Prime-valent one-regular graphs of order 18p

Qiao-Yu Chen

School of Mathematics and Statistics Henan University of Science and Technology Luoyang 471023 P.R. China tj_chenqiaoyu@163.com

Song-Tao Guo^{*}

School of Mathematics and Statistics Henan University of Science and Technology Luoyang 471023 P.R. China gsongtao@gmail.com

Abstract. A graph is *one-regular* and *arc-transitive* if its full automorphism group acts on its arcs regularly and transitively, respectively. In this paper, we classify connected one-regular graphs of prime valency and order 18*p* for each prime *p*. As a result there are two infinite families of such graphs, one is the cycle C_{18p} with valency two and the other is the normal Cayley graph on the generalized dihedral group $(\mathbb{Z}_{3p} \times \mathbb{Z}_3) \rtimes \mathbb{Z}_2$ with valency three and $p \equiv 1 \pmod{6}$.

Keywords: symmetric graph, arc-transitive graph, one-regular graph.

1. Introduction

Throughout this paper graphs are assumed to be finite, simple, connected and undirected. For group-theoretic concepts or graph-theoretic terms not defined here we refer the reader to [21, 22] or [2, 3], respectively. Let G be a permutation group on a set Ω and $v \in \Omega$. Denote by G_v the stabilizer of v in G, that is, the subgroup of G fixing the point v. We say that G is *semiregular* on Ω if $G_v = 1$ for every $v \in \Omega$ and *regular* if G is transitive and semiregular.

For a graph X, denote by V(X), E(X) and $\operatorname{Aut}(X)$ its vertex set, its edge set and its full automorphism group, respectively. A graph X is said to be *G*vertex-transitive if $G \leq \operatorname{Aut}(X)$ acts transitively on V(X). X is simply called vertex-transitive if it is $\operatorname{Aut}(X)$ -vertex-transitive. An *s*-arc in a graph is an ordered (s + 1)-tuple $(v_0, v_1, \dots, v_{s-1}, v_s)$ of vertices of the graph X such that v_{i-1} is adjacent to v_i for $1 \leq i \leq s$, and $v_{i-1} \neq v_{i+1}$ for $1 \leq i \leq s - 1$. In particular, a 1-arc is just an arc and a 0-arc is a vertex. For a subgroup $G \leq \operatorname{Aut}(X)$, a graph X is said to be (G, s)-arc-transitive or (G, s)-regular if G is transitive or regular on the set of s-arcs in X, respectively. A (G, s)-arc-

char 42. Corresponding author

transitive graph is said to be (G, s)-transitive if it is not (G, s+1)-arc-transitive. In particular, a (G, 1)-arc-transitive graph is called *G*-symmetric. A graph X is simply called *s*-arc-transitive, *s*-regular or *s*-transitive if it is $(\operatorname{Aut}(X), s)$ -arctransitive, $(\operatorname{Aut}(X), s)$ -regular or $(\operatorname{Aut}(X), s)$ -transitive, respectively.

We denote by C_n and K_n the cycle and the complete graph of order n, respectively. Denote by D_{2n} the dihedral group of order 2n. As we all known that there is only one connected 2-valent graph of order n, that is, the cycle C_n , which is 1-regular with full automorphism group D_{2n} . Let p be a prime. Classifying s-transitive and s-regular graphs has received considerable attention. The classification of s-transitive graphs of order p and 2p was given in [6] and [7], respectively. Pan [20] characterized the prime-valent s-transitive graphs of square free order. Kutnar [17] classified cubic symmetric graphs of girth 6 and Oh [19] determined arc-transitive elementary abelian covers of the Pappus graph. The classification of pentavalent and heptavalent s-transitive graphs of order 18p was given in [1] and [13], respectively.

For 2-valent case, s-transitivity always means 1-regularity, and for cubic case, s-transitivity always means s-regularity by Miller [11]. However, for the other prime-valent case, this is not true, see for example [14] for pentavalent case and [15] for heptavalent case. Thus, characterization and classification of prime-valent s-regular graphs is very interesting and also reveals the s-regular global and local actions of the permutation groups on s-arcs of such graphs. In particular, 1-regular action is the most simple and typical situation. In this paper, we classify prime-valent one-regular graphs of order 18p for each prime p.

2. Preliminary results

Let X be a connected G-symmetric graph with $G \leq \operatorname{Aut}(X)$, and let N be a normal subgroup of G. The quotient graph X_N of X relative to N is defined as the graph with vertices the orbits of N on V(X) and with two orbits adjacent if there is an edge in X between those two orbits. In view of [18, Theorem 9], we have the following:

Proposition 2.1. Let X be a connected G-symmetric graph with $G \leq \operatorname{Aut}(X)$ and prime valency $q \geq 3$, and let N be a normal subgroup of G. Then, one of the following holds:

- (1) N is transitive on V(X);
- (2) X is bipartite and N is transitive on each part of the bipartition;
- (3) N has $r \ge 3$ orbits on V(X), N acts semiregularly on V(X), the quotient graph X_N is a connected q-valent G/N-symmetric graph.

To extract a classification of connected prime-valent symmetric graphs of order 2p for a prime p from Cheng and Oxley [7], we introduce the graphs

G(2p,q). Let V and V' be two disjoint copies of \mathbb{Z}_p , say $V = \{0, 1, \dots, p-1\}$ and $V' = \{0', 1', \dots, (p-1)'\}$. Let q be a positive integer dividing p-1 and H(p,q) the unique subgroup of \mathbb{Z}_p^* of order q. Define the graph G(2p,q) to have vertex set $V \cup V'$ and edge set $\{xy' \mid x-y \in H(p,q)\}$.

Proposition 2.2. Let X be a connected q-valent symmetric graph of order 2p with p,q primes. Then, X is isomorphic to K_{2p} with q = 2p - 1, $K_{p,p}$ or G(2p,q) with $q \mid (p-1)$. Furthermore, if $(p,q) \neq (11,5)$ then $\operatorname{Aut}(G(2p,q)) =$ $(\mathbb{Z}_p \rtimes \mathbb{Z}_q) \rtimes \mathbb{Z}_2$; if (p,q) = (11,5) then $\operatorname{Aut}(G(2p,q)) = \operatorname{PGL}(2,11)$.

The following proposition is about the prime-valent symmetric graphs of order 6p with p a prime, which is deduced from [20, Theorem 1.2].

Proposition 2.3. Let p and q be two primes. If q > 7, then there is no q-valent symmetric graph of order 6p admitting a solvable arc-transitive automorphism group.

The following proposition is the famous "N/C-Theorem", see for example [16, Chapter I, Theorem 4.5]).

Proposition 2.4. The quotient group $N_G(H)/C_G(H)$ is isomorphic to a subgroup of the automorphism group Aut(H) of H.

From [10, p.12-14], we can deduce the non-abelian simple groups whose orders have at most three different prime divisors.

Proposition 2.5. Let G be a non-abelian simple group. If the order |G| has at most three different prime divisors, then G is called K_3 -simple group and isomorphic to one of the following groups.

Group	Order	Group	Order
A ₅	$2^2 \cdot 3 \cdot 5$	PSL(2, 17)	$2^4 \cdot 3^2 \cdot 17$
A ₆	$2^3 \cdot 3^2 \cdot 5$	PSL(3,3)	$2^4 \cdot 3^3 \cdot 13$
PSL(2,7)	$2^3 \cdot 3 \cdot 7$	PSU(3,3)	$2^5 \cdot 3^3 \cdot 7$
PSL(2,8)	$2^3 \cdot 3^2 \cdot 7$	PSU(4,2)	$2^6 \cdot 3^4 \cdot 5$

Table 1: Non-abelian simple $\{2,3,p\}$ -groups

3. Classification

This section is devoted to classifying prime-valent one-regular graphs of order 18p for each prime p. Let q be a prime. In what follows, we always denote by X a connected q-valent one-regular graph of order 18p. Set $A = \operatorname{Aut}(X)$, $v \in V(X)$. Then, the vertex stabilizer $A_v \cong \mathbb{Z}_q$ and hence |A| = 18pq.

Now, we first deal with the case $q \leq 7$. Clearly, any connected graph of order 18p and valency two is isomorphic to the cycle C_{18p} . Thus, for q = 2, $X \cong C_{18p}$ and $A \cong D_{36p}$. Let q = 3. Then, by [17, Theorem 1.2] and [19, Theorem 3.4], $X \cong CF_{18p}$ is a \mathbb{Z}_p -cover of the Pappus graph and also a normal Cayley graph of a generalized dihedral group $(\mathbb{Z}_{3p} \times \mathbb{Z}_3) \rtimes \mathbb{Z}_2$ with $p \equiv 1 \pmod{6}$. This implies that $A \cong ((\mathbb{Z}_{3p} \times \mathbb{Z}_3) \rtimes \mathbb{Z}_2) \rtimes \mathbb{Z}_3$. If q = 5 or 7, then by [1, Theorem 4.1] for q = 5 and [13, Theorem 3.1] for q = 7, there is no q-valent one-regular graph of order 18p. Thus, in what follows we deal with the case q > 7. The next lemma is about the case p = 2.

Lemma 3.1. Let X be a connected q-valent one-regular graph of order 36. Then, $X \cong C_{36}$.

Proof. Since |V(X)| = 36, we have that p = 2. If $q \leq 7$, then by the above argument, the only possibility is q = 2 and X is isomorphic to the cycle C_{36} .

Let q > 7. Then, $|A| = 2^2 \cdot 3^2 \cdot q$. If A is non-solvable, then A has a composition factor isomorphic to a non-abelian simple group and hence this composition factor has order dividing $|A| = 2^2 \cdot 3^2 \cdot q$. This forces that this composition factor is a K_3 -simple group. By Proposition 2.5, A has a composition factor isomorphic to A_5 and q = 5, contrary to our assumption. Thus, A is solvable. Let N be a minimal normal subgroup of A. Then, $N \cong \mathbb{Z}_2$, \mathbb{Z}_2^2 , \mathbb{Z}_3 , \mathbb{Z}_3^2 or \mathbb{Z}_q . Clearly, N is not transitive on V(X). By Proposition 2.1, X_N is a q-valent symmetric graph of order 36/|N|. Note that, q > 7 and there is no connected regular graph of odd order and odd valency. Thus, N is not isomorphic to \mathbb{Z}_2^2 or \mathbb{Z}_q .

Suppose that $N \cong \mathbb{Z}_2$. Then, X_N has order 18 and valency q. Since q > 7 is a prime, by [8], X_N is isomorphic to Pappus graph with q = 3 or the complete graph K_{18} with q = 17. For the former, X is a cubic symmetric graph of order 36. However, by [9], there is no cubic symmetric graph of order 36, a contradiction. For the latter, $A/N \leq \operatorname{Aut}(K_{18}) \cong S_{18}$. Recall that $|A| = 2^2 \cdot 3^2 \cdot q$. We have $|A/N| = 18 \cdot 17$. However, by Magma [4], S_{18} has no subgroup of order 18 \cdot 17, a contradiction.

Suppose that $N \cong \mathbb{Z}_3$. Then, X_N is a *q*-valent symmetric graph of order 12. By [8], $X_N \cong K_{12}$ with q = 11 because q > 7. It follows that $A/N \leq \operatorname{Aut}(K_{12}) \cong$ S₁₂. However, $|A/N| = 12 \cdot 11$ and by Magma [4], S₁₂ has no subgroup of order 12.11, a contradiction.

Suppose that $N \cong \mathbb{Z}_3^2$. Then, X_N is a *q*-valent symmetric graph of order 4. Clearly, the only symmetric graphs of order 4 are C_4 with valency 2 and K_4 with valency 3. This is impossible because the valency q > 7.

Finally, we treat with the case $p \ge 3$ and q > 7.

Lemma 3.2. Let $p \ge 3$ and q > 7. Then, there is no new graph.

Proof. Since $p \ge 3$ and q > 7, we have that $|A| = 18pq = 2 \cdot 3^2 \cdot p \cdot q$ is twice an odd integer. It follows that A has a normal subgroup of odd order and index 2. By Feit-Thompson's Theorem [12, Theorem], any group of odd order is solvable and so A is also solvable. Let N be a minimal normal subgroup of A. Then, N is also solvable and hence N is isomorphic to \mathbb{Z}_2 , \mathbb{Z}_3 , \mathbb{Z}_3^2 , \mathbb{Z}_p , \mathbb{Z}_q or \mathbb{Z}_p^2 with p = q. By Proposition 2.1, X_N is a q-valent symmetric graph of order 9p, 6p, 2p or 18. Since there is no connected regular graph of odd order and odd valency, we have that $N \not\cong \mathbb{Z}_2$. If $p \neq q$ and $N \cong \mathbb{Z}_q$, then X_N has order 18p/q. This is impossible because q cannot divide 18p. If p = q and $N \cong \mathbb{Z}_p^2$, then $N_v \cong \mathbb{Z}_q = \mathbb{Z}_p$. However, by Proposition 2.1, X_N has order 18 and N is semiregular on V(X). This forces that $N_v = 1$, a contradiction. Thus, $N \cong \mathbb{Z}_3$, \mathbb{Z}_3^2 , \mathbb{Z}_p .

Let $N \cong \mathbb{Z}_3$. Then, X_N is a q-valent symmetric graph of order 6p and $A/N \leq \operatorname{Aut}(X_N)$. Recall that A is solvable. Thus, A/N is also solvable and acts arc-transitively on X_N . However, by Proposition 2.3, there is no q-valent symmetric graph admitting a solvable arc-transitive automorphism group with q > 7, a contradiction.

Let $N \cong \mathbb{Z}_p$. Then, X_N is a *q*-valent symmetric graph of order 18. By [8], there is only one *q*-valent symmetric graph of order 18 with q > 7, that is, the complete graph K_{18} and hence q = 17. It follows that $A/N \leq \operatorname{Aut}(K_{18}) \cong$ S_{18} and $|A/N| = 2 \cdot 3^2 \cdot 17$. However, S_{18} has no subgroup of order $2 \cdot 3^2 \cdot 17$ by Magma [4], a contradiction.

Let $N \cong \mathbb{Z}_3^2$. Then, X_N is a q-valent symmetric graph of order 2p. By Proposition 2.2, X_N is isomorphic to K_{2p} with q = 2p - 1 a prime, $K_{p,p}$ with q = p or G(2p,q) with $q \mid (p-1)$.

Suppose that $X_N \cong K_{2p}$. Then, A/N has order $2 \cdot p \cdot q$ and acts 2-transitively on $V(X_N)$. By Burnside's Theorem [5, p.192, Theorem IX], any 2-transitive permutation group is either almost simple or affine. Since A is solvable, A/N is also solvable. It forces that A/N is affine and hence A/N has a normal subgroup $M/N \cong \mathbb{Z}_p$. Note that, $N \cong \mathbb{Z}_3^2$. By Proposition 2.4, $M/C_M(N) \lesssim \operatorname{Aut}(N) \cong$ $\operatorname{Aut}(\mathbb{Z}_3^2) \cong \operatorname{GL}(2,3)$. Since $|\operatorname{GL}(2,3)| = 48$ and q = 2p - 1 > 7, we have that $C_M(N) = M$ and hence $M \cong \mathbb{Z}_3^2 \times \mathbb{Z}_p$. It follows that M has a characteristic subgroup $K \cong \mathbb{Z}_p$. The normality of M in A implies that K is also normal in A. By Proposition 2.1, X_K is a q-valent symmetric graph of order 18 with q > 7, and by [8], $X_K \cong K_{18}$ with q = 17. Recall that q = 2p - 1. This forces that p = 9 is not a prime, a contradiction.

Suppose that $X_N \cong K_{p,p}$. Then, p = q and $|A/N| = 2 \cdot p^2$. Since p > 7, we have that A/N has a normal subgroup M/N of order p^2 . Note that, $A/N \leq \operatorname{Aut}(K_{p,p}) \cong S_p \operatorname{wr} S_2$. Thus, a Sylow *p*-subgroup of A/N is isomorphic to \mathbb{Z}_p^2 and so $M/N \cong \mathbb{Z}_p^2$. By Proposition 2.4, $M/C_M(N) \leq \operatorname{Aut}(N) \cong \operatorname{GL}(2,3)$. Since $|\operatorname{GL}(2,3)| = 48$ and p > 7, we have that $C_M(N) = M$. This forces that $M \cong \mathbb{Z}_p^2 \times \mathbb{Z}_3^2$ has a characteristic subgroup $P \cong \mathbb{Z}_p^2$. By Proposition 2.1, X_P has order 18 and hence P is semiregular on V(X). Clearly, this is impossible because q = p and $P_v \cong \mathbb{Z}_p$.

Suppose that $X_N \cong G(2p,q)$. Then, $q \mid (p-1)$ and $A/N \cong (\mathbb{Z}_p \rtimes \mathbb{Z}_q) \rtimes \mathbb{Z}_2$. Similarly, by Proposition 2.4, we can easily deduce that A has a normal subgroup $P \cong \mathbb{Z}_p$. It follows that the quotient graph X_P has order 18 and is isomorphic to K_{18} . With a similar argument as the case " $N \cong \mathbb{Z}_p$ ", we have A/P has order $2 \cdot 3^2 \cdot 17$ and cannot be embedded in $\operatorname{Aut}(K_{18}) \cong S_{18}$, a contradiction.

Combining the above arguments with the cases q = 2, 3, 5, 7, and Lemmas 3.1-3.2, we have the following result.

Theorem 3.1. Let p, q be two primes and X a connected q-valent one-regular graph of order 18p. Then, the only possibilities are q = 2, 3 and furthermore,

- (1) for q = 2, $X \cong C_{18p}$ and $A \cong D_{36p}$;
- (2) for q = 3, $X \cong CF_{18p}$ and $A \cong ((\mathbb{Z}_{3p} \times \mathbb{Z}_3) \rtimes \mathbb{Z}_2) \rtimes \mathbb{Z}_3$ with $p \equiv 1 \pmod{6}$.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11301154).

References

- M. Alaeiyan, M. Akbarizadeh, Classification of the pentavalent symmetric graphs of order 18p, Indian J. Pur. Appl. Math., 50 (2019), 485-497.
- [2] N. Biggs, Algebraic graph theory, Second ed., Cambridge University Press, Cambridge, 1993.
- [3] J.A. Bondy, U.S.R. Murty, Graph theory with applications, Elsevier Science Ltd, New York, 1976.
- [4] W. Bosma, C. Cannon, C. Playoust, The MAGMA algebra system I: The user language, J. Symbolic Comput., 24 (1997), 235-265.
- [5] W. Burnside, *Theory of groups of finite order*, Cambridge University Press, Cambridge, 1897.
- [6] C.Y. Chao, On the classification of symmetric graphs with a prime number of vertices, Trans. Amer. Math. Soc., 158 (1971), 247-256.
- Y. Cheng, J. Oxley, On the weakly symmetric graphs of order twice a prime, J. Combin. Theory B, 42 (1987), 196-211.
- [8] M.D.E. Conder, A complete list of all connected symmetric graphs of order 2 to 30, https://www.math.auckland.ac.nz/ conder/symmetricgraphs-orderupto30.txt.
- M.D.E. Conder, P. Dobcsányi, Trivalent symmetric graphs on up to 768 vertices, J. Combin. Math. Combin. Comput., 40 (2002), 41-63.
- [10] H.J. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A Wilson, Atlas of finite group, Clarendon Press, Oxford, 1985.

- [11] D.Z. Djoković, G.L. Miller, Regular groups of automorphisms of cubic graphs, J. Combin. Theory B, 29 (1980), 195-230.
- [12] W. Feit, J.G. Thompson, Solvability of groups of odd order, Pac. J. Math., 13 (1963), 775-1029.
- [13] S.T. Guo, Heptavalent symmetric graphs of order 18p, Utilitas Math., 109 (2018), 3-15.
- [14] S.T. Guo, Y.Q. Feng, A note on pentavalent s-transitive graphs, Discrete Math., 312 (2012), 2214-2216.
- [15] S.T. Guo, Y.T. Li, X.H. Hua, (G, s)-transitive graphs of valency 7, Algebr. Colloq., 23 (2016), 493-500.
- [16] B. Huppert, Eucliche gruppen I, Springer-Verlag, Berlin, 1967.
- [17] K. Kutnar, D. Marušič, A complete classification of cubic symmetric graphs of girth 6, J. Combin. Theory Ser. B, 99 (2009), 162-184.
- [18] P. Lorimer, Vertex-transitive graphs: symmetric graphs of prime valency, J. Graph Theory, 8 (1984), 55-68.
- [19] J.M. Oh, Arc-transitive elementary abelian covers of the Pappus graph, Discrete Math., 309 (2009), 6590-6611.
- [20] J. Pan, B. Ling, S. Ding, On prime-valent symmetric graphs of square-free order, Ars Math. Contemp., 15 (2018), 53-65.
- [21] D.J. Robinson, A Course in the theory of groups, Springer-Verlag, New York, 1982.
- [22] H. Wielandt, *Finite permutation groups*, Academic Press, New York, 1964.

Accepted: February 14, 2023