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Abstract. Let m and n be two integers. It is shown that the set of all integer solutions
of the Diophantine equation x2 + mxy + ny2 = 1 has an Abelian group structure.
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Keywords: Abelian group, commutative ring, Diophantine equation, Pell’s equation,
torsion subgroup.

1. Introduction

In mathematics, a Diophantine equation is a polynomial equation, usually in-
volving two or more unknowns, such that the only solutions of interest are the
integer ones (an integer solution is such that all the unknowns take integer
values).

Recall that an elliptic curve is a plane curve over a finite field (rather than
the real numbers) which consists of the points satisfying the equation y2 =
x3 + ax + b, along with a distinguished point at infinity. The coordinates here
are to be chosen from a fixed finite field of characteristic not equal to 2 or 3.
This set together with the group operation of elliptic curves is an Abelian group,
with the point at infinity as an identity element.

Pursuing this point of view further, in this paper we focused on the set of
the points satisfying the equation x2 + ηxy + ξy2 = 1R , where the coordinates
are to be chosen from a commutative ring R with the identity element 1R . We
prove that this set together with a suitable group operation is an Abelian group,
with e = (1R , 0R) as the identity element. Also, by using this result we study
the set of all integer solutions of the Diophantine equation x2 +mxy+ny2 = 1,
where m,n ∈ Z. Recall that one special case of these equations is the Pell’s
equation, which has a historical background.

We prove that in general the Abelian group of all integer solutions of the
Diophantine equation x2 + mxy + ny2 = 1 is isomorphic to one of the groups
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Z2, Z4, Z6 and Z2 ×Z. Also, we show that the set of all integer solutions of the
Pell’s equation as an Abelian group is isomorphic to Z2 × Z.

Throughout this paper, for each element g of a given group (G, ∗) we denote
the order of g by o(g). Also, for each subgroup H of G we denote the order of
H by |H|. For any unexplained notation and terminology, we refer to [1] and
[2].

2. The results

We start this section with the following theorem.

Theorem 2.1. Let (R,+, ·) be a commutative ring with the identity element 1R

and η, ξ be two arbitrary elements of R. Set

G(R, η, ξ) :=
{
(a, b) ∈ R×R : a2 + ηab+ ξb2 = 1R

}
.

Define the binary operation ∗ on G(R, η, ξ) as (a, b) ∗ (c, d) := (ac − ξbd, bc +
ad+ ηbd), for each (a, b), (c, d) ∈ G(R, η, ξ). Then, (G(R, η, ξ), ∗) is an Abelian
group with the identity element e = (1R , 0R) such that (a, b)−1 = (a + ηb,−b),
for each (a, b) ∈ G(R, η, ξ).

Proof. For each g = (a, b), g′ = (c, d) ∈ G(R, η, ξ), by the definition we have

a2 + ηab+ ξb2 = 1R = c2 + ηcd+ ξd2.

Therefore,

1R = (1R)(1R)

= (a2 + ηab+ ξb2)(c2 + ηcd+ ξd2)

= (ac− ξbd)2 + η(ac− ξbd)(bc+ ad+ ηbd) + ξ(bc+ ad+ ηbd)2,

which shows that g ∗ g′ = (ac− ξbd, bc+ ad+ ηbd) ∈ G(R, η, ξ).
We show that ∗ is associative. For each g = (a, b), g′ = (c, d), g′′ = (u, v) ∈

G(R, η, ξ), one sees that

(g ∗ g′) ∗ g′′ = (ac− ξbd, bc+ ad+ ηbd) ∗ (u, v)
= (r, s)

= (a, b) ∗ (cu− ξdv, du+ cv + ηdv)

= g ∗ (g′ ∗ g′′),

where

r = (ac− ξbd)u− ξ(bc+ ad+ ηbd)v

= acu− ξbdu− ξbcv − ξadv − ξηbdv

= acu− ξadv − ξbdu− ξbcv − ξηbdv

= a(cu− ξdv)− ξb(du+ cv + ηdv),
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and

s = (bc+ ad+ ηbd)u+ (ac− ξbd)v + η(bc+ ad+ ηbd)v

= bcu+ adu+ ηbdu+ acv − ξbdv + ηbcv + ηadv + η2bdv

= bcu− ξbdv + adu+ acv + ηadv + ηbdu+ ηbcv + η2bdv

= b(cu− ξdv) + a(du+ cv + ηdv) + ηb(du+ cv + ηdv).

Moreover, for each g = (a, b), g′ = (c, d) ∈ G(R, η, ξ), it is clear that

g ∗ g′ = (ac− ξbd, bc+ ad+ ηbd) = (ca− ξdb, cb+ da+ ηdb) = g′ ∗ g.

Hence, the binary operation ∗ is commutative.
Also, for each g = (a, b) ∈ G(R, η, ξ), we see that

e ∗ g = g = g ∗ e,

where e = (1R , 0R). So e is the identity element of G(R, η, ξ) with respect to
the binary operation ∗.

Let g = (a, b) ∈ G(R, η, ξ) and put h = (c, d) := (a + ηb,−b). By the
definition from the assumption g = (a, b) ∈ G(R, η, ξ) it follows that a2 + ηab+
ξb2 = 1R , and so

c2 + ηcd+ ξd2 = (a+ ηb)2 + η(−b)(a+ ηb) + ξ(−b)2

= a2 + 2ηab+ η2b2 − ηab− η2b2 + ξb2

= a2 + ηab+ ξb2 = 1R .

Therefore, h = (c, d) ∈ G(R, η, ξ). Also, we have

ac− ξbd = a(a+ ηb)− ξb(−b) = a2 + ηab+ ξb2 = 1R ,

and

bc+ ad+ ηbd = b(a+ ηb) + a(−b) + ηb(−b) = ab+ ηb2 − ab− ηb2 = 0R .

Thus, h = (c, d) = (a+ ηb,−b) is an element of G(R, η, ξ) such that

h ∗ g = g ∗ h = (ac− ξbd, bc+ ad+ ηbd) = (1R , 0R) = e.

Hence, every element g = (a, b) ∈ G(R, η, ξ) has an inverse in G(R, η, ξ) and
g−1 = (a+ ηb,−b)

Now, we are ready to deduce that (G(R, η, ξ), ∗) is an Abelian group with
the identity element e = (1R , 0R).

The following lemma is needed in the proof of Lemma 2.3.

Lemma 2.1. Let (R,+, ·) be a commutative ring with an identity element and
η, ξ be two arbitrary elements of R. Then, for each g = (a, b) ∈ G(R, η, ξ) and
each integer k ≥ 2, there are elements uk, vk ∈ R such that

gk = (ak + ukb
2, kbak−1 + vkb

2).
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Proof. We use induction on k. Since for k = 2 we have

g2 = g ∗ g = (a2 − ξb2, 2ab+ ηb2),

it is clear that the elements u2 = −ξ and v2 = η satisfy the desired condition.
Now, let k > 2 and assume that the result has been proved for k − 1. Then, by
inductive assumption there are elements uk−1, vk−1 ∈ R such that

gk−1 = (ak−1 + uk−1b
2, (k − 1)bak−2 + vk−1b

2).

Therefore,

gk = g ∗ gk−1

= (a, b) ∗ (ak−1 + uk−1b
2, (k − 1)bak−2 + vk−1b

2)

= (ak + ukb
2, kbak−1 + vkb

2),

where

uk = auk−1−ξbvk−1−ξ(k−1)ak−2, and vk = buk−1+(a+ηb)vk−1+η(k−1)ak−2.

This completes the inductive step.

In the sequel for each pair of integers m and n let (Bm,n, ∗) denote the
Abelian group (G(Z,m, n), ∗). The remainder of this section will be devoted to
a discussion about the basic properties of the Abelian groups (Bm,n, ∗), where
m,n ∈ Z.

Lemma 2.2. Let m and n be two integers. Then, the following statements hold:

i) Suppose that g = (a, b) ∈ Bm,n. Then, o(g) = 2 if and only if g = (−1, 0).

ii) Assume that g = (a, b) ∈ Bm,n is an element of finite order k for some
k ≥ 3. Then, b divides k.

iii) Let p be a prime integer. If there is an element g = (a, b) ∈ Bm,n of order
p, then either p = 2 or p = 3.

Proof. (i) If o(g) = 2, then it is clear that (a, b) = g = g−1 = (a + mb,−b).
Hence, b = 0 and g = (a, 0). Since

(1, 0) = e = g2 = (a, 0) ∗ (a, 0) = (a2, 0),

we see that a = ±1. Also, from the hypothesis o(g) = 2, we get g ̸= (1, 0),
which implies that a = −1 and g = (−1, 0). Conversely, if g = (−1, 0) ∈ Bm,n,
then we see that o(g) = 2. Thus, o(g) = 2 if and only if g = (−1, 0).

(ii) We claim that b ̸= 0. Assume the opposite. Then, g = (a, 0) and so

(1, 0) = e = gk = (ak, 0).
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Hence, a = ±1 and so g = e or g = (−1, 0). Thus, g2 = e and so k = o(g) ≤ 2,
which is a contradiction. By the definition we have gk = e = (1, 0) and by
Lemma 2.2 there are elements u, v ∈ Z such that

gk = (ak + ub2, kbak−1 + vb2).

Therefore, kbak−1+vb2 = 0. Since a2+mab+nb2 = 1, it is clear that the integers
a and b are relatively prime and so the integers ak−1 and b are relatively prime
as well. Also, from the assumption b ̸= 0 and the relation kbak−1 + vb2 = 0, we
can deduce that kak−1 = −vb. Therefore, b divides k.

(iii) Assume the opposite. Then, there is a prime integer p > 3 such that
o(g) = p for some element g = (a, b) ∈ Bm,n. We claim that b = ±1. Assume
the opposite. Then, we have b ̸= ±1. By (ii) we know that b divides p. Since
p is a prime integer and b ̸= ±1, it is concluded that b = ±p. Furthermore, by
Lemma 2.2 there are integers u′, v′ such that

(1, 0) = e = gp = (ap + u′b2, pbap−1 + v′b2) = (ap + p2u′,±p2ap−1 + p2v′).

From the relation ap + p2u′ = 1 it follows that ap is congruent to 1 (mod p).
Also, by Fermat’s Theorem we know that ap is congruent to a (mod p). Thus, a
is congruent to 1 (mod p) and hence 2a is congruent to 2 (mod p). Furthermore,
since p is an odd prime it can be seen that the following element

g2 = (a2 − nb2, 2ab+mb2) = (a2 − p2n,±2pa+ p2m),

is of order p as well. Now, if ±2pa + p2m ̸= ±1 then by the same argument it
follows that

±2pa+ p2m = ±p.

Consequently, ±2a + mp = ±1. Therefore, 2a is congruent to ±1 (mod p).
Thus, 2 is congruent to ±1 (mod p). Hence, we must have p = 3, which is a
contradiction. Therefore, ±2pa + p2m = ±1. So, we have p(±2a + pm) = ±1.
Hence, p = ±1, which is a contradiction. Therefore, g = (a, b) = (a,±1) and
b2 = 1. Moreover, since the element g2 = (a2 − nb2, 2ab+mb2) = (a2 − n, 2ab+
m) ∈ Bm,n is of order p, by the same argument we see that 2ab + m = ±1.
Hence, ab = −1−m

2 or ab = 1−m
2 . By using the assumption b = ±1, from these

relations we obtain

(a, b) ∈
{
(
−1−m

2
, 1), (

1 +m

2
,−1), (

1−m

2
, 1), (

−1 +m

2
,−1)

}
.

Hence, there are at most four elements g = (a, b) of order p in Bm,n. Clearly,
all of the p− 1 distinct elements g, g2, ..., gp−1 are of order p. This observation
shows that the only possible case is p = 5. Also, in this situation the set{
(−1−m

2 , 1), (1+m
2 ,−1), (1−m

2 , 1), (−1+m
2 ,−1)

}
is a subset of Bm,n and all of its

elements are of order p. Set h = (u, v) := (−1−m
2 , 1) and t := (−1, 0). Then,

we have h, t ∈ Bm,n and t ∗ h = (1+m
2 ,−1). Therefore, o(h) = o(t ∗ h) = p.

Hence, tp = tp ∗ e = tp ∗ hp = (t ∗ h)p = e. Therefore, o(t) divides p, which is a
contradiction since o(t) = 2 and p > 3 is a prime integer.
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The following lemma and its corollary will be quite useful in this paper.

Lemma 2.3. Let m and n be two integers. If H is a finite subgroup of Bm,n,
then there are non-negative integers α and β such that |H| = 2α × 3β.

Proof. Assume the opposite. Then, there is a prime integer p > 3 such that p
divides |H|. So, in view of Cauchy’s Theorem, (see [3]), the group H contains
an element h of order p. But, by Lemma 2.3 this is a contradiction.

Corollary 2.1. Let m and n be two integers. If g ∈ Bm,n is an element of finite
order, then there are non-negative integers α and β such that o(g) = 2α × 3β.

Proof. Let H := ⟨g⟩. Then, H is a subgroup of Bm,n with |H| = o(g) < ∞.
Now the assertion follows from Lemma 2.4.

The following lemmas are of assistance in the proof of Theorem 2.14.

Lemma 2.4. Let m and n be two integers. Then, each finite 2-subgroup of
Bm,n is cyclic.

Proof. Assume the opposite. Then, there is a finite 2-subgroup H of Bm,n such
that H is not cyclic. Therefore, by the Fundamental Theorem of Finite Abelian
Groups we have

H ≃
k∏

i=1

Z2ℓi ,

for some positive integers ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓk with the property |H| = 2ℓ1+ℓ2+···+ℓk

and k ≥ 2. Furthermore, in this situation H has a subgroup K such that

K ≃
k∏

i=1

Z2.

Thus, K contains exactly 2k − 1 distinct elements of order 2. Since k ≥ 2
it follows that Bm,n contains at least 3 distinct elements of order 2. But, by
Lemma 2.3 there is precisely one element g = (a, b) ∈ Bm,n with o(g) = 2, which
is a contradiction.

Lemma 2.5. Let m and n be two integers. Then, each finite 3-subgroup of
Bm,n is cyclic.

Proof. Assume the opposite. Then, there is a finite 3-subgroup H of Bm,n such
that H is not cyclic. Therefore, by the Fundamental Theorem of Finite Abelian
Groups we have

H ≃
k∏

i=1

Z3ℓi ,
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for some positive integers ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓk with the property |H| = 3ℓ1+ℓ2+···+ℓk

and k ≥ 2. Furthermore, in this situation H has a subgroup K such that

K ≃
k∏

i=1

Z3.

Thus, K contains exactly 3k − 1 distinct elements of order 3. Since k ≥ 2
it follows that Bm,n has at least 8 distinct elements of order 3. Assume that
g = (a, b) ∈ Bm,n is an element of order 3. Then, by Lemma 2.3 we know that
b divides 3. Hence, b ∈ {±1,±3}. Moreover, from the relation o(g) = 3, we get
g2 = g−1. Thus, (a2 − nb2, 2ab+mb2) = (a+mb,−b). So, 2ab+mb2 = −b, and
by using the hypothesis b ̸= 0, we obtain a = −1−mb

2 . This observation shows
that there are at most 4 distinct elements g = (a, b) ∈ Bm,n with o(g) = 3,
which is a contradiction.

Lemma 2.6. Let m and n be two integers. Then, each finite subgroup of Bm,n

is cyclic.

Proof. Let H be a finite subgroup of Bm,n. Then, by Lemma 2.4 there are
non-negative integers α and β such that |H| = 2α × 3β. Let P and Q denote
the Sylow 2-subgroup and the Sylow 3-subgroup of H respectively. Then, by
Lemmas 2.6 and 2.7, P and Q are cyclic groups. Therefore, from the relations
H = P ⊕Q and (|P |, |Q|) = 1, it is concluded that H is a cyclic group.

Corollary 2.2. Let m,n ∈ Z and k ∈ N. Then, Hk := {g ∈ Bm,n : gk = e}
is a finite subgroup of Bm,n. In particular, Sk := {g ∈ Bm,n : o(g) = k} is a
finite set.

Proof. Assume the opposite. Then, we can find a finite subgroup K of Hk with
|K| > k. Therefore, by Lemma 2.8, K is a cyclic group. So, there exists an
element g ∈ K such that K = ⟨g⟩. By the hypothesis we have gk = e and hence
|K| = o(g) ≤ k, which is a contradiction. Since Sk ⊆ Hk, we see that Sk is a
finite set as well.

Lemma 2.7. Let m,n ∈ Z and k ∈ N. Then, for each b ∈ Z there is at most
one integer a such that (a, b) ∈ Bm,n and o((a, b)) = k.

Proof. Assume that g = (a, b) ∈ Bm,n and o(g) = k. Then, by the definition
we have

(1, 0) = gk = (P (a, b,m, n), Q(a, b,m, n)),

for some polynomials P (X1, X2, X3, X4), Q(X1, X2, X3, X4) ∈ Z[X1, X2, X3, X4].
Since a2 = 1−mab−nb2, we can write P (a, b,m, n) = H1(b,m, n)+aH2(b,m, n)
and Q(a, b,m, n) = H3(b,m, n)+aH4(b,m, n), for some H1(X1, X2, X3), H2(X1,
X2, X3), H3(X1, X2, X3), H4(X1, X2, X3) ∈ Z[X1, X2, X3].

By Corollary 2.9, there are only a finite number of elements g ∈ Bm,n with
o(g) = k. Therefore, for each element b ∈ Z, there are only a finite number of
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integers a such that (a, b) ∈ Bm,n and o((a, b)) = k. This observation implies
that for each b ∈ Z, H2(b,m, n) ̸= 0 or H4(b,m, n) ̸= 0. So, we can find at
most one integer a such that H1(b,m, n) + aH2(b,m, n) = 1 and H3(b,m, n) +
aH4(b,m, n) = 0. Thus, for each b ∈ Z, there is at most one integer a such that
(a, b) ∈ Bm,n and o((a, b)) = k.

Let m and n be two integers. In the sequel, we will denote the torsion
subgroup of Bm,n by Tm,n. We recall that the torsion subgroup of Bm,n is
defined as:

Tm,n := {g ∈ Bm,n : o(g) < ∞}.

Lemma 2.8. Let m and n be two integers. Then, the following statements hold:

i) Let g1 = (a1, b1) ∈ Tm,n be an element of order 4. Then, b1 divides 2.

ii) Suppose that g2 = (a2, b2) ∈ Tm,n is an element of order 8. Then, b2 divides
2.

iii) Assume that g3 = (a3, b3) ∈ Tm,n is an element of order 6. Then, b3 divides
3.

iv) Let g4 = (a4, b4) ∈ Tm,n be an element of order 12. Then, b4 divides 3.

Proof. (i) By Lemma 2.3, b1 divides 4 and so b1 ̸= 0. Since o(g1) = 4, it is
clear that o(g21) = 2. Thus, by Lemma 2.3 we have g21 = (−1, 0). Hence, (a21 −
nb21, 2a1b1+mb21) = (−1, 0). So, from the relations b1 ̸= 0 and b1(2a1+mb1) = 0,
it follows that 2a1 +mb1 = 0. Since a21 +ma1b1 + nb21 = 1, it is clear that the
integers a1 and b1 are relatively prime. Therefore, the relation 2a1 = −mb1
shows that b1 divides 2.

(ii) Since o(g2) = 8, it is clear that o(g22) = 4. Also, the relation g22 =
(a22 − nb22, 2a2b2 + mb22) together with (i) implies that 2a2b2 + mb22 divides 2.
Since b2 divides 2a2b2 +mb22, it follows that b2 divides 2.

(iii) Since o(g3) = 6, it follows that o(g33) = 2. Thus, by Lemma 2.3 we have
g33 = (−1, 0). Put t := (−1, 0). Since o(g3) = 6, it can be seen that

(nb23 − a23,−2a3b3 −mb23) = t ∗ g23
= g33 ∗ g23
= g53

= g−1
3

= (a3 +mb3,−b3),

which shows that −2a3b3 − mb23 = −b3. By Lemma 2.3, b3 divides 6 and so
b3 ̸= 0. Thus, mb3 = −2a3 + 1 and hence 2 doesn’t divide b3. Therefore, b3
divides 3.

(iv) Since o(g4) = 12, it is clear that o(g24) = 6. Also, the relation g24 =
(a24 − nb24, 2a4b4 + mb24) together with (iii) implies that 2a4b4 + mb24 divides 3.
Since b4 divides 2a4b4 +mb24, it is concluded that b4 divides 3.
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Lemma 2.9. Let m and n be two integers. Then, the following statements hold:

i) Assume that g ∈ Tm,n is an element of order 2k for some k ∈ N0. Then,
k ≤ 2.

ii) Suppose that h ∈ Tm,n is an element of order 3k for some k ∈ N0. Then,
k ≤ 2.

Proof. (i) Assume the opposite. Then, we have o(g) = 2k for some k ≥ 3.

Therefore, o(g2
k−3

) = 8. By replacing g with g2
k−3

, we may assume that o(g) =
8. Let g1 = (a, b) ∈ Tm,n be an element of order 8. Then, by Lemma 2.11 we
see that b divides 2. Thus, b ∈ {±1,±2}. Since o(g) = 8, one sees that there
are exactly 4 distinct elements of order 8 in the subgroup ⟨g⟩ of Tm,n. Thus, by
Lemma 2.10 for each b ∈ {±1,±2} there is a unique integer a such that g1 =
(a, b) ∈ ⟨g⟩ and o(g1) = 8. Let g2 = (c, d) be an element of ⟨g⟩ with o(g2) = 4.
Then, by Lemma 2.11 we see that d divides 2. Hence, d ∈ {±1,±2}. So, there is
a unique integer a such that g3 = (a, d) ∈ ⟨g⟩ and o(g3) = 8. From the relations
a2 +mad + nd2 = 1 and c2 +mcd + nd2 = 1, we get (a − c)(a + c +md) = 0.
Since o(g2) = 4 and o(g3) = 8, it follows that g2 ̸= g3 and so a ̸= c. Thus,
from the relations a − c ̸= 0 and (a − c)(a + c +md) = 0, it is concluded that
a+ c+md = 0. Therefore, g−1

3 = (a+md,−d) = (−c,−d) = (−1, 0) ∗ g2, which
implies that (g−1

3 )4 = (−1, 0)4 ∗ g42 = e. Hence, 8 = o(g3) = o(g−1
3 ) ≤ 4, which

is a contradiction.
(ii) Assume the opposite. So, we have o(h) = 3k for some k ≥ 3. Hence,

o(h3
k−3

) = 27. By replacing h with h3
k−3

, we my assume that o(h) = 27. Let
h1 = (r, s) ∈ Tm,n be an element of order 27. Then, by Lemma 2.3 we see
that s divides 27. Hence, s ∈ {±1,±3,±9,±27}. Therefore, by Lemma 2.10
there are at most 8 elements h1 = (r, s) ∈ Tm,n with the property o(h1) = 27.
Since o(h) = 27, one sees that there are exactly 18 elements of order 27 in the
subgroup ⟨h⟩ of Tm,n, which is a contradiction.

Lemma 2.10. Let m and n be two integers. Suppose that h ∈ Tm,n is an
element of order 3k for some k ∈ N0. Then, k ≤ 1.

Proof. Assume the opposite. Since by Lemma 2.12 we have k ≤ 2, it follows
that k = 2. Let h1 = (a, b) ∈ Tm,n be an element of order 9. Then, by Lemma
2.3 we see that b divides 9. Hence, b ∈ {±1,±3,±9}. Since o(h) = 9, one sees
that there are exactly 6 elements of order 9 in the subgroup ⟨h⟩ of Tm,n. Thus, by
Lemma 2.10 for each b ∈ {±1,±3,±9} there is a unique integer a such that h1 =
(a, b) ∈ ⟨h⟩ and o(h1) = 9. Let h2 = (c, d) be an element of ⟨h⟩ with o(h2) = 3.
Then, by Lemma 2.3 we see that d divides 3. Hence, d ∈ {±1,±3}. So, there is
a unique integer a such that h3 = (a, d) ∈ ⟨h⟩ and o(h3) = 9. From the relations
a2 +mad + nd2 = 1 and c2 +mcd + nd2 = 1, we get (a − c)(a + c +md) = 0.
Since o(h2) = 3 and o(h3) = 9, it follows that h2 ̸= h3 and so a ̸= c. Thus,
from the relations a − c ̸= 0 and (a − c)(a + c +md) = 0, it is concluded that
a+ c+md = 0. Therefore, h−1

3 = (a+md,−d) = (−c,−d) = (−1, 0)∗h2, which
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implies that (h−1
3 )6 = (−1, 0)6 ∗ h62 = e. Hence, 9 = o(h3) = o(h−1

3 ) ≤ 6, which
is a contradiction.

The following result plays a key role in the proof of our main theorem.

Theorem 2.2. Let m and n be two integers. Then, the Abelian group Tm,n is
isomorphic to Zk for some k ∈ {2, 4, 6}.

Proof. We claim that |Tm,n| ≤ 12. Assume the opposite. Then, we have
|Tm,n| > 12. Therefore, we can find a finite subgroup H of Tm,n with |H| > 12.
By Lemma 2.8, H is a cyclic group. Thus, there is an element g1 ∈ H with
H = ⟨g1⟩. In view of Corollary 2.5, there are integers α1, β1 ∈ N0 such that
o(g1) = 2α1 × 3β1 . Since 2α1 × 3β1 = o(g1) = |H| > 12 = 22 × 3, we can deduce
that α1 ≥ 3 or β1 ≥ 2. Moreover, it is clear that

o(g2
α1

1 ) = 3β1 and o(g3
β1

1 ) = 2α1 .

Therefore, by Lemma 2.12 and Lemma 2.13 we get α1 ≤ 2 and β1 ≤ 1, which is
a contradiction. So, we have |Tm,n| ≤ 12. Hence, by Lemma 2.8 it is concluded
that Tm,n is a cyclic subgroup of Bm,n. Therefore, there exists an element g2 ∈
Tm,n with Tm,n = ⟨g2⟩. In view of Corollary 2.5, there are integers α2, β2 ∈ N0

such that o(g2) = |Tm,n| = 2α2 × 3β2 . Since

o(g2
α2

2 ) = 3β2 and o(g3
β2

2 ) = 2α2 ,

by Lemma 2.12 and Lemma 2.13 we can deduce that α2 ≤ 2, β2 ≤ 1 and
so |Tm,n| divides 12. Since the element t = (−1, 0) ∈ Tm,n is of order 2, it
follows that 2 divides |Tm,n|. Therefore, |Tm,n| ∈ {2, 4, 6, 12}. We claim that
|Tm,n| ≠ 12. Assume the opposite. Then, there exists an element h ∈ Tm,n

such that Tm,n = ⟨h⟩ and o(h) = 12. Let h1 = (a, b) ∈ ⟨h⟩ be an element of
order 12. Then, by Lemma 2.11 we see that b divides 3. Hence, b ∈ {±1,±3}.
Since o(h) = 12, one sees that there are exactly 4 distinct elements of order
12 in the group ⟨h⟩ = Tm,n. Thus, by Lemma 2.10 for each b ∈ {±1,±3}
there is a unique integer a such that h1 = (a, b) ∈ ⟨h⟩ and o(h1) = 12. Let
h2 = (c, d) be an element of ⟨h⟩ with o(h2) = 6. Then, by Lemma 2.11 we see
that d divides 3. Hence, d ∈ {±1,±3}. So, there is a unique integer a such
that h3 = (a, d) ∈ ⟨h⟩ and o(h3) = 12. From the relations a2 +mad + nd2 = 1
and c2 + mcd + nd2 = 1, we get (a − c)(a + c + md) = 0. Since o(h2) = 6
and o(h3) = 12, it follows that h2 ̸= h3 and so a ̸= c. Thus, from the relations
a − c ̸= 0 and (a − c)(a + c + md) = 0, it is concluded that a + c + md = 0.
Therefore, h−1

3 = (a + md,−d) = (−c,−d) = (−1, 0) ∗ h2, which implies that
(h−1

3 )6 = (−1, 0)6 ∗ h62 = e. Hence, 12 = o(h3) = o(h−1
3 ) ≤ 6, which is a

contradiction. Therefore, Tm,n is a finite cyclic group with |Tm,n| ∈ {2, 4, 6}.
Consequently, Tm,n is isomorphic to Zk for some k ∈ {2, 4, 6}, as required.

The following auxiliary lemmas are needed in the proof of Theorem 2.20.
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Lemma 2.11. Let m and n be two integers and set δ := m2 − 4n. If δ < 0,
then the Abelian group Bm,n is isomorphic to Zk for some k ∈ {2, 4, 6}.

Proof. By Theorem 2.14 it is enough to prove that Bm,n = Tm,n. Also, in order
to prove this assertion, it suffices for us to prove that Bm,n is a finite group.
Assume that (a, b) ∈ Bm,n. Then, by the definition we have a2+mab+nb2 = 1.
Therefore, (2a+mb)2 − δb2 = 4(a2 +mab+ nb2) = 4. Hence,

0 ≤ (2a+mb)2 ≤ (2a+mb)2−δb2 = 4, and 0 ≤ b2 ≤ −δb2 ≤ (2a+mb)2−δb2 = 4.

Therefore, {2a+mb, b}⊆{0,±1,±2}. Thus, Bm,n is a finite group, as required.

Lemma 2.12. Let m and n be two integers and set δ := m2 − 4n. If δ = 0,
then the Abelian group Bm,n is isomorphic to Z2 × Z.

Proof. Assume that (a, b) ∈ Bm,n. Then, by the definition we have a2+mab+
nb2 = 1. Therefore, (2a +mb)2 = (2a +mb)2 − δb2 = 4(a2 +mab + nb2) = 4.
Hence, 2a+mb = ±2 and so (a, b) is a solution to one of the two-variable linear
Diophantine equations 2x +my = 2 or 2x +my = −2. By solving these linear
Diophantine equations we obtain, (a, b) = (±1 + mk

µ , −2k
µ ) ∈ Bm,n, where k ∈ Z

and µ is the greatest common divisor of the integers 2 and m.
Set t := (−1, 0) and g := (1 + m

µ ,
−2
µ ). Then, by using induction on k and

applying the relation m2 − 4n = 0, it can be seen that

gk = (1 +
mk

µ
,
−2k

µ
), and g−k = (1− mk

µ
,
2k

µ
),

for each k ∈ N. Therefore, gk = (1+ mk
µ , −2k

µ ) and t ∗ g−k = (−1+ mk
µ , −2k

µ ), for
each k ∈ Z. Hence,

Bm,n =

{
(±1 +

mk

µ
,
−2k

µ
) : k ∈ Z

}
=
{
tℓ ∗ gk : ℓ, k ∈ Z

}
= ⟨t⟩ ∗ ⟨g⟩.

Furthermore, from the relations o(g) = ∞ and o(t) = 2, we can deduce that
⟨t⟩ ∩ ⟨g⟩ = {e}. Therefore, Bm,n = ⟨t⟩ ⊕ ⟨g⟩ ≃ Z2 × Z, as required.

Lemma 2.13. Let m and n be two integers and set δ := m2 − 4n. If δ is a
positive perfect square integer, then the Abelian group Bm,n is isomorphic to Z2.

Proof. By assumption there is a positive integer λ such that m2−4n = δ = λ2.
Suppose that (a, b) ∈ Bm,n. Then, by the definition we have a2+mab+nb2 = 1.
Therefore,

(2a+mb+ λb)(2a+mb− λb) = (2a+mb)2 − δb2 = 4(a2 +mab+ nb2) = 4.

In fact, there are precisely six cases. In the following four cases:
Case 1. 2a+mb+ λb = 1 and 2a+mb− λb = 4.
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Case 2. 2a+mb+ λb = 4 and 2a+mb− λb = 1.
Case 3. 2a+mb+ λb = −1 and 2a+mb− λb = −4.
Case 4. 2a+mb+λb = −4 and 2a+mb−λb = −1, we see that 2a+mb = ±5

2 ,
contradicting the fact that 2a + mb is an integer. Also, in the following two
remainder cases,
Case 5. 2a +mb + λb = 2 and 2a +mb − λb = 2, Case 6. 2a +mb + λb = −2
and 2a + mb − λb = −2, we see that (a, b) = (±1, 0). Therefore, Bm,n =
{(1, 0), (−1, 0)} ≃ Z2, as required.

Recall that Pell’s equation, also called the Pell-Fermat equation, is any Dio-
phantine equation of the form x2−ny2 = 1, where n is a given positive nonsquare
integer. It is well-known that Pell’s equation has a infinite solutions. Also, this
equation has a solution (a1, b1) with a1 ≥ 1 and b1 ≥ 1 which has some special
properties and is called the fundamental solution. Furthermore, once the funda-
mental solution is found, all remaining solutions may be calculated algebraically
from

ak + bk
√
n = (a1 + b1

√
n)k,

expanding the right side, equating coefficients of
√
n on both sides, and equating

the other terms on both sides. This yields the recurrence relation

(ak+1, bk+1) = (a1ak + nb1bk, a1bk + b1ak).

In this situation, the set of all solutions of the equation x2−ny2 = 1 is equal to

{(±1, 0)} ∪ {(±ak,±bk) : k ∈ N}.

For more details see [1]. In order to establish our next lemma, we use a proof
similar to the proof of [1, p. 180, Theorem 7].

Lemma 2.14. Let m and n be two integers and set δ := m2 − 4n. If δ is a
positive nonsquare integer, then the Abelian group Bm,n is isomorphic to Z2×Z.

Proof. Let (u1, v1) denote the fundamental solution of the Pell’s equation x2−
δy2 = 1. Set (α, β) := (u1−mv1, 2v1). Then, it is easy to see that (α, β) ∈ Bm,n,

α+ mβ
2 = u1 > 0 and β

2 = v1 > 0. Set M := α+ mβ
2 + β

2

√
δ. If (α′, β′) ∈ Bm,n

is an element such that α′ + mβ′

2 > 0 and β′

2 > 0, then the condition

α′ +
mβ′

2
+

β′

2

√
δ ≤ M,

implies that α′+ mβ′

2 ≤ M and β′

2 ≤ M . Therefore, 1 ≤ β′ ≤ 2M and −|m|M ≤
α′ ≤ (1 + |m|)M . Thus, in particular, there are only finitely many choices for
the integers α′ and β′. Let us choose g = (a1, b1) ∈ Bm,n for which a1+

mb1
2 > 0,

b1
2 > 0 and a1+

mb1
2 + b1

2

√
δ is least. This is possible since there are only finitely

many elements (α′, β′) ∈ Bm,n such that α′ + mβ′

2 > 0 and β′

2 > 0, and

α′ +
mβ′

2
+

β′

2

√
δ ≤ M.
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For each positive integer k, define ak and bk by

(2.1) ak +
mbk
2

+
bk
2

√
δ =

(
a1 +

mb1
2

+
b1
2

√
δ

)k

.

Indeed, since by the hypothesis δ is a positive nonsquare integer, we see that
√
δ

is an irrational number. Therefore, for each positive integer k, the elements ak
and bk can be calculated algebraically from (2.18.1), expanding the right side,
equating coefficients of

√
δ on both sides, and equating the other terms on both

sides.
By using induction on k, we prove that ak +

mbk
2 > 0, bk

2 > 0 and (ak, bk) =
gk ∈ Bm,n, for each k ∈ N. For k = 1 the assertion holds by the hypoth-
esis. Now, let k > 1 and assume that the result has been proved for k − 1.
Then, by inductive assumption we know that ak−1 +

mbk−1

2 > 0,
bk−1

2 > 0 and

(ak−1, bk−1) = gk−1 ∈ Bm,n. By using the fact that
√
δ is an irrational number,

from the relations

ak +
mbk
2

+
bk
2

√
δ =

(
a1 +

mb1
2

+
b1
2

√
δ

)k

=

(
a1 +

mb1
2

+
b1
2

√
δ

)(
a1 +

mb1
2

+
b1
2

√
δ

)k−1

=

(
a1 +

mb1
2

+
b1
2

√
δ

)(
ak−1 +

mbk−1

2
+

bk−1

2

√
δ

)
,

we obtain, bk = a1bk−1 + b1ak−1 +mb1bk−1 and

ak +
mbk
2

= a1ak−1 +
m(a1bk−1 + b1ak−1)

2
+

m2b1bk−1

4
+

δb1bk−1

4

= a1ak−1 +
m(a1bk−1 + b1ak−1)

2
+

m2b1bk−1

4
+

(m2 − 4n)b1bk−1

4

= a1ak−1 − nb1bk−1 +
m(a1bk−1 + b1ak−1 +mb1bk−1)

2

= a1ak−1 − nb1bk−1 +
mbk
2

,

which implies that ak = a1ak−1 − nb1bk−1. Thus,

(ak, bk) = (a1ak−1 − nb1bk−1, a1bk−1 + b1ak−1 +mb1bk−1) = g ∗ gk−1 = gk.

Also, the relations

bk
2

=

(
a1 +

mb1
2

)(
bk−1

2

)
+

(
ak−1 +

mbk−1

2

)(
b1
2

)
,

and

ak +
mbk
2

=

(
a1 +

mb1
2

)(
ak−1 +

mbk−1

2

)
+ δ

(
b1
2

)(
bk−1

2

)
,
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together with the hypothesis a1 +
mb1
2 > 0, ak−1 +

mbk−1

2 > 0, b1
2 > 0,

bk−1

2 > 0,

and δ > 0, imply that ak +
mbk
2 > 0 and bk

2 > 0. This completes the inductive
step.

We claim that o(g) = ∞. Assume the opposite and let o(g) = j < ∞. Then,
we see that gj = (aj , bj) = (1, 0). Therefore, bj = 0, which is impossible since
bj
2 > 0. Thus, o(g) = ∞ and so the cyclic subgroup ⟨g⟩ of Bm,n is isomorphic
to Z.

Let h = (a′, b′) ∈ (Bm,n \ Tm,n). Then, by the definition we have o(h) = ∞.
Set t = (−1, 0) ∈ Bm,n. Since o(t) = 2, it is clear that t ∈ Tm,n. Also, from the
assumption o(h) = ∞ it follows that b′ ̸= 0 and the elements h, h−1, t∗h, t∗h−1

are different. Therefore, the relation{
h, h−1, t ∗ h, t ∗ h−1

}
=
{
(a′, b′), (a′ +mb′,−b′), (−a′,−b′), (−a′ −mb′, b′)

}
,

implies that 2a′ +mb′ ̸= 0 and hence a′ + mb′

2 ̸= 0. Since{
(u+

mv

2
,
v

2
) : (u, v) ∈

{
h, h−1, t ∗ h, t ∗ h−1

}}
=

{
(±(a′ +

mb′

2
),±b′

2
)

}
,

we can find an element (a, b) ∈ {h, h−1, t ∗ h, t ∗ h−1} such that a+ mb
2 > 0 and

b
2 > 0. We show that (a, b) = gℓ for some ℓ ∈ N.

Since (a1, b1) was chosen as the element of Bm,n for which a1 +
mb1
2 > 0,

b1
2 > 0 and a1 +

mb1
2 + b1

2

√
δ is least, we see that

(2.2) a1 +
mb1
2

+
b1
2

√
δ ≤ a+

mb

2
+

b

2

√
δ.

We assert that there is a positive integer ℓ such that

(2.3)

(
a1 +

mb1
2

+
b1
2

√
δ

)ℓ

≤ a+
mb

2
+

b

2

√
δ <

(
a1 +

mb1
2

+
b1
2

√
δ

)ℓ+1

.

Since by the hypothesis δ is a positive nonsquare integer, it follows that δ ≥ 2.
Therefore, by using the hypothesis a1 +

mb1
2 > 0 and b1

2 > 0, one sees that

a1 +
mb1
2

+
b1
2

√
δ =

2a1 +mb1
2

+
b1
2

√
δ ≥ 1

2
+

1

2

√
δ ≥ 1

2
+

1

2

√
2 >

1

2
+

1

2
= 1.

Thus, a1 +
mb1
2 + b1

2

√
δ > 1 and hence the powers of a1 +

mb1
2 + b1

2

√
δ, became

arbitrary large. So, there is a largest value of ℓ for which(
a1 +

mb1
2

+
b1
2

√
δ

)ℓ

≤ a+
mb

2
+

b

2

√
δ.

Furthermore, by the relation (2.18.2) we know that this largest value of ℓ is
at least 1. Moreover, it is clear that this largest value of ℓ forces (2.18.3) to
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hold. Let us multiply (2.18.3) by (a1 +
mb1
2 − b1

2

√
δ)ℓ, which is positive since

a1 +
mb1
2 + b1

2

√
δ > 0 and(

a1 +
mb1
2

− b1
2

√
δ

)(
a1 +

mb1
2

+
b1
2

√
δ

)
= a21 +ma1b1 + nb21 = 1.

Then, we see that

(2.4) 1 ≤
(
a+

mb

2
+

b

2

√
δ

)(
a1 +

mb1
2

− b1
2

√
δ

)ℓ

< a1 +
mb1
2

+
b1
2

√
δ.

Since g = (a1, b1), g
ℓ = (aℓ, bℓ) ∈ Bm,n, one sees that(

aℓ +
mbℓ
2

+
bℓ
2

√
δ

)(
aℓ +

mbℓ
2

− bℓ
2

√
δ

)
=

(
aℓ +

mbℓ
2

)2

− δ

(
bℓ
2

)2

= a2ℓ +maℓbℓ + nb2ℓ = 1,

and (
aℓ +

mbℓ
2

+
bℓ
2

√
δ

)(
a1 +

mb1
2

− b1
2

√
δ

)ℓ

=

(
a1 +

mb1
2

+
b1
2

√
δ

)ℓ(
a1 +

mb1
2

− b1
2

√
δ

)ℓ

=

((
a1 +

mb1
2

+
b1
2

√
δ

)(
a1 +

mb1
2

− b1
2

√
δ

))ℓ

=

((
a1 +

mb1
2

)2

− δ

(
b1
2

)2
)ℓ

=
(
a21 +ma1b1 + nb21

)ℓ
= 1ℓ = 1.

Therefore, (
aℓ +

mbℓ
2

+
bℓ
2

√
δ

)(
aℓ +

mbℓ
2

− bℓ
2

√
δ

)
= 1

=

(
aℓ +

mbℓ
2

+
bℓ
2

√
δ

)(
a1 +

mb1
2

− b1
2

√
δ

)ℓ

,

and so (
a1 +

mb1
2

− b1
2

√
δ

)ℓ

= aℓ +
mbℓ
2

− bℓ
2

√
δ.

Set c := aaℓ +mabℓ + nbbℓ, and d := baℓ − abℓ. Obviously, c, d ∈ Z. Also, it
is straightforward to see that

c+
md

2
=

(
a+

mb

2

)(
aℓ +

mbℓ
2

)
− δ

(
b

2

)(
bℓ
2

)
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and
d

2
=

(
b

2

)(
aℓ +

mbℓ
2

)
−
(
a+

mb

2

)(
bℓ
2

)
.

So, we have(
a+

mb

2
+

b

2

√
δ

)(
a1 +

mb1
2

− b1
2

√
δ

)ℓ

=

(
a+

mb

2
+

b

2

√
δ

)(
aℓ +

mbℓ
2

− bℓ
2

√
δ

)
= c+

md

2
+

d

2

√
δ.

Moreover, it is easy to see that(
a+

mb

2
− b

2

√
δ

)(
aℓ +

mbℓ
2

+
bℓ
2

√
δ

)
= c+

md

2
− d

2

√
δ.

By using these relations it can be seen that

c2 +mcd+ nd2 =

(
c+

md

2

)2

− δ

(
d

2

)2

=

((
a+

mb

2

)2

− δ

(
b

2

)2
)((

aℓ +
mbℓ
2

)2

− δ

(
bℓ
2

)2
)

=
(
a2 +mab+ nb2

) (
a2ℓ +maℓbℓ + nb2ℓ

)
= (1)(1) = 1.

Therefore, (c, d) ∈ Bm,n. Furthermore, (2.18.4) asserts that

(2.5) 1 ≤ c+
md

2
+

d

2

√
δ < a1 +

mb1
2

+
b1
2

√
δ.

We claim that (c, d) = (1, 0). Assume the opposite. If d = 0, then from the
relation c2 + mcd + nd2 = 1 we get c = ±1 and so, by (2.18.5) it follows that
c = 1. Thus, (c, d) = (1, 0) which is a contradiction. Also, if c + md

2 = 0, then
from the relation (

c+
md

2

)2

− δ

(
d

2

)2

= 1,

we can deduce −δ
(
d
2

)2
= 1 and so δ < 0, which is a contradiction. Hence, d ̸= 0

and c+ md
2 ̸= 0. In this situation we claim that c+ md

2 + d
2

√
δ ≤ 1. Assume the

opposite. Then, we have c+ md
2 + d

2

√
δ > 1. Let us consider the following three

cases:
Case 1. c+ md

2 < 0 and d
2 < 0. Then, c+ md

2 + d
2

√
δ < 0, which contradicts the

assumption that c+ md
2 + d

2

√
δ > 1.

Case 2. c+ md
2 < 0 and d

2 > 0. Then

−
(
c+

md

2

)
+

d

2

√
δ > c+

md

2
+

d

2

√
δ > 1,
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and so

− 1 = −(c2 +mcd+ nd2) = δ

(
d

2

)2

−
(
c+

md

2

)2

=

(
−
(
c+

md

2

)
+

d

2

√
δ

)(
c+

md

2
+

d

2

√
δ

)
> 1,

which is absurd.
Case 3. c+ md

2 > 0 and d
2 < 0. Then

c+
md

2
− d

2

√
δ > c+

md

2
+

d

2

√
δ > 1,

and so

1 = c2 +mcd+ nd2 =

(
c+

md

2

)2

− δ

(
d

2

)2

=

(
c+

md

2
− d

2

√
δ

)(
c+

md

2
+

d

2

√
δ

)
> 1,

which is also absurd. Thus, the only possible case is c + md
2 > 0 and d

2 > 0.
However, if this is the case, then (2.18.5) contradicts the way in which (a1, b1)
was chosen. Therefore, we must have

c+
md

2
+

d

2

√
δ ≤ 1.

Then, (2.18.5) implies that

c+
md

2
+

d

2

√
δ = 1.

So, by using the fact that
√
δ is an irrational number, we can deduce that

(c, d) = (1, 0), which is a contradiction. Thus, we have (c, d) = (1, 0) and hence
c+ md

2 + d
2

√
δ = 1. Therefore,(

a+
mb

2
+

b

2

√
δ

)(
a1 +

mb1
2

− b1
2

√
δ

)ℓ

= 1.

Multiplying both sides of this equation by
(
a1 +

mb1
2 + b1

2

√
δ
)ℓ

, we see that

a+
mb

2
+

b

2

√
δ =

(
a1 +

mb1
2

+
b1
2

√
δ

)ℓ

= aℓ +
mbℓ
2

+
bℓ
2

√
δ.

Thus, by using the fact that
√
δ is an irrational number, we get (a, b) = (aℓ, bℓ) =

gℓ. Therefore, gℓ = (a, b) ∈ {h, h−1, t∗h, t∗h−1} and so h = trgs for some integers
r and s. Since t ∈ Tm,n, we see that h ∈ Tm,n ∗ ⟨g⟩. So,

(Bm,n \ Tm,n) ⊆ Tm,n ∗ ⟨g⟩.
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Hence,

Bm,n = (Bm,n \ Tm,n) ∪ Tm,n ⊆ Tm,n ∗ ⟨g⟩ ⊆ Bm,n,

which means that Bm,n = Tm,n ∗ ⟨g⟩. Also, by using the assumption o(g) = ∞,
we can deduce that Tm,n∩⟨g⟩ = {e}. Therefore, Bm,n = Tm,n⊕⟨g⟩. By Theorem
2.14 there exists an element θ ∈ Tm,n such that Tm,n = ⟨θ⟩. Set h′ := θ ∗ g.
Since h′ ∈ (Bm,n \ Tm,n), by the same argument we can find integers r′, s′ ∈ Z
such that θ ∗ g = h′ = tr

′ ∗ gs′ . Since Bm,n = Tm,n ⊕ ⟨g⟩ and θ, t ∈ Tm,n it is
concluded that θ = tr

′ ∈ ⟨t⟩. Therefore, Tm,n = ⟨θ⟩ ⊆ ⟨t⟩ ⊆ Tm,n, which means
that Tm,n = ⟨t⟩ = {e, t}. Thus, Bm,n = Tm,n ⊕ ⟨g⟩ = ⟨t⟩ ⊕ ⟨g⟩ ≃ Z2 × Z.

Corollary 2.3. Assume that n is a given positive nonsquare integer. Then, the
Abelian group of all integer solutions of the Pell’s equatuion x2 − ny2 = 1 is
isomorphic to Z2 × Z.

Proof. The assertion follows from Lemma 2.18.

We are now in a position to use the previous results to produce a proof of
our main theorem.

Theorem 2.3. Let m and n be two integers. Then, the Abelian group Bm,n is
isomorphic to one of the groups Z2, Z4, Z6 and Z2 × Z.

Proof. The assertion follows from Lemmas 2.15, 2.16, 2.17 and 2.18.

Example 2.4. (i) Assume that n > 0 is a given perfect square integer. Then,
by Lemma 2.17 we see that B0,−n = T0,−n = {(1, 0), (−1, 0)} ≃ Z2.

(ii) Assume that n is a given positive nonsquare integer. Then, by Corollary
2.19 we have B0,−n ≃ Z2 × Z and so T0,−n = {(1, 0), (−1, 0)} ≃ Z2.

(iii) Let g = (0, 1) ∈ B0,1 = {(1, 0), (−1, 0), (0, 1), (0,−1)}. Then, one can
see that o(g) = 4 and B0,1 = T0,1 = ⟨g⟩ ≃ Z4.

(iv) Let g = (0,−1) ∈ B−1,1. Then, it is easy to see that o(g) = 6 and so, by
Theorem 2.14 and Lemma 2.15 we can deduce that B−1,1 = T−1,1 = ⟨g⟩ ≃ Z6.

Remark 2.5. Let (R,+, ·) be a commutative ring with the identity element
and η, ξ, ζ be three arbitrary elements of R. Set

S(R, η, ξ, ζ) := {(u, v) ∈ R×R : u2 + ηuv + ξv2 = ζ}.

Assume that S(R, η, ξ, ζ) ̸= ∅ and (u, v) ∈ S(R, η, ξ, ζ). Then, for each (a, b) ∈
G(R, η, ξ) the element

(a, b) · (u, v) := (au− ξbv, bu+ av + ηbv),

belongs to S(R, η, ξ, ζ). In fact, by this definition the group G(R, η, ξ) acts on
the set S(R, η, ξ, ζ), provided that S(R, η, ξ, ζ) ̸= ∅.
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