag_1 — nbibr_1,a1bp_1 + brag_1 +mbiby_1) = g% " = g~

Also, the relations

b mby \ [ bp_1 mbg_1\ (b1

2 (‘“*2) (2 )*(ak** 2 ) (2)7

mbk o mb1 mbk_l bl bk—l
a’“+2_(“1+2)<a’“+ > ) Tg) )

and
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together with the hypothesis a1 + ™ b1 >0, ag—1 + b’“ L >0,
and 6 > 0, imply that ax + me ko> 0 and bQ’“ >0. T hlS completes the 1nduct1ve
step.

We claim that o(g) = co. Assume the opposite and let o(g) = j < co. Then,
we see that ¢/ = (aj,b;) = (1,0). Therefore, b; = 0, which is impossible since
% > 0. Thus, o(g) = oo and so the cyclic subgroup (g) of B,,,, is isomorphic
to Z.

Let h = (a’,V') € (Bmn \ Tm.n). Then, by the definition we have o(h) = oo.
Set t = (—1,0) € By, . Since o(t) = 2, it is clear that ¢t € T, ,,. Also, from the
assumption o(h) = oo it follows that b’ # 0 and the elements h, h=!, txh,txh~!
are different. Therefore, the relation

{h,h " txhtxh™t} = {(d,V), (d +mb, V), (=d,=V), (—a' —mb,V)},
implies that 2a’ + mb’ # 0 and hence o’ + Z5- 75 0. Since

{w+2205) (o) e {hhhtxhtant}) = {(j:(a'—i— mb/),if")}

2 2

we can find an element (a,b) € {h,h™,t* h,t x h~'} such that a + %b > (0 and
% > 0. We show that (a,b) = g* for some £ € N.

Since (a1,b1) was chosen as the element of B, , for which a; + mel > 0,
bl >0 and a1 + mb1 + %1\/5 is least, we see that

b b
(2.2) a1+%+ 1f<a+ \f

We assert that there is a positive integer £ such that

by b ¢ b b by b 1
(2.3) <a1+7”21+1ﬁ> gcwr”;+2\/S<<1+mQ1 21\/S> .

Since by the hypothesis ¢ is a positive nonsquare integer, it follows that § > 2.
Therefore, by using the hypothesis a1 + mel > (0 and %1 > 0, one sees that

mb b 2a; +mb b 1 1
PAIRLLISL W JRL LT/ E RRY R T S
2 2 2 2 2
Thus, a1 + mbl + 4 \/5 > 1 and hence the powers of a; + mel + %\/S, became
arbitrary large SO there is a largest value of ¢ for which

by b
<a1+m21+ 1\/5> <a +—+ xf

Furthermore, by the relation (2.18.2) we know that this largest value of ¢ is
at least 1. Moreover, it is clear that this largest value of ¢ forces (2.18.3) to
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hold. Let us multiply (2.18.3) by (a1 + ™t — 2.1/5)*, which is positive since
a1+mTI’1+b71\/g>0and

b b b
(75 = G8) (o4 7+ ) = s i <1,

Then, we see that

(2.4) 1§< +—+ f)( +me1— 1\/5>(Z 1+me1 %1\/?5.

Since g = (a1,b1), ¢° = (ag, be) € Byn.n, one sees that

<ag+mb€+b€f>< W—f)

:<ag+mb£> 5(bé> = a 4+ magby + nbj =1,

and
by b b
<e+m£+ff>< ml-f)
LT, A RV
T T “MT Ty
. mby by mby b1 ¢
= (w4 "3+ 55) (m+ 5-55))
b b2\
_ moiy (%1
(o) =5(3))
— (a% + mayb; +nb%)€ =1'=1.
Therefore,
by b b
<e+m+éf><g+mz‘f—€\/8>_1
by b b
=<ae+m+;\/5><a1+”“f)
and so

<a1+mbl—\f> e+m—bf— \f

Set ¢ := aay + maby + nbby, and d := bay — aby. Obv1ously, c,d € 7Z. Also, it
is straightforward to see that

(o) e )
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() m) (-3 ()

and

So, we have

( +—+ xf><1+mzb1— 1\/5>£

mb
:<a—|—+ f)( +—£— f) +—+ f
Moreover, it is easy to see that

<a+—f)<e+mbf b;\/5> +———f

By using these relations it can be seen that

md\ > d\?

(e+75) -2 (5)
mb\ > b\ 2 mbg \ 2 be\ 2
((au) -5(5) ) ((“”z) -5(3)

= (a2 -+ mab + nb2) (ag -+ magby + nbg)
= HOH) =1L

Therefore, (c,d) € By, . Furthermore, (2.18.4) asserts that

& + med + nd?

md b
(2.5) 1<c—|—7+ f<a1+m21 SVe.

We claim that (¢, d) = (1,0). Assume the opposite. If d = 0, then from the
relation ¢ + med + nd? = 1 we get ¢ = 41 and so, by (2.18.5) it follows that
¢ = 1. Thus, (¢,d) = (1,0) which is a contradiction. Also, if ¢ + de =0, then

from the relation
c—i—m—d 2—(5 d 2—1
2 2) 7
d

we can deduce —§ (5)2 =1 and so § < 0, which is a contradiction. Hence, d # 0
and ¢+ de # 0. In this situation we claim that ¢+ %l + %\/5 < 1. Assume the
opposite. Then, we have ¢+ de + %l\/g > 1. Let us consider the following three
cases:

Case 1. ¢+ de < 0 and % < 0. Then, c+ de + %\/5 < 0, which contradicts the
assumption that ¢ + de + %\/5 > 1.

Case 2. ¢+ de < 0 and % > 0. Then

md d
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and so

2 2
—1:—(c2+mcd+nd2):6<;l> - <c—|—n;d>

(- (e ) 208 o 205

which is absurd.
Case 3. ¢+ %d > 0 and % < 0. Then

md d md d
C+7—§ (5>C+7+§\/g>17

and so

2 2
1=c®+ med+nd® = <c+md> —5<d>

md d md d
= - = - — 1
<c+ 5 3 5) <c+ 5 +2\/5)>

which is also absurd. Thus, the only possible case is ¢ + ";d >0 and > 0.
However, if this is the case, then (2.18.5) contradicts the way in which (al, b1)
was chosen. Therefore, we must have

e M A<
2 2
Then, (2.18.5) implies that

+—+ f_1

So, by using the fact that v/§ is an irrational number, we can deduce that
(¢,d) = (1,0), which is a contradiction. Thus, we have (¢, d) = (1,0) and hence
c+ de + %\/5 = 1. Therefore,

<a—|——|— f><1+mb1— 1\/3>g:

2

¢
Multiplying both sides of this equation by <a1 + mel + %\6) , we see that

mby by ¢ mby by
+—+ \f a5 Vo) =art =+ Ve,

Thus, by using the fact that /9 is an irrational number, we get (a, b) = (ag, by) =
g". Therefore, ¢ = (a,b) € {h, h™!, txh,txh~'} and so h = t"¢° for some integers
r and s. Since t € T, ,, we see that h € T, , * (g). So,

(%m,n \ T«m,n) - Tm,n * <g>
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Hence,
%m,n = (%m,n \ (Zm,n) U zm,n C Tm,n * <g> C %mﬂw

which means that 9B, , = T, » * (¢g). Also, by using the assumption o(g) = oo,
we can deduce that T, ,N(g) = {e}. Therefore, B, ,, = T E(g). By Theorem
2.14 there exists an element 6 € %, , such that T,,, = (0). Set ' := 6 x g.
Since h' € (Bymn \ Tmn), by the same argument we can find integers ', s' € Z
such that 6 x g = /' = ' x g° . Since Bn = Tmn @ (9) and 0,t € Ty, it is
concluded that @ = ¢ € (t). Therefore, T = (0) C (t) C Tynp, which means
that T, = (t) = {e, t}. Thus, Byp = Tinpn B (g) = (t) D (g9) ~ Zy X Z. O

Corollary 2.3. Assume that n is a given positive nonsquare integer. Then, the
Abelian group of all integer solutions of the Pell’s equatuion x% — ny? = 1 is
isomorphic to Zo X 7.

Proof. The assertion follows from Lemma 2.18. O

We are now in a position to use the previous results to produce a proof of
our main theorem.

Theorem 2.3. Let m and n be two integers. Then, the Abelian group B, , is
isomorphic to one of the groups Zo, Z4, Z¢ and Zo X 7.

Proof. The assertion follows from Lemmas 2.15, 2.16, 2.17 and 2.18. ]

Example 2.4. (i) Assume that n > 0 is a given perfect square integer. Then,
by Lemma 2.17 we see that By _, = To,_n = {(1,0),(—1,0)} =~ Zo.

(ii) Assume that n is a given positive nonsquare integer. Then, by Corollary
2.19 we have By _,, >~ Zy x Z and so Ty, = {(1,0),(—1,0)} =~ Zs.

(iii) Let ¢ = (0,1) € Bo1 = {(1,0),(—1,0),(0,1),(0,—1)}. Then, one can
see that o(g) =4 and By 1 = Tp,1 = (9) ~ Za.

(iv) Let g = (0, —1) € B_11. Then, it is easy to see that o(g) = 6 and so, by
Theorem 2.14 and Lemma 2.15 we can deduce that B_11 =%_1 1 = (g) =~ Zs.

Remark 2.5. Let (R,+,-) be a commutative ring with the identity element
and 7, &, ¢ be three arbitrary elements of R. Set

S(R,m,&,¢) :={(u,v) € Rx R : u®+nuv+ v =}

Assume that S(R,n,£,¢) # 0 and (u,v) € S(R,n,&,¢). Then, for each (a,b) €
G(R,n,&) the element

(a,b) - (u,v) := (au — Ebv, bu + av + nbv),

belongs to S(R,n,&,¢). In fact, by this definition the group G(R,n,§) acts on
the set S(R,n, &, (), provided that S(R,n,&,() # 0.
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