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Prime-valent one-regular graphs of order 18p
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Abstract. A graph is one-regular and arc-transitive if its full automorphism group acts
on its arcs regularly and transitively, respectively. In this paper, we classify connected
one-regular graphs of prime valency and order 18p for each prime p. As a result there
are two infinite families of such graphs, one is the cycle C18p with valency two and the
other is the normal Cayley graph on the generalized dihedral group (Z3p×Z3)⋊Z2 with
valency three and p ≡ 1 (mod 6).
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1. Introduction

Throughout this paper graphs are assumed to be finite, simple, connected and
undirected. For group-theoretic concepts or graph-theoretic terms not defined
here we refer the reader to [21, 22] or [2, 3], respectively. Let G be a permutation
group on a set Ω and v ∈ Ω. Denote by Gv the stabilizer of v in G, that is, the
subgroup of G fixing the point v. We say that G is semiregular on Ω if Gv = 1
for every v ∈ Ω and regular if G is transitive and semiregular.

For a graph X, denote by V (X), E(X) and Aut(X) its vertex set, its edge
set and its full automorphism group, respectively. A graph X is said to be G-
vertex-transitive if G ≤ Aut(X) acts transitively on V (X). X is simply called
vertex-transitive if it is Aut(X)-vertex-transitive. An s-arc in a graph is an
ordered (s + 1)-tuple (v0, v1, · · · , vs−1, vs) of vertices of the graph X such that
vi−1 is adjacent to vi for 1 ≤ i ≤ s, and vi−1 ̸= vi+1 for 1 ≤ i ≤ s − 1.
In particular, a 1-arc is just an arc and a 0-arc is a vertex. For a subgroup
G ≤ Aut(X), a graph X is said to be (G, s)-arc-transitive or (G, s)-regular if
G is transitive or regular on the set of s-arcs in X, respectively. A (G, s)-arc-
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transitive graph is said to be (G, s)-transitive if it is not (G, s+1)-arc-transitive.
In particular, a (G, 1)-arc-transitive graph is called G-symmetric. A graph X
is simply called s-arc-transitive, s-regular or s-transitive if it is (Aut(X), s)-arc-
transitive, (Aut(X), s)-regular or (Aut(X), s)-transitive, respectively.

We denote by Cn and Kn the cycle and the complete graph of order n,
respectively. Denote by D2n the dihedral group of order 2n. As we all known
that there is only one connected 2-valent graph of order n, that is, the cycle
Cn, which is 1-regular with full automorphism group D2n. Let p be a prime.
Classifying s-transitive and s-regular graphs has received considerable attention.
The classification of s-transitive graphs of order p and 2p was given in [6] and
[7], respectively. Pan [20] characterized the prime-valent s-transitive graphs
of square free order. Kutnar [17] classified cubic symmetric graphs of girth 6
and Oh [19] determined arc-transitive elementary abelian covers of the Pappus
graph. The classification of pentavalent and heptavalent s-transitive graphs of
order 18p was given in [1] and [13], respectively.

For 2-valent case, s-transitivity always means 1-regularity, and for cubic
case, s-transitivity always means s-regularity by Miller [11]. However, for the
other prime-valent case, this is not true, see for example [14] for pentavalent
case and [15] for heptavalent case. Thus, characterization and classification of
prime-valent s-regular graphs is very interesting and also reveals the s-regular
global and local actions of the permutation groups on s-arcs of such graphs.
In particular, 1-regular action is the most simple and typical situation. In this
paper, we classify prime-valent one-regular graphs of order 18p for each prime
p.

2. Preliminary results

Let X be a connected G-symmetric graph with G ≤ Aut(X), and let N be a
normal subgroup of G. The quotient graph XN of X relative to N is defined as
the graph with vertices the orbits of N on V (X) and with two orbits adjacent
if there is an edge in X between those two orbits. In view of [18, Theorem 9],
we have the following:

Proposition 2.1. Let X be a connected G-symmetric graph with G ≤ Aut(X)
and prime valency q ≥ 3, and let N be a normal subgroup of G. Then, one of
the following holds:

(1) N is transitive on V (X);

(2) X is bipartite and N is transitive on each part of the bipartition;

(3) N has r ≥ 3 orbits on V (X), N acts semiregularly on V (X), the quotient
graph XN is a connected q-valent G/N -symmetric graph.

To extract a classification of connected prime-valent symmetric graphs of
order 2p for a prime p from Cheng and Oxley [7], we introduce the graphs
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G(2p, q). Let V and V ′ be two disjoint copies of Zp, say V = {0, 1, · · · , p − 1}
and V ′ = {0′, 1′, · · · , (p − 1)′}. Let q be a positive integer dividing p − 1 and
H(p, q) the unique subgroup of Z∗

p of order q. Define the graph G(2p, q) to have
vertex set V ∪ V ′ and edge set {xy′ | x− y ∈ H(p, q)}.

Proposition 2.2. Let X be a connected q-valent symmetric graph of order 2p
with p, q primes. Then, X is isomorphic to K2p with q = 2p − 1, Kp,p or
G(2p, q) with q

∣∣ (p − 1). Furthermore, if (p, q) ̸= (11, 5) then Aut(G(2p, q)) =
(Zp ⋊ Zq)⋊ Z2; if (p, q) = (11, 5) then Aut(G(2p, q)) = PGL(2, 11).

The following proposition is about the prime-valent symmetric graphs of
order 6p with p a prime, which is deduced from [20, Theorem 1.2].

Proposition 2.3. Let p and q be two primes. If q > 7, then there is no q-valent
symmetric graph of order 6p admitting a solvable arc-transitive automorphism
group.

The following proposition is the famous “N/C-Theorem”, see for example
[16, Chapter I, Theorem 4.5]).

Proposition 2.4. The quotient group NG(H)/CG(H) is isomorphic to a sub-
group of the automorphism group Aut(H) of H.

From [10, p.12-14], we can deduce the non-abelian simple groups whose
orders have at most three different prime divisors.

Proposition 2.5. Let G be a non-abelian simple group. If the order |G| has
at most three different prime divisors, then G is called K3-simple group and
isomorphic to one of the following groups.

Table 1: Non-abelian simple {2, 3, p}-groups

Group Order Group Order

A5 22 · 3 · 5 PSL(2, 17) 24 · 32 · 17
A6 23 · 32 · 5 PSL(3, 3) 24 · 33 · 13
PSL(2, 7) 23 · 3 · 7 PSU(3, 3) 25 · 33 · 7
PSL(2, 8) 23 · 32 · 7 PSU(4, 2) 26 · 34 · 5

3. Classification

This section is devoted to classifying prime-valent one-regular graphs of order
18p for each prime p. Let q be a prime. In what follows, we always denote
by X a connected q-valent one-regular graph of order 18p. Set A = Aut(X),
v ∈ V (X). Then, the vertex stabilizer Av

∼= Zq and hence |A| = 18pq.
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Now, we first deal with the case q ≤ 7. Clearly, any connected graph of order
18p and valency two is isomorphic to the cycle C18p. Thus, for q = 2, X ∼= C18p

and A ∼= D36p. Let q = 3. Then, by [17, Theorem 1.2] and [19, Theorem 3.4],
X ∼= CF18p is a Zp-cover of the Pappus graph and also a normal Cayley graph
of a generalized dihedral group (Z3p×Z3)⋊Z2 with p ≡ 1(mod 6). This implies
that A ∼= ((Z3p×Z3)⋊Z2)⋊Z3. If q = 5 or 7, then by [1, Theorem 4.1] for q = 5
and [13, Theorem 3.1] for q = 7, there is no q-valent one-regular graph of order
18p. Thus, in what follows we deal with the case q > 7. The next lemma is
about the case p = 2.

Lemma 3.1. Let X be a connected q-valent one-regular graph of order 36. Then,
X ∼= C36.

Proof. Since |V (X)| = 36, we have that p = 2. If q ≤ 7, then by the above
argument, the only possibility is q = 2 and X is isomorphic to the cycle C36.

Let q > 7. Then, |A| = 22·32·q. If A is non-solvable, then A has a composi-
tion factor isomorphic to a non-abelian simple group and hence this composition
factor has order dividing |A| = 22·32·q. This forces that this composition factor
is a K3-simple group. By Proposition 2.5, A has a composition factor isomor-
phic to A5 and q = 5, contrary to our assumption. Thus, A is solvable. Let N
be a minimal normal subgroup of A. Then, N ∼= Z2, Z2

2, Z3, Z2
3 or Zq. Clearly,

N is not transitive on V (X). By Proposition 2.1, XN is a q-valent symmetric
graph of order 36/|N |. Note that, q > 7 and there is no connected regular graph
of odd order and odd valency. Thus, N is not isomorphic to Z2

2 or Zq.
Suppose that N ∼= Z2. Then, XN has order 18 and valency q. Since q > 7 is

a prime, by [8], XN is isomorphic to Pappus graph with q = 3 or the complete
graphK18 with q = 17. For the former,X is a cubic symmetric graph of order 36.
However, by [9], there is no cubic symmetric graph of order 36, a contradiction.
For the latter, A/N ≲ Aut(K18) ∼= S18. Recall that |A| = 22·32·q. We have
|A/N | = 18·17. However, by Magma [4], S18 has no subgroup of order 18·17, a
contradiction.

Suppose that N ∼= Z3. Then, XN is a q-valent symmetric graph of order 12.
By [8], XN

∼= K12 with q = 11 because q > 7. It follows that A/N ≲ Aut(K12) ∼=
S12. However, |A/N | = 12·11 and by Magma [4], S12 has no subgroup of order
12·11, a contradiction.

Suppose that N ∼= Z2
3. Then, XN is a q-valent symmetric graph of order

4. Clearly, the only symmetric graphs of order 4 are C4 with valency 2 and K4

with valency 3. This is impossible because the valency q > 7.

Finally, we treat with the case p ≥ 3 and q > 7.

Lemma 3.2. Let p ≥ 3 and q > 7. Then, there is no new graph.

Proof. Since p ≥ 3 and q > 7, we have that |A| = 18pq = 2·32·p·q is twice
an odd integer. It follows that A has a normal subgroup of odd order and
index 2. By Feit-Thompson’s Theorem [12, Theorem], any group of odd order
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is solvable and so A is also solvable. Let N be a minimal normal subgroup of
A. Then, N is also solvable and hence N is isomorphic to Z2, Z3, Z2

3, Zp, Zq or
Z2
p with p = q. By Proposition 2.1, XN is a q-valent symmetric graph of order

9p, 6p, 2p or 18. Since there is no connected regular graph of odd order and
odd valency, we have that N ̸∼= Z2. If p ̸= q and N ∼= Zq, then XN has order
18p/q. This is impossible because q cannot divide 18p. If p = q and N ∼= Z2

p,
then Nv

∼= Zq = Zp. However, by Proposition 2.1, XN has order 18 and N is
semiregular on V (X). This forces that Nv = 1, a contradiction. Thus, N ∼= Z3,
Z2
3, Zp.

Let N ∼= Z3. Then, XN is a q-valent symmetric graph of order 6p and
A/N ≲ Aut(XN ). Recall that A is solvable. Thus, A/N is also solvable and
acts arc-transitively on XN . However, by Proposition 2.3, there is no q-valent
symmetric graph admitting a solvable arc-transitive automorphism group with
q > 7, a contradiction.

Let N ∼= Zp. Then, XN is a q-valent symmetric graph of order 18. By [8],
there is only one q-valent symmetric graph of order 18 with q > 7, that is, the
complete graph K18 and hence q = 17. It follows that A/N ≲ Aut(K18) ∼=
S18 and |A/N | = 2·32·17. However, S18 has no subgroup of order 2·32·17 by
Magma [4], a contradiction.

Let N ∼= Z2
3. Then, XN is a q-valent symmetric graph of order 2p. By

Proposition 2.2, XN is isomorphic to K2p with q = 2p − 1 a prime, Kp,p with
q = p or G(2p, q) with q

∣∣ (p− 1).

Suppose that XN
∼= K2p. Then, A/N has order 2·p·q and acts 2-transitively

on V (XN ). By Burnside’s Theorem [5, p.192, Theorem IX], any 2-transitive
permutation group is either almost simple or affine. Since A is solvable, A/N is
also solvable. It forces that A/N is affine and hence A/N has a normal subgroup
M/N ∼= Zp. Note that, N ∼= Z2

3. By Proposition 2.4, M/CM (N) ≲ Aut(N) ∼=
Aut(Z2

3)
∼= GL(2, 3). Since |GL(2, 3)| = 48 and q = 2p − 1 > 7, we have that

CM (N) = M and hence M ∼= Z2
3×Zp. It follows that M has a characteristic

subgroup K ∼= Zp. The normality of M in A implies that K is also normal in A.
By Proposition 2.1, XK is a q-valent symmetric graph of order 18 with q > 7,
and by [8], XK

∼= K18 with q = 17. Recall that q = 2p − 1. This forces that
p = 9 is not a prime, a contradiction.

Suppose that XN
∼= Kp,p. Then, p = q and |A/N | = 2·p2. Since p > 7, we

have that A/N has a normal subgroup M/N of order p2. Note that, A/N ≲
Aut(Kp,p) ∼= Spwr S2. Thus, a Sylow p-subgroup of A/N is isomorphic to Z2

p

and so M/N ∼= Z2
p. By Proposition 2.4, M/CM (N) ≲ Aut(N) ∼= GL(2, 3).

Since |GL(2, 3)| = 48 and p > 7, we have that CM (N) = M . This forces that
M ∼= Z2

p×Z2
3 has a characteristic subgroup P ∼= Z2

p. By Proposition 2.1, XP

has order 18 and hence P is semiregular on V (X). Clearly, this is impossible
because q = p and Pv

∼= Zp.

Suppose that XN
∼= G(2p, q). Then, q

∣∣ (p − 1) and A/N ∼= (Zp⋊Zq)⋊Z2.
Similarly, by Proposition 2.4, we can easily deduce that A has a normal subgroup
P ∼= Zp. It follows that the quotient graph XP has order 18 and is isomorphic
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to K18. With a similar argument as the case “N ∼= Zp”, we have A/P has order
2·32·17 and cannot be embedded in Aut(K18) ∼= S18, a contradiction.

Combining the above arguments with the cases q = 2, 3, 5, 7, and Lem-
mas 3.1-3.2, we have the following result.

Theorem 3.1. Let p, q be two primes and X a connected q-valent one-regular
graph of order 18p. Then, the only possibilities are q = 2, 3 and furthermore,

(1) for q = 2, X ∼= C18p and A ∼= D36p;

(2) for q = 3, X ∼= CF18p and A ∼= ((Z3p×Z3)⋊Z2)⋊ Z3 with p ≡ 1(mod 6).
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