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Abstract. The present paper aims to introduce and study the ω-continuity of the
group operation in the first (resp., second) variable and some basic properties and
relationships concerning left and right translation functions are obtained. Also, we have
shown that the group operation is ω-continuous at the first (resp., second) variable if
and only if it is ω-irresolute at the first (resp., second) variable.
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1. Introduction

Topology is a special type of geometry and includes several fields of study and
it has many interesting applications in graph theory. Hdeib H. Z. [7] defined
and studied ω-closed sets and ω-open sets. He used ω-closed sets to define a
new type of mappings called ω-closed functions. He obtained many properties
and relationships concerning these concepts. Also, he used ω-open sets to de-
fine ω − continuous mappings [8] and he studied this new type of continuous
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mapping and obtained certain properties and relationships concerning this type
of continuous mappings.

The notion of a topological group goes back to the second half of the nine-
teenth century. Topological groups are objects that combine two separate al-
gebraic structures with the topology structure and the requirement links them
that multiplication and inversion are continuous functions.

In this article, we study the ω-continuity of a group operation at the first
(resp., second) variable respectively and obtain some basic properties of this
kind of ω-continuity of groups.

2. Preliminaries

Let A be a subset of a topological space (X, τ), the interior and closure of
A are denoted by Int(A) and Cl(A), respectively. A point x of X is called
a condensation point of A [9] if G ∩ A is uncountable for each open set G
containing x. A is called ω-closed [7] if it contains all it is condensation points.
The complement of an ω-closed set is called an ω-open set. The intersection of
all ω-closed subsets of X which contain A is called ω-closure of A and is denoted
by ωClA [4] and [7]. A point x ∈ A is said to be an ω-interior point of A [8],
if there exists an ω-open set U containing x such that U ⊆ A. The set of all
ω-interior points of A is denoted by ωIntA.

The discrete topology is denoted by τdis, and the family of all ω-open subsets
of a space (X, τ), denoted by τω from a topology on X finer than τ ([4]). A
compact space is a topological space for which every covering of that space by
a collection of open sets has a finite subcover.

Definition 2.1 ([5]). A space (X, τ) is said to be ω − compact provided that
every ω-open cover of X has a finite subcover.

Definition 2.2 ([5]). A space (X, τ) is said to be ω − lindelof provided that
every ω-open cover of X has a countable subcover.

Definition 2.3 ([4]). A space (X, τ) is said to be locally countable if each point
of X has a countable open neighbourhood.

Theorem 2.1 ([3]). Let (X, τ) be a topological space, then τω = τdis if and only
if the space (X, τ) is locally-countable.

Theorem 2.2 ([4]). For any topological space (X, τ) and any subset A of X,
(τA)

ω = τωA .

The proof of the following lemma can be found in [15]. Also, we can find a
similar proof in [14], Lemma 3 and [16], Lemma 3.3].

Definition 2.4 ([8]). Let f : (X, τ) → (Y, ρ) be a mapping, f is said to be
ω-continuous at a point x ∈ X, if for each open subset V in Y containing f(x)
there exists an ω-open subset U of X contains x such that f(U) ⊆ V, and f is
called ω-continuous if it is ω-continuous at each point x of X.
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Definition 2.5 ([1]). Let f : (X, τ) → (Y, ρ) be a mapping. Then f is said to
be ω-irresolute, if f−1(F ) is an ω-closed in X for each ω-closed set F in Y.

Definition 2.6 ([10]). Let f : (X, τ) → (Y, ρ) be a mapping, then f is an
ω-homeomorphism if and only if f is bijective and f, f−1 are ω-irresolute.

Definition 2.7 ([11]). A space (X, τ) is said to be lindelof provided that every
open cover of X has a countable subcover.

Lemma 2.1 ([4]). Let (X, τ) be a topological space. Then X is ω-lindelof if and
only if it is lindelof.

Definition 2.8 ([12]). A topological space (X, τ) is called a normal space if
given any disjoint closed sets E and F, there are neighbourhoods U of E and V
of F with U ∩ V = ϕ.

Definition 2.9 ([13]). Let X be a nonempty set and µ : X → X be a binary
operation defined by µ(g1, g2) = g1∗g2. The pair (X, ∗) is a group if the following
three properties hold:

1. For all a, b, c ∈ X we have (a ∗ b) ∗ c = a ∗ (b ∗ c) (associative law);

2. There exists an e ∈ X such that for all a ∈ X we have a ∗ e = e ∗ a = a
(existence of identity element);

3. For all a ∈ X there exists a−1 ∈ X such that a ∗ a−1 = a−1 ∗ a = e (each
element has inverse).

Definition 2.10 ([13]). Let (X, ∗) be a group. If X has the property that a∗b =
b ∗ a for all a, b ∈ X, then we call X abelian.

Definition 2.11 ([17]). Let (X, ∗) be a group and H be a subset of X. We call
H a subgroup of X when the following hold:

1. H ̸= ϕ;

2. If x, y ∈ H, then x ∗ y ∈ H;

3. If x ∈ H, then x−1 ∈ H.

Definition 2.12 ([17]). Let X be a group, H a subgroup of H and g ∈ X. The
sets gH = {g ∗ h, h ∈ H} and Hg = {h ∗ g, h ∈ H} are called the left and right
cosets of H in X, respectivly.

3. The results

We introduce the following definition
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Definition 3.1. Let (X, ∗) be a group and τ be a topology on X. The multi-
plication map µ : X ∗ X → X is said to be ω-continuous at the first (second)
variable if, for any fixed point a ∈ X, any point b ∈ X and any open set G in
X which contains µ(b, a) = b ∗ a, (µ(a, b) = a ∗ b), there exists an ω-open set V
in X such that b ∈ V and V ∗ a ⊆ G, (a ∗ V ⊆ G).

In our first result, we prove that for abelian groups, the ω-continuity of
multiplication maps at the first and second variable are equivalent.

Theorem 3.1. If (X, ∗) is an abelian group and τ a topology on X. Then,
the multiplication map µ is ω-continuous at the first variable if and only if it is
ω-continuous at the second variable.

Proof. Let µ be ω-continuous at the first variable. Suppose a is any fixed
point of X and b is an arbitrary point of X. To show µ is ω-continuous at the
second variable. Let O be any open subset of X which contains a ∗ b. But,
since a ∗ b = b ∗ a, so, b ∗ a ∈ O, Since µ is ω-continuous at the first variable,
then by Definition 3.1, there is an ω-open subset V of X which contains b and
V ∗ a ⊆ O. But, V ∗ a = a ∗ V , so a ∗ V ⊆ O. Hence, µ is ω-continuous at the
second variable. The converse part is followed similarly.

Theorem 3.2. If (X, ∗) is any group and τ a topology on X such that (X, τ)
is locally countable, then the multiplication map of X is ω − continuous at the
first variable as well as at the second variable.

Proof. Since (X, τ) is locally countable, so, by Theorem 2.1, τω = τdis. For any
a, b ∈ X and any open subset G of X such that a∗b ∈ G, we have {a}, {b} ∈ τω,
a ∗ {b} = {a ∗ b} ⊆ G and {a} ∗ b = {a ∗ b} ⊆ G. Thus, µ is ω-continuous at the
first and second variables.

Remark 3.1. The following example shows that the ω-continuity of the multi-
plication map in the first and second variable does not imply that the group is
abelian and also does not imply that the group is semi-topological.

Example 3.1. Consider the symmetric group S3 of the set A = {1, 2, 3}. The
elements of this group are f1 = 1, f2 = (1, 2), f3 = (2, 3), f4 = (1, 3), f5 =
(1, 2, 3), f6 = (1, 3, 2), so, that S3={1,(1,2),(1,3),(2,3), (1,2,3), (132)} with the
usual composition of maps (S3, ◦) forms a non-commutative group, let τ =
{ϕ, S3, {f1}, {f2, f3, f4}, {f1, f2, f3, f4}, {f1, f5, f6}} be a topology on S3 then,
the multiplication map is not continuous neither in the first nor in the second
variable because for i = 2, 3, 4 we have fi ◦ fi=f1 and {f2, f3, f4} ◦ fi ⊈ {f1}.
Also, f1 ◦ f2, f3, f4 ⊆ f1 since S3 × S3 is finite, so, by (τ × τ)ω =τdis, S3 is finite
τω = τdis, and τω × τω = τdis × τdis = (τ × τ)ω = τω × τω.

Theorem 3.3. Let (X, ∗) be a group and τ be a topology on X and the multipli-
cation map µ is ω-continuous at the second (first) variable. For any A,B ⊆ X
and a ∈ X, the following statements are true:
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1. a ∗ ω ClB ⊆ Cl(a ∗B)and ((ωClB) ∗ a ⊆ Cl(B ∗ a)).

2. ωCl(a ∗B) ⊆ a ∗ ClB and (ωCl(B ∗ a) ⊆ (ClB) ∗ a).

3. A ∗ ωClB ⊆ Cl(A ∗B) and ((ωClB) ∗A ⊆ Cl(B ∗A)).

Proof. 1. Let y ∈ a ∗ ωClB, and let G be an open subset of X, such that y
∈ G. Then, there is x ∈ ωClB such that y= a ∗ x. Since µ is ω − continuous
at the second variable, there exists an ω-open set V in X such that x ∈ V and
a ∗V ⊆ G. Since x ∈ V and x ∈ ωClB, then V ∩B ̸= ϕ, so, there is, s ∈ V ∩B.
Then, a∗ s ∈ a∗V and a∗ s ∈ a∗B, so, (a∗V )∩ (a∗B) ̸= ϕ. Hence, G∩ (a∗B)
̸= ϕ. This means that, y ∈ Cl(a ∗B). Thus, a ∗ ωClB ⊆ Cl(a ∗B).

2. By (1) we have a−1(ω(Cla∗B)) ⊆ Cl(a−1∗(a∗B)) = Cl(a−1∗a)∗B = ClB.
Therefore, a ∗ (a−1 ∗ (ωCl(a ∗B)) ⊆ a ∗ ClB. That is, ωCl(a ∗B) ⊆ a ∗ ClB.

3. By (1) A∗ωClB =
⋃

a∈A(a∗ωClB) ⊆
⋃

a∈ACl(a∗B) ⊆ Cl
⋃

a∈A(a∗B) =
Cl(A ∗B).

Theorem 3.4. Let (X, ∗) be a group and τ be a topology on X, in which the
multiplication map µ is ω-continuous at the second (first) variable. Then, for
each A,B ⊆ X and a ∈ X, the following statements hold:

1. Int(a ∗B) ⊆ a ∗ ωIntB and (Int(B ∗ a) ⊆ (ωIntB) ∗ a);

2. a ∗ IntB ⊆ ωInt(a ∗B) and ((IntB) ∗ a ⊆ ωInt(B ∗ a));

3. A ∗ IntB ⊆ ωInt(A ∗B) and ((IntB) ∗A ⊆ ωInt(B ∗A)).

Proof. 1. Let y ∈ Int(a ∗ B). Then, there is an open set O in X such that
y ∈ O ⊆ a ∗ B, then there is b ∈ B such that y = a ∗ b. By ω-continuity of µ
at the second variable, there exists an ω-open subset V of X such that b ∈ V
and a ∗ V ⊆ O, that is, a ∗ V ⊆ a ∗ B , so, a−1 ∗ (a ∗ V ) ⊆ a−1 ∗ (a ∗ B),
hence V ⊆ B. This means that, b ∈ ωIntB, so, y = a ∗ b ∈ a ∗ ωIntB. Hence,
Int(a ∗B) ⊆ a ∗ ωIntB.

2. a ∗ IntB = a ∗ Int(e ∗B) = a ∗ Int(a−1 ∗ (a ∗B)) ⊆ a ∗ (a−1ωInt(a ∗B))
= (a ∗ a−1) ∗ ωInt(a ∗B) = e ∗ ωInt(a ∗B) = ωInt(a ∗B).

3. A ∗ IntB =
⋃

a∈A(a ∗ IntB) ⊆
⋃

a∈A ωInt(a ∗ B) ⊆ ωInt
⋃

a∈A(a ∗ B) =
ωInt(A ∗B).

Theorem 3.5. Let (X, ∗) be a group and τ be a topology on X, then:

1. the multiplication map µ is ω-continuous at the second variable if and only
if the left translation function ιa : X → X is ω-continuous, for each a ∈ X;

2. the multiplication map µ is ω-continuous at the first variable if and only
if the right translation function ra : X → X is ω-continuous, for each
a ∈ X.
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Proof. We prove (1) and the proof of (2) is completely similar.
Let the multiplication map µ is ω − continuous at the second variable. To

show that ιa is ω − continuous, for each a ∈ X.
Let x ∈ X and O be any open subset of X such that ιa(x) ∈ O (That is,

a ∗ x ∈ O.) So, there is an ω− open set V in X such that x ∈ V and a ∗ V ⊆ O,
that is ιa(V ) ⊆ O, this means that, ιa is ω − continuous at x. But, since a and
x are arbitrary points of X, therefore, ιa is ω-continuous for each a ∈ X.

Suppose that ιa is ω-continuous, for each a ∈ X. Now, let a be a fixed point
of X, x ∈ X and O be an arbitrary open subset of X such that a ∗ x ∈ O. That
is, ιa ∈ O. By ω-continuity of ιa, there is an ω-open set V in X such that x ∈ V
and ιa(V ) ⊆ G. Hence, a ∗ V ⊆ O, so, that µ is ω − continuous at the second
variable.

Corollary 3.1. Let τ be any topology on a group (X, ∗), then:

1. the multiplication map µ is ω-continuous at the second variable if and only
if the left translation function ιa is ω-irresolute, for each a ∈ X;

2. the multiplication map µ is ω-continuous at the first variable if and only
if the right translation function ra is ω-irresolute, for each a ∈ X.

Proof. 1. Since µ is ω−continuous at the second variable, so, by Theorem 3.5,
the left translation function ιa is ω − continuous, for each a ∈ X. Since ιa is
bijective, ιa is ω-irresolute, for each a ∈ X.

Conversely, let ιa be ω−irresolute for each a ∈ X. Then, it is ω-continuous,
for each a ∈ X. By Theorem 3.5, µ is ω-continuous at the second variable.

2. The proof is similar to the proof of (1).

Proposition 3.1. Let τ be a topology on a group (X, ∗). Then, the left (right)
translation function ιa( ra) is ω-continuous if and only if it is ω-homeomorphism,
for each a ∈ X.

Proof. Let ιa (ra) be an ω-continuous function, for each a ∈ X. Then, ιa (ra)
respectively, is ω-irresolute for each a ∈ X. Since ιa (ra) is a bijective function
with (ιa)−1(V ) = ιa−1(V ) = V ∗ a−1, and a−1 ∈ X, then ι−1

a ( r−1
a )resp., is an

ω−irresolute function. Hence, ιa (ra) is ω-homeomorphism, for each a ∈ X.

Proposition 3.2. Let τ be a topology on a group (X, ∗). Then:
1. the multiplication map µ is ω-irresolute at the second variable if and only

if the left translation function ιa is ω-irresolute, for each a ∈ X.
2. the multiplication map µ is ω-irresolute at the first variable if and only if

the right translation function ra is ω-irresolute, for each a ∈ X.

Proof. The proof is completely similar to the proof of the Theorem 3.5.

Proposition 3.3. Let τ be a topology on a group (X, ∗). The multiplication
map µ is ω-irresolute at the second (resp., first) variable if and only if it is
ω − continuous at the second (first) variable.
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Proof. Let µ is ω − irresolute at the second (first) variable if and only if
ιa(resp., ra) is ω − irresolute, for each a ∈ X by Proposition 3.3 if and only if
µ is ω− continuous at the second (resp., second) variable by Corollary 3.1.

Proposition 3.4. Let τ be a topology on a group (X, ∗). Then, the multipli-
cation map µ is ω-irresolute at the second (first) variable if and only if it is
ω-continuous at the second (first) variable.

Proof. we can show that µ is ω − irresolute at the second (first) variable by
the same way as we have proved Theorem 3.5 and Corollary 3.1, we will get
the left translation ιa (right translation ra) function is ω − irresolute, for each
a ∈ X. If and only if µ is ω-continuous at the second (first) variable.

Theorem 3.6. If τ is a topology on a group (X, ∗) such that the multiplication
map µ is ω-continuous at the second variable, then for each A,B ⊆ X and
a ∈ X, we have:

1. a ∗ ωClB = ωCl(a ∗B).

2. a ∗ ωIntB = ωInt(a ∗B).

3. B is ω-open if and only if a ∗B isω − open.

4. B is ω-closed if and only if a ∗B isω − closed.

5. A ∗ ωClB ⊆ ωCl(A ∗B).

6. A ∗ ωIntB ⊆ ωInt(A ∗B).

7. ωIntA ∗ ωIntB ⊆ ωInt(A ∗B).

8. ωClA ∗ ωClB ⊆ ωCl(A ∗B).

9. If B is ω − open, then A ∗B is ω − open.

10. If B is ω-closed and A is finite, then A ∗B is ω-closed.

Proof. 1. Let y ∈ a ∗ωClB. Then, y = a ∗ b for some b ∈ ωClB. Let G be any
ω − open subset of X such that y = a ∗ b ∈ G. By Proposition 3.2 there exists
an ω-open subset V of X such that b ∈ V and a ∗ V ⊆ G. Since b ∈ ωClB, so,
V ∩B ̸= ϕ. Therefore, a ∗ V ∩ a ∗B ̸= ϕ. Since a ∗ V ⊆ G, so, G ∩ (a ∗B) ̸= ϕ.
This means that, y ∈ ωCl(a ∗ B). That is, a ∗ ωClB ⊆ ωCl(a ∗ B). Also,
a−1∗(ωCl(a∗B) ⊆ ωCl(a−1∗(a∗B)) = ωCl((a∗a−1)∗B) =ωCl(e∗B) = ωClB.
Then, a∗ (a−1 ∗ωCl(a∗B)) ⊆ a∗ωClB, so, that ωCl(a∗B) ⊆ a∗ωClB. Hence,
a ∗ ωClB = ωCl(a ∗B).

2. Let y ∈ ωInt(a ∗ B). Then, there exists x ∈ B and an ω − open set V
in X such that y = a ∗ x ∈ V ⊆ a ∗ B. By Proposition 3.2, there exists an
ω − open set U in X such that x ∈ U and a ∗ U ⊆ V . Thus, a ∗ U ⊆ a ∗ B,
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so, U ⊆ B. This means that, x ∈ ωIntB. Then, y = a ∗ x ∈ a ∗ ωIntB.
So, ωInt a ∗ B ⊆ aωIntB. Now, Since a−1 ∈ X and a ∗ B ⊆ X, we get
ωIntB = ωInt(e ∗ B) = ωInt(a−1 ∗ (a ∗ B)) ⊆ a−1 ∗ ωInt(a ∗ B). Therefore,
a∗ωIntB ⊆ (a∗a−1∗ωInt(a∗B) = ωInt(a∗B). Hence, a∗ωIntB = ωInt(a∗B).

3. Let B be ω− open in X. From Corollary 3.1, we have ι−1
a is ω-irresolute,

so, (ι−1
a )−1(B) is ω-open in X. Since (ι−1

a )−1 = ιa, so, ιa(B) is ω-open in X.
Thus, a ∗B is ω-open in X.

Conversely, Let a ∗ B be ω − open in X. From Corollary 3.1, we have ιa is
ω-irresolute, then ι−1

a (a ∗B) is ω-open in X. Since (ιa)
−1 = ι−1

a , so, ι−1
a (a ∗B)

is ω-open in X. Since ι−1
a (a ∗B) = a−1 ∗ (a ∗B) = B, so, B is ω − open in X.

4. Let B be ω− closed in X. Then, by (1), a ∗B = a ∗ωClB = ωCl(a ∗B),
so, a ∗B is ω-closed.

Conversely, suppose that a ∗ B is an ω-closed subset of X, so, a ∗ B =
ωCl(a∗B). But, from (1), we have ωCl(a∗B) = a∗ωClB, so a∗B = a∗ωClB.
This implies that a−1 ∗ (a ∗ B) = a−1 ∗ (a ∗ ωClB). Hence, B = ωClB. Thus,
B is ω − closed in X.

5. Let y = a ∗ b ∈ A ∗ ωClB, where a ∈ A and b ∈ ωClB. To show y
∈ ωCl(A ∗ B). Let G be any ω-open subset of X such that y = a ∗ b ∈ G.
By Proposition 3.2, there exists an ω-open subset V of X such that b ∈ V and
a ∗ V ⊆ G, since b ∈ V and b ∈ ωClB, so, V ∩B ̸= ϕ, so, (a ∗ V ) ∩ (a ∗B) ̸= ϕ.
Since a∗V ⊂ G, so, G∩ (a∗B) ̸= ϕ and since a∗B ⊆ A∗B, so, G∩ (A∗B) ̸= ϕ.
Hence, y ∈ ωCl(A ∗B). Thus, A ∗ ωClB ⊆ ωCl(A ∗B).

6. By (2), we have A ∗ ωIntB =
⋃

a∈A(a ∗ ωIntB) =
⋃

a∈A(ωInt(a ∗ B) ⊆
ωInt(

⋃
a∈A(a ∗B)) = ωInt(A ∗B).

7. Since ωIntA ⊆ A, so, ωIntA∗ωIntB ⊆ A∗ωIntB and since A∗ωIntB ⊆
ωInt(A ∗B). So, by (6) ωIntA ∗ ωIntB ⊆ ωInt(A ∗B).

8. Let y ∈ ωClA ∗ ωClB. Then, y = a ∗ b, for some a ∈ ωClA, b ∈ ωClB.
Let G be any ω − open subset of X such that y = a ∗ b ∈ G. By Proposition
3.2, there is an ω − open subset V of X such that b ∈ V and a ∗ V ⊆ G. Since
b ∈ ωClB, so, V ∩B = ϕ. Since a∗(V ∩B) = (a∗V )∩(a∗B), so, G∩(a∗B) = ϕ.
Since a ∗B ⊆ A ∗B, then G ∩ (A ∗B) = ϕ. Therefore, y∈ ωCl(A ∗B). Hence,
ωClA ∗ ωClB ⊆ ωCl(A ∗B).

9. Let B be ω − open in X. Then by (3) a ∗B is ω − open, for each a ∈ A.
Since, the union of any family of ω − open sets is ω-open, so,

⋃
a∈A(a ∗ B) is

ω − open. But, since A ∗B =
⋃

a∈A(a ∗B), so, A ∗B is ω − open.

10. Let B be ω-closed and A be a finite subset of X. Then, by (4) a ∗ B
is ω-closed, for each a ∈ A. Since A ∗ B =

⋃
a∈A(a ∗ B) and the finite union of

ω − closed is ω-closed, so, A ∗B is ω-closed.

Theorem 3.7. Let (H, ∗) be a subgroup of a group (X, ∗) and τ be any topology
on X.

1. If µ : X ∗ X → X is ω-continuous at the second variable, then µH :
H ∗H → H is ω-continuous at the second variable.
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2. If µ : X∗X → X is ω-continuous at the first variable, then µH : H∗H → H
is ω-continuous at the first variable.

Proof. We prove part (1) and the proof of the second part is almost similar.

Let a be a fixed point of H such that µH(a, b) = a ∗ b ∈ G. Then, there is
an open set O in X such that O = G ∩H and µ(a, b) = µH(a, b) = a ∗ b ∈ O.
Since µ is ω-continuous at the second variable, so, by Definition 3.1, there is an
ω-open subset V of X such that b ∈ V and a ∗ V ⊆ O. Then, by Theorem 2.2,
V ∩H is ω-open in H and a∗ (V ∩H) = a∗V ∩a∗H = a∗V ∩H ⊆ O∩H = G.
Hence, µH : H ∗H → H is ω-continuous at the second variable.

Theorem 3.8. Let τ be a topology on a group (X, ∗) such that the multiplication
map µ is ω-continuous at the second (first) variable. If S is a semigroup subset
of X for which ωIntS ̸= ϕ, then ωIntS is also a semigroup.

Proof. Without loss of generality, we assume that µ is ω-continuous at the
second variable. It is given that, ωIntS ̸= ϕ. Let a, b ∈ ωIntS, then, there is
an ω − open subset V of X such that b ∈ V ⊆ S. Since S is a semigroup, so,
a ∗ b ∈ a ∗ V ⊆ S. But, from (3) of Theorem 3.6 we have a ∗ V is ω − open in
X, so, a ∗ b ∈ ωIntS. Also, since ωIntS ⊆ S and µ is associative on S, so, µ is
associative on ωIntS. Hence, ωIntS is a semigroup.

Theorem 3.9. Let H be subgroup of a group X. Let τ be any topology on X
such that the multiplication map µ is ω-continuous at the second (first) variable
and ωInt(H) ̸= ϕ. If the function f : X → X give by f(x) = x−1 for each
x ∈ X is ω-continuous then ωInt(H) is a subgroup of X.

Proof. Without loss of generality, we assuming that µ is ω-continuous at the
second variable. By what we have done in the proof of Theorem 3.8 for any
a, b ∈ ωInt(H) we obtain that a ∗ b ∈ ωIntH. Also, for any a ∈ ωIntH,
we have an ω-open subset G of X such that a ∈ G ⊆ H, f : X → X is a
bijective function and it is ω-continuous function. Since V is ω-open in X, so,
f−1(V ) = {x : f(x) ∈ V } = {x : x−1 ∈ V } = V −1 so, V −1 is ω-open in X.
Since a ∈ V ⊆ H, so, a−1 ∈ V −1 ⊆ H−1 = H. Hence, a−1 ∈ ωIntH. Therefore,
a ∗ b−1 ∈ ωIntH. Hence, ωIntH is subgroup of G.

Theorem 3.10. Let τ be a topology on a group (X, ∗) such that the multipli-
cation map µ is ω-continuous at the second (first) variable. If S is a semigroup
subset of X, then ωClS is a semigroup subset of X.

Proof. We prove this result for the case that µ is ω-continuous at the second
variable, we left the other because it has a similar proof. Since ϕ ̸= S ⊆ ωClS.
So, ωClS ̸= ϕ. Let a, b be any two points of ωClS and V is any ω-open subset
of X which contains a ∗ b. Since µ is ω-continuous at the second variable, so,
by Corollary 3.1, the left translation function la is an ω-irresolute, for each
a ∈ X. Now, for a, b, c ∈ ωClS, we have a, (b ∗ c), (a ∗ b), c ∈ ωClS. Therefore,
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a ∗ (b ∗ c), (a ∗ b) ∗ c ∈ ωClS. Since (X, ∗) is a group and a, b, c ∈ X, so,
a∗ (b∗ c) = (a∗ b)∗ c. This means that a∗ (b∗ c) = (a∗ b)∗ c in ωClS. Therefore,
ωClS is a semigroup subset of X.

Theorem 3.11. Let H be a subgroup of a group (X, ∗). Let τ be a topology on
X such that the function f : X → X given by f(x) = x−1 is ω-continuous. If
the multiplication map µ is ω-continuous at either first or second variable, then
ωClH is a subgroup of X.

Proof. Since every subgroup of a group is a semigroup, so, by Theorem 3.10,
ωClH is a semigroup subset of X. For all a, b ∈ ωClH, we get a ∗ b ∈ ωClH.
Since f : X → X given by f(x) = x−1 is a bijective ω−continuous function, so,
f is ω-irresolute, for each a ∈ ωClH, and any ω− open subset V of X such that
a−1 ∈ V , we have f(a) ∈ V . So, by ω − irresolute of f , there exists an ω-open
subset U of X such that a ∈ U and f(U) ⊆ V. Since a ∈ U and a ∈ ωClH, so,
U ∩H ̸= ϕ. Thus, (U ∩H)−1 = ϕ. Since (U ∩H)−1 = U−1 ∩H−1 = U−1 ∩H,
so, U−1∩H ̸= ϕ, but U−1 ⊆ V , so, V ∩H ̸= ϕ. Hence, a−1 ∈ ωClH. Therefore,
for each a, b ∈ ωClH, we have a, b−1 ∈ ωClH, and so, a ∗ b−1 ∈ ωClH. This
means that ωClH is a subgroup of X.

Remark 3.2. It is easy to prove the same result for a topology on the group
(X, ∗) which makes the multiplication map µ as ω − continuous at the first
variable, but, we need only to replace a with b, a ∗ V with V ∗ a.

Theorem 3.12. Let (X, ∗) be a group and τ be any topology on X such that
the multiplication map µ is ω-continuous at each variable. If S is a normal set
of X such that ωIntS ̸= ϕ, then both ωInt(S) andωCl(S) are normal.

Proof. Let x ∈ X. Then, x−1 ∈ X. Since ωInt(S) is ω-open and µ is
ω-continuous at each variable, then by (3) of Theorem 3.6 and as µ is ω-
continuous at the first variable, we obtain that x ∗ ωInt(S)x−1 is ω-open in
X and ωInt(x ∗ ωInt(S) ∗ x−1) = x ∗ ωInt(S) ∗ x−1. Since S is a normal set,
so x ∗ ωInt(S)x−1 ⊆ x ∗ S ∗ X−1 ⊆ S, so ωInt(x ∗ ωInt(S)x−1) ⊆ ωInt(S).
Therefore, x ∗ωInt(S)x−1 ⊆ ωInt(S). Hence, ωInt(S) is a normal subset of X.

Now, we have to show ωCl(S) is also a normal subset of X. To make this
end, let y ∈ x ∗ ωCl(S) ∗ x−1 and G be any ω-open subset of X such that
y ∈ G. Then, there is s ∈ ωCl(S) such that y = x ∗ s ∗ x−1 by Proposition 3.2
there exists an ω-open subset V of X such that s ∗ x−1 ∈ V and x ∗ V ⊆ G.
Again by Proposition 3.2 there is an ω-open subset U in X such that s ∈ U and
U ∗x−1 ⊆ V . That is, x∗U ∗x−1 ⊆ x∗V ⊆ G. Now, since s ∈ U and s ∈ ωCl(S),
then U ∩ S ̸= ϕ, so, (x ∗ U ∗ x−1) ∩ (x ∗ S ∗ x−1) ̸= ϕ. Since (x ∗ U ∗ x−1) ⊆ G
and x ∗ S ∗ x−1 ⊆ S, so, G ∩ S ̸= ϕ. This implies that y ∈ ωCl(S). Thus,
x ∗ ωCl(S) ∗ x−1 ⊆ ωCl(S). Hence, ωCl(S) is a normal subset of X.

Corollary 3.2. Let τ be a topology on a group (X, ∗) such that the multiplication
map is ω-continuous at the first (second) variable. If H is a normal subgroup
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of X and the function f : X → X given by f(x) = x−1 for all x ∈ X, is
ω-continuous, then ωIntH ̸= ϕ and ωClH both are normal subgroup of X.

Proof. The proof follows from Theorem 3.9, Theorem 3.11 and Theorem 3.12.

Theorem 3.13. Let (X, ∗) be a group and τ be any topology on X. If the
multiplication map is ω-continuous in the second variable, then for any A ⊆ X,
we have A ∗B is ω − open for any open set B ⊆ X.

Proof. If B is open, then Int(B) = B. Let a ∈ A. Then, a ∗B = a ∗ Int(B) ⊆
ωInt(a ∗ B) by (1) of Theorem 3.4. Hence, A ∗ B = A ∗ Int(B) =

⋃
a∈A

a ∗ Int(B) ⊆
⋃

a∈A ωInt(a ∗ B), so,
⋃

a∈A ωInt(a ∗ B) ⊆ ωInt(
⋃

a∈A a ∗ B)
= ωInt(A ∗B), since ωInt(A)∪ ωInt(B) ⊆ ωInt(A ∗B), A ∗B ⊆ ωInt(A ∗B).
Hence, A ∗B = ωInt(A ∗B). Thus, A ∗B is ω − open.

Theorem 3.14. Let the multiplication map µ of a group Xwith a topology τ on
X is ω-continuous at the second (first) variable and H ⊆ X. Then:

1. If H is an ω-compact subset of X, then a ∗H (H ∗ a) is a compact subset
of X, for each a ∈ X.

2. If µ is ω-continuous at the second variable, then for each a ∈ X, where,
H is ω-compact in X if and only if a ∗H is ω-compact.

3. If µ is ω-continuous at the first variable, then for each a ∈ X, where, H
is ω-compact in X if and only if H ∗ a is ω-compact.

Proof. 1. Let H be an ω-compact subset of X and without loss of generality,
we suppose that µ is ω-continuous at the second variable, so, by Theorem 3.5,
ιa is ω-continuous for each a ∈ X. Now, to show a ∗ H is compact. Let
{{Vα}n;α ∈ n} be an open cover of a ∗ H. Then, (ιa)

−1(Vα) = a−1 ∗ Vα is
ω-open for each α ∈ Λ. Since H = (ιa)

−1)(a ∗ H) ⊆ (ιa)
−1)(

⋃
α∈Λ Vα) =⋃

α∈Λ(ιa)
−1)(Vα) =

⋃
α∈Λ a−1 ∗ Vα, so, {a−1 ∗ (Vα);α ∈ Λ} is an ω-open cover

of H. So, by definition ω-compact, there exists a finite subset Λ0 of Λ, such
that H ⊆

⋃
α∈Λ0

(a−1 ∗ Vα). Hence, a ∗ H = ιa(H) ⊆ ιa(
⋃

α∈Λ0
(a−1 ∗ Vα) =

a ∗ (
⋃

α∈Λ0
a−1 ∗ Vα) = (a ∗ a−1) ∗ (

⋃
α∈Λ0

Vα =
⋃

α∈Λ0
Vα. Thus, a ∗ H is a

compact subset of X.
2. Let H be an ω-compact subset of X and {GN : N ∈ Λ} is an ω-open cover

of a∗H where a is an arbitrary point of X. Since µ is ω-continuous at the second
variable, so, by Corollary 3.1 ιa is an ω-irresolute function. Therefor (ιa)

−1(G)
is ω-open in X, for each N ∈ Λ. Since (ιa)

−1(G) = a−1 ∗ GN . So, a−1 ∗ GN is
ω-open in X for each N ∈ Λ. Since H = (ιa)

−1(a ∗H) ⊆ (ιa)
−1(

⋃
N∈ΛGN ) =⋃

N∈Λ(ιa)
−1(GN ) =

⋃
N∈Λ(a

−1 ∗ GN ). So, {a−1 ∗ GN : N ∈ Λ} is an ω-open
cover of H. Since H is ω-compact, so, there exists a finite subset Λ0 of Λ
such that H = UN∈Λ0(a

−1 ∗ GN ). So, aH = ιa(H) ⊆ ιa(
⋃

N∈Λ0
a−1 ∗ GN ) =⋃

N∈Λ0
ιa(a−1 ∗GN ) =

⋃
N∈ΛGN . Hence, a ∗H is ω-compact.
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Conversely, let a ∗H be an ω-compact subset of X where a ∈ X. To show
H is ω-compact.

Let {ON , N ∈ Λ} be any ω-open set in H. Then a ∗ H = ιa(H) =
(ιa)

−1)−1(H) = (ι−1
a )−1(

⋃
N∈ΛON ) = (

⋃
N∈Λ((ι

−1
a )−1(ON )) = (

⋃
N∈Λ ιa(ON ) =⋃

N∈Λ(a ∗ON ).
Since ON is ω− open for each N ∈ Λ and a ∈ X, so, by part (3) of Theorem

3.6, we have a ∗ON is ω-open in X, for each N ∈ Λ. Since a ∗H is ω-compact,
so, there exists a finite subset Λ0 of Λ such that a ∗ H ⊆

⋃
N∈Λ(a ∗ ON ). So,

H = a−1 ∗ (a ∗ H) = ι−1
a (a ∗ H) = (ιa)

−1(a ∗ H) ⊆ (ιa)
−1(

⋃
N∈Λ0

(a ∗ ON ))=
(
⋃

N∈Λ0
(ιa)

−1)(a ∗ ON )=
⋃

N∈Λ0
a−1 ∗ (a ∗ ON ) =

⋃
N∈Λ0

ON . Hence, H is ω-
compact.

3. The proof is similar to part 2 with only replacing ιa with ra.

Theorem 3.15. Let τ be a topology on a group (X, ∗) and a ∈ X, H ⊆ X.

1. If µ is ω − continuous at the second variable, then H is lindelof if and
only if a ∗H is lindelof.

2. If µ is ω − continuous at the first variable, then H is lindelof if and only
if H ∗ a is lindelof.

Proof. The Proof is almost similar to the proof of parts (2) and (3) of the
Theorem 3.14 by using Lemma 2.1.
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