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Abstract. A polynomial A is called k—perfect over the finite field Fy if the sum of
the k' powers of all distinct divisors of A equals A, where k is a positive integer.
We show that a k—perfect polynomial A over Fy must be even when k = 2", n is a
non-negative integer, and we characterize all 2""—perfect polynomials over Fy that are
of the form z¢(z + 1) [[;_, Pihi, where each P; is a Mersenne prime and a, b and h; are
positive integers.
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1. Introduction

Let n be a positive integer and let o(n) denote the sum of positive divisors
of the integer n. We call the number n a k—super perfect number if o*(n) =
o(o(...(c(n)))) = 2n. When k = 1, n is called a perfect number. An integer
——
k—times

M = 2P — 1, where p is a prime number, is called a Mersenne number. It is also
well known that an even integer n is perfect if and only if n = M(M + 1)/2
for some Mersenne prime number M. Suryanarayana [11] considered k—super
perfect numbers in the case k = 2. Numbers of the form 2P~! (p is prime) are

*. Corresponding author
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2-super perfect if 277! — 1 is a Mersenne prime. It is not known if there are odd
k—super perfect numbers.

Researchers also studied the arithmetic function oy (n) that finds the sum
of the kth powers of the positive divisors of n. Recently, Luca and Ferdinands
[10] showed that o (n) is divisible by n for infinitely many n when k > 2. Cai
et al. [1] proved that if n = 2%~ !p divides o3(n), where a > 1 is an integer and
p is an odd prime, then n is an even perfect number. Also, they proved that
the converse is true when n # 28. Jiang [9] made an improvement to the result
of Cai et al. They showed that n = 2¢~1p®~! divides o3(n), where a,b > 1 are
integers and p is an odd prime, if and only if n is an even perfect number other
than 28. Chu [3] found a relation between an even perfect number n and oy(n).
He generalized the work of Cai et al. as given in the following theorem.

Theorem 1.1. Let k > 2 be a prime such that 28 — 1 is a Mersenne prime. If
n = 2"1p, where a > 1 and p < 3271 — 1 is an odd prime. Then n divides
or(n) if and only if n is an even perfect number other than 28=1(2F —1).

Chu also generalized the work of Jiang as follows.

Theorem 1.2. Ifn = 2%~ 1p*~1 where a,b > 1 and p < 32°° ' — 1 is an odd
prime. Then n divides o5(n) if and only if n is an even perfect number other
than 496.

Chu conjectured if k& > 2 is a prime such that 2¥ — 1 is a Mersenne prime
and if n = 297 1p*~1 where a,b > 1 and p < 3.2 — 1 is an odd prime, then n
divides o1 (n) if and only if n is an even perfect number other than 2¢=1(2F —1).

The present paper gives a polynomial analogue of the arithmetic function
or(n). Let k be a positive integer and let A be a nonzero polynomial defined
over the prime field Fo. We denote by o1 (A) the sum of the k'* powers of the
distinct divisors B of A. That is,

op(A) =Y _ B~

BJA

If A € Falz] has the canonical decomposition [[;_; P/*" where the primes
P; € Fy[z] are distinct and «; > 0, then

() =1 gy

=1 2

In the case where k = 1, o becomes the well-known ¢ function. For example,
if A=x(x+1)%(2%+ 2+ 1) € Fo[z] then

o(A)=> B
B|A
=l+z+@+1)+@+1)*+ @ +z+1)+a(@+1)+z(x+1)°
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fz@+r+ )+ @+ D@+ + 1)+ (@ +1)2@%+2+1)
+zz+ 1)@ +z+1) +a@+ D32+ +1)
=a(z+ 1322+ +1)

and

o4(A) =) B =2tz + 1)@’ + 2+ 1)"
BlA

Note that the function oy is multiplicative over [Fs.
Notation 1.1. We use the following notations throughout the paper.
e deg(A) denotes the degree of the polynomial A.

o A is the polynomial obtained from A with = replaced by x + 1, that is
Alz) = A(x + 1).

o A* is the inverse of the polynomial A with deg(A) = m, in this sense
A*(z) =2™A(L).

e P and Q are distinct irreducible odd polynomials.

A nonzero polynomial A defined over Fs is an even polynomial if it has a
linear factor in Fy[x] else it is an odd polynomial. A polynomial T' of the form
1+ 2%z + 1) with ged(a,b) = 1 is called a Mersenne polynomial, see [6]. The
first five Mersenne polynomials over Fy are: T) = 1 4+ 2 + 22, Th = 1 4+ x + 23,
Ts=14+22+23 Ty =1+x+2>+23+2* Ts =1+ 22 + 2%, Note that all
these polynomials are irreducible, so we call them Mersenne primes.

The next definition is the main object of this study in which we introduce a

new concept of k—perfect polynomials over Fs.

Definition 1.1. Let k be a positive integer. A polynomial A is called a k—perfect
polynomial over Fo if op(A) = AF.

A 1—perfect polynomial A over Fy is a perfect polynomial, so we are inter-
ested in studying the case when k > 1. The polynomial B = z(x+1)?(22+z+1)
is a 4—perfect polynomial in Fa[z]. Note that B is a perfect polynomial over
Fy. A natural question arise: Is there a relation between perfect polynomials
and k—perfect polynomials in Fa[z]? In Section 3, we answer this question and
we find a relation between the sum of the divisors function o(A) and the sum
of the powers of the divisors function o;(A), k > 1, of the polynomial A over
the finite field Fo. We show that there are no odd 2" —perfect polynomials over
Fy and we characterize all even 2" —perfect polynomials over Fs that have the
form x%(z + 1)°[]_, Pih", where each P; is a Mersenne prime and a,b and h;
are positive integers.

Our main result is given in the following theorem:
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Theorem 1.3. Let a,b,t,h; € N and let P; be a Mersenne prime in Fa[x]. Then,
A=z%(z+ 1), Pihi is a 2" —perfect polynomial over Fy for some n € N if
and only if A € {a* Yz +1)¥ "1 22(z 4+ )T, z(z + 1)2T1, 23 (z + 1)*Ts, 2*(z +
)3Ty, 2t (x + DATyTs, 25(x + 1)3ToT5, 23 (z + 1)To T, 25 (x + 1) I T3 Ty, 2 (v +
1), T3T5}.

2. Preliminaries

The notion of perfect polynomials over Fy was introduced first by Canaday [2].
A polynomial A is perfect if 0(A) = A. Let w(A) be the number of distinct
irreducible polynomials that divide A. Canaday studied the case of even perfect
polynomials with w(A) < 3. In the recent years, Gallardo and Rahavandrainy
[4, 6, 7] showed the non-existence of odd perfect polynomials over Fy with either
w(A) = 3 or with w(A) < 9 in the case where all the exponents of the irreducible
factors of A are equal to 2. If the nonconstant polynomial A in Fy[x] is perfect,
then w(A) > 2 (see [4], Lemma 2.3). Moreover, Canaday [2] showed that the only
even perfect polynomials over Fy with exactly two prime divisors are x2n*1(x +
1)2"~! for some positive integers n.

It is well known that an even perfect number is exactly divisible by two
distinct prime numbers but a non-trivial even perfect polynomial A € Fo[z]
may be divisible by more than 2 distinct primes as Gallardo and Rahavandrainy
[6] gave some results with w(A) < 5. Although they did not give a general
form of such polynomials in terms of Mersenne primes but all the non-trivial
even perfect polynomials they found, with only two exceptions, have Mersenne
primes as odd divisors.

The following two lemmas are useful.

Lemma 2.1 (Lemma 2.3 in [6]). If A=A; As is perfect over Fy and if ged(A1, A2)
=1, then Ap is perfect if and only if Ao is perfect.

Lemma 2.2 (Lemma 2.4 in [6]). If A is perfect over Fy, then the polynomial A
s also perfect over Fo

In [5], Gallardo and Rahavandrainy gave a complete list for all even perfect
polynomials with at most 5 irreducible factors as given in the following lemma.

Lemma 2.3. The complete list of all even perfect polynomials over Fo with

w(A) <5 is:
w(4) | A
0 0
1 1
2 (2% + 2)2" 1
3 Ay =2 (x + 1)1, Ay = Ay (x), Ag = 2 (x + 1)*T5, Ay(x) = A3
4 As = 2?(z+ 1) (2t + 2+ 1)T?, Ag = As,
A7 = :C4(:L‘ + 1)4T4T5, Ag = xG(I + 1)3T2T3, Cg(.’L‘) == Aig
5 Ajp = 25(z + DR T3Ts, Ay = Aqo.
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Lemma 2.4 (Proposition 5.1 in [6]). If P is an odd irreducible polynomial in
Folx], then z(z + 1) divides o(P*™~1) for m € N.

The following lemma shows a nice relation between oy,(A) and (o(A))* when
A has exactly one prime factor.

Lemma 2.5. Let A = P® € Fo[x] with o > 1. Then o1,(A) = o(A)¥ if and only
if k= 2n.

Proof.
on(A)=1+P¥ + ..+ P"*=(1+P+ ..+ P9 = (c(A)?".

For the sufficient condition, the proof is done by contrapositive. Let k = 2"u,
u > 1is odd, then (o0(A))F = (6(A)?"* = (1 4+ P+ ...+ P*)?"" = (1 + P¥" +
o PRIy L (14 PP P2 = g (A). O

Corollary 2.1. Let A =[]_, P € Fa[x], then oon(A) = (0(A))?".

Lemma 2.6. Let A = P € Fa[z] be an irreducible polynomial and o > 1. Then
A is not a factor of o (A).

Proof. Assume that A divides o (A), then there exists a nonconstant B € Fo[x]
such that o1 (A) = AB with deg(B) < deg(AF). So, 14 P* ... Pkle=1) 4 pka —
P*B and P (P! 4 ...+ pkla=)=1 4 pa=l(pk 4 B)) = 1. Hence, P = 1 and
this contradicts the fact that P is prime in Fa[z]. O

Lemma 2.7 (Lemma 2.6 in [8]). Let m be a positive integer and let T be a
Mersenne prime in Fa[x], then o(z*™) and o(T?™) are both odd and squarefree.

Lemma 2.8. If m and k are positive integers, then op(P?™ 1) is divisible by
z(z+1).

Proof. Let 2m = 2"s, where s is odd and h > 1. Then,
O_k(PQ’m,—l) -1 +Pk‘ N _I_Pk(Qthl)
h
= (1+ PF)2"—1 (1 +PF P’f(s‘”)2
But x(x + 1) divides 1 4+ P*, P is odd. This completes the proof. O

Lemma 2.9. If m and k are positive integers, then o, (P*™) is not divisible by
z(z+1).

Proof. o (P?")=1+PF+..+P?*". So, op(P?>™)(0)=1+P*(0)+...+P*™(0) =

2m—times
1 and z is not factor of oy (P?™). Also, o (P*™)(1) = 1 and hence o (P?™) is
not divisible by « + 1. The proof is now complete. O
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Next we give some properties when k = 2.
Lemma 2.10. Let t be a positive integer, then o232 ~1) = (1 + 2)¥ 2

Proof. We use induction. For ¢t = 1, we have oa(2?) = (1 +x + 2%)? = T2,
Hence, the statement is true for t = 1. Now assume it is true for ¢, so

o9 <x3‘2t_1) = (1 +z+..+ g32 1 + 2327 (1 +z+..+ 933‘2t_1_1>>2
= (1 Fr4..+ x3~2t_1*1>2 (1 + 3:3‘275_1)2
=09 (x3'2t_171> (1 + $3)2t
= (L+2)* P17 (L +2) T)”
= (1+a)*" 2
We are done. ]
Lemma 2.11. Let ¢ be a positive integer, then oo((1 + x)32" 1) = 22 272"
Lemma 2.12. Let t be a positive integer, then 02(T12t_1) = (22 4 2)2@"-D),
Proof. Fort = 1, we have 02(T}) = (14+11)? = (22 +2)2. Hence, the statement
is true for t = 1. Now assume @(Tftil) = (22 + )@Y, And,
o9 (Tft+1‘1) - (1 F T 4 4+ T T (1 T 4.+ Tft‘l))2
_ (1 ST 4t Tf“l)2 (1 n Tft>2
= o (Tft_l) 1+1)%""

= (2% 4+ )21 (2 + 915)21&+1

= (a? +2)2@" Y,
The proof is complete. O
The following lemma follows directly from Lemmas 2.10, 2.11, and 2.12.

Lemma 2.13. Lett € N and let A = x°T or A = (14+2)%T} be polynomials in
Folz], where a = 3.2"" —1 and h = 2* — 1. Then o9(A) = 2?*(1 + )2 NP+,

Lemma 2.14. If a = 2'u — 1 with u odd. Then,

- o2 (a%) = (142272 (o (1)

2t+1

ii- o9 (P*) = (1+ P)Qt“—Q (U (Pu—l))
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Lemma 2.15. Let t € N and let A = 2T} or A = (1 + 2)%T] € Falx]. If A
divides o2(A), then a = 3.2871 — 1 and h = 2t — 1.

Definition 2.1. Let A € Fox] be a polynomial of degree m. Then,
i. A inverts into itself if A* = A.

ii. A is said to be k—complete if there exists h € N* such that A = op(2") =
142 + .. 4 2hh,

Lemma 2.16. i. Any k—complete polynomial inverts to itself.

i If 14+ 28+ ...+ 2P = PQ, then P = P* and Q = Q* or P = Q* and
Q = P*, where P and @ are irreducible polynomials in Fa[x].

Proof. i. Let A be a k—complete polynomial, then there exists A € N such that
A= O (:Eh)
=1+aF4 .. +akh

A* =gkt A (1)
x

1 1

— b (1 + =+t kh) , A is k—complete
x X

= A.

Hence, A inverts to itself.

ii. If 14 2% + ... + 2¥" = PQ, then PQ is k—complete. Using the above
results, then PQ inverts to itself. Hence, (PQ)* = PQ = P*Q*. Therefore,
P=P and Q =Q* or P=Q* and QQ = P*. O

3. Proof of Theorem 1.3

The following lemma is a direct consequence of Lemma 2.6.

Lemma 3.1. The polynomial A = P%*, a > 1, is not a k—perfect polynomial
over Fa, for every k > 1.

The preceding lemma shows that a k—perfect polynomial A over Fo has at
least 2 prime factors.

Lemma 3.2. Let m < n be positive integers and let A € Fa[x], then oom(A)
divides oan(A).

Proof.
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Notice that o2(A) divides oan(A) for any any n > 1. Hence, if A is a multi-
perfect polynomial over Fo, i.e. A divides o(A), then A is a k—multi-perfect
polynomial over Fs when k& = 2" for a positive integer n.

Lemma 3.3. Ift € N and A = 2°T} or A = (1+2)*T} be polynomials in Fa[z],
where a = 3271 — 1 and h = 2 — 1, then A divides oan(A) for any n > 1.

Proof. Since oy divides ogn and o2(A) = 22*(1 + )2 DTh with 2h =
a+271—1. O

Lemma 3.4. If a = 2'u — 1 with u odd and n € Z>o). Then,
i- 1+ x divides ogn (%)
ii- x(1+ z) divides oan (P)

Proof. We have o9(A) divides o9n(A) and 1 4 z divides 02(A) (Lemma 2.14).
O

Lemma 3.5. If A is k—perfect over Fo, then A is also k—perfect over Fs.

Proof. Let A(z) = [[._, P{"(x), where the primes P;(x) € Fa[z]. Since A is
k—perfect, then

ﬁ P]e(%—i—l) _1 .
(1) on(A) =] 2o —— = 4~
i=1 pr-1

Let Fy: be a splitting field for A(x) over Fy, then there exists aq,asg, ..., ax €
Fy: such that for each i, 1 <i < k, we have P, (z) = H]ﬁg)l (z — a?’), where
deg(Pi(x)) = B;. Since ged(Pi(x), Pj(xz)) = 1 over Fo, for every i # j, then
ged(P(x), Pj(x)) = 1 over Fy, for every i # j. Moreover,

Bi—1 _ Bi—1 )
Pz+1)=[[@+1-a’)= [[ (@ - (e — D).
=0 j=0

Since a; — 1 has degree 3;, it follows that each @Q;(z) = P;(z + 1) is prime
of degree f; in Falz]. We have ged(Qi(x), Q;(x)) = 1 in Fylz], for every i # j,
and hence the primes Q;(z) are distinct. Let B(z) = A(x) = [[}_, P/ (z+1) =
[[im @7 ().
By substituting B(z) in (1), we get
ox(A(z)) = ox(B(z))

11 P @41y -1
- k
i=1 PZ (l’ + ]‘) -1

@t @) -
g e
~ B(a)

~ @@
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So, B(z) = A(x) is k—perfect over Fo O

Lemma 2.1 shows the relation between o1 (A) and o(A) when k& = 2", and
its important consequence, Theorem 3.1, completely characterizes all k—perfect
polynomials over Fy when k& = 2™.

Theorem 3.1. A is perfect over Fy if and only if A is 2™ —perfect over F.

Proof. Let A =1T][;_, P/ € Fa[z] be a perfect polynomial over Fy, where P; is
an irreducible polynomial, then

oon(A) = (0(A))?" = A",

The converse is done by contrapositive. Assume that A is not perfect. Then,
oan(A) = (0(A)?" # A",

and we are done. O

Lemma 3.6. Let w(A) > 2 and let A be a 2" —perfect polynomial over Fy, then
x(x 4+ 1) divides A.

The proof of the following lemma can be done by a direct computation.
Lemma 3.7. Let t be a positive integer, then the polynomial xzt_l(:n + 1)2t_1
is 2" —perfect over Fs.

Lemma 3.8. If A = A1 As is 2" —perfect over Fo and if ged(Ay, Az) = 1, then
Ay is 2" —perfect if and only if A is 2™ —perfect.

The following lemma contains some interesting results from Canaday’s paper
(see [2], Lemma 6 and Theorem 8).

Lemma 3.9. Let A, B € Fo[z] and let n,m € N.

(i) If o(P*™) = B™A, with m > 1 and A € Faz] is nonconstant, then
deg(A)(P) > deg(A)(B).

(1i) If o (mQ") has a Mersenne factor, then n € {1,2,3}.

Gallardo and Rahavandrainy [6] conjectured that o(T2™) is always divisible
by a non-Mersenne prime, for any m € N, when T' = z%(x + 1)b+ 1 is a Mersenne
prime with a + b # 3.

Lemma 3.10. Let A = z%(x + 1) ], Pl-hi be a 2" —perfect polynomial over Fa
with each P; is a Mersenne prime. Then h; = 2% — 1, for every i.
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Proof. Assume that h; is even for every i. A = z%z + 1)°T], Pihi be a
2" —perfect then there exists a non Mersenne prime S such that S divides O'(]Dihi).
So, S divides ogn(A) = A%". Therefore, S = z or S = x4+ 1 and this contradicts
Lemmas 2.8 and 2.9 as h; must be odd. Now, suppose that h; + 1 = 2%u, wu is
odd and ¢; € N. But o(P") = (1+ P;)*"~! (U(Pi“_l))% Ifu—12> 2 again
there exists a non Mersenne prime W such that W divides o(P*"'). So, W
divides ogn(A) = A%". By Lemma 2.9, W # x and W # z + 1. But any prime
divisor of A which is not a Mersenne prime is either z or x + 1, a contradiction.
Hence, u = 1 and the result follows. ]

Lemma 3.11. Letc; € N, and let A = 2%(x+1)° ], Pfci_l be a 2" —perfect poly-
nomial over Fy with each P; is a Mersenne prime. Then, P; € {11,T>,...,T5},
with ¢; = 1 or 2.

Proof. Since A is 2"—perfect, then any irreducible factor @ of o(z?) or o((1+
r)?) must divide A. So, Q € {z,z + 1, P}, P»,...}. From Lemma 3.9(ii.), we
have Pi € {T1,T>,...,T5}. Now, we want to prove that ¢; € {1,2}. Note that
o(P*' 1) = (14 P)*"~! is not divisible by P;, for any i,j. Moreover, if ;
are the exponents of P; that are found in o(z%) and in o((1 + x)°), then a;
€ {0,1,2" : r € N} (Lemma 3.9(i4.)). Comparing exponents of P;, we get «;
=2%-1€{0,1,2,2",2" +1,2" + 2° : r, s € N}. Hence, ¢; = 1 or 2. O

Lemma 3.12. Let CZ‘ S N’ Pl c {Tl,TQ’ 7775}7 and A — xa(x + l)b H,L Picz‘ be a
2" —perfect polynomial over Fo with ¢; € {1,3}. Then a or b must be even.

Proof. For contradictional purpose, assume that a and b are both odd. By
Lemma 3.13, we have a = 2"u — 1 and b = 2°v — 1 for some ¢, s € N, and v and
v are odd positive integers less than or equal to 7. But,

oz =@+ D¥ 114+ z+..+2v

and

(l+2)) =2 1+ (1 +2)+ ..+ (1+2)H.
Also, P; is not a factor of J(chj) = (1 + P;)% for any 14, j. Suppose that P; is a
factor of 1+ + ... + %! but is not a factor of 1 + (1 +z) + ... + (1 + 2)*~!
for some i, with v > 3. Hence, 2! = ¢; = 2" — 1, a contradiction.

Now, assume that P; is a factor of both 1 +x + ...+ 2% Y and 1+ (1 + ) +
ot (142)"71, then 28 4-2% = ¢; = 2" —1, also a contradiction. Therefore, u = 1
and in a similar manner we get v = 1. So, o(z%) = o(2* ') = (x + 1)® and
o ((x+1)) =0 ((x+1)* ') = 2. Hence, a = b and z(z+1)" is a 2" —perfect
(Lemma 3.7). By Lemma 3.8, the polynomial [];_, Pihi is also 2" —perfect. This
contradicts Lemma 3.1. O

Lemma 3.13. Let ¢; € N, u > 1 and a be odd integers and let A = z%(x +
l)b IL Pfcz_l be a 2" —perfect polynomial over Fy, where each P; is a Mersenne
prime. Then, a is of the form 2'u — 1 with u < 7.
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Proof. Suppose that a = 2'u—1 with u is odd and ¢ > 1. Since A is 2" —perfect
over F9, then

2n
x2”a(x + 1)2”bHPi2"(2Ci—1) _ (U(l’a)U ((x + l)b) HO_ (PZ?C:'—I)) .
i=1

i=1

But o(z%) =1+2z+..+22% 1 =(1 +:B)2 “Lo(z* 12", If u > 2, then as done
in the proof of the preceding lemma we get u — 1 < 6 and hence the result. [

Lemma 3.14. Let a,b, ¢;EN such that a is even and let A=2%(z+1)P [[-, PZ" !
be a 2" —perfect polynomial over Fo, where each P; is a Mersenne prime. Then,
a < 6.

Proof. Let a = 2m. Since A is 2" —perfect over [Fo, then

l‘2n+1m(x + 1)2nb H })iQ'n(zci_l) _ A2n
i=1
= 0O9n (A)

= (etate i) T 02 )

But x and = + 1 do not divide o(2?™) and P; does not divide o (P2 i 1) so P
divides o(2?™). We are done by Lemma 3.9 (ii.). O

TL

3.1 Cases of the Proof

Let A = 2%z + 1)°[[_, Pih", where P;, is a Mersenne prime be a 2™-perfect
over F5. From Lemma 3.11, we have h; = 1 or 3. By Lemma 3.12, we have a or
b is even. To complete the proof of Theorem 1.3, we study the below cases:
Case 1. Both a and b are even:

In this case, we have

(2) l+xz+..+2%=P,..P,.

Since the P;,’s are Mersenne primes, then a,b € {2,4,6}. Since if A is a
2" —perfect polynomial over F,, then A is a 2"—perfect polynomial over Fo
so a and b can be chosen in the way a < b and a,b € {2,4,6}.

elfa=b=2thenl+a+2>=1+4(x+1)+ (z+1)*>=T,. Hence, A =
2?(z+1)*Ty and 0(A) = o (22) o ((z 4+ 1)) o(T1) = (T1) (T1) (z(1 +2)) =
x(1+ 2)T: 12 # A. Therefore A is not perfect over Fo and hence A is not
2" —perfect over Fy (Theorem 3.1).

elfa=2andb=4,thenl+a+2> =T and 1+ (z+1)+ ...+ (z +
D* =1+2%x+1) = Ts5. Hence, A = 2%(x + 1)*TyT5 and o(A) =
o (2?) o ((z+1)*) o(T1)o(T5) = (T1) (T5) (x(1 + 33)) (#*(1+2)) =2*(1+
x)*T1Ts # A. So, A is not 2"—perfect over Fy (Theorem 3.1).
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elfa=b=4thenl+a+.+a*=Tiand 1+ (x+1)+ ..+ (v +

DY = 1+2%+2* = T5. Hence, A = 2*(x + 1)*T4T5 and o(A)
o (zt) o ((z+1)*) o(Tu)o(Ts) = (Tu) (Ts) (z(1 4+ 2)3) (3(1 + 2)) = 2*(1+
x)*TyTs = A. So, A is 2"—perfect over Fy (Theorem 3.1).

Ifa=2andb=6,then l+x+2> =Ty and 1+ (x +1)+ ...+ (x +1)% =
(1+ 2+ 23)(1 + 22 + 23) = ToT3. Hence, A = 22(x + 1)5Ty T2 T3 and
o(4) = o(2®)o((x+1)°) o(Th)o(T2)o(T5)
— (1) (BT (21 + ) (2(1 + 2)%) (+%(1 + )
.36'4(1 + $)4T1T2T3
# A

Therefore, A is not 2™ —perfect over Fs.

Ifa=4andb=6,then 1+x+..+2? =Tyand 1+ (z+1)+...+(x+1)% =
T,Ts. Hence, A = 2*(x + 1)°TT3T) and o(A) = A. So, A is 2"—perfect
over Fo.

Ifa=b=6then 1+a+..+20 =1 +a+23)1+2%+23) =3 =
1+ (z+1) + ...+ (x + 1)% Hence, A = 2%(x + 1)°T§T? and

0(A) =0 (2% 0 ((x +1)%) 0 (T3) o (T5) = TETFT3TyT5 # A. Therefore,
A is not 2" —perfect over Fs.

Case 2. a is even and b is odd:

By Lemmas 3.13 and 3.14, we have a € {2,4,6} and b = 2'u — 1 for some

t € Z>1 and u € {1,3,5,7}.

If u=1and a =2, then o(22) = T1,0((x + 1) 1) = 221, and o(T}) =
z(r+1). Hence, 2 —1+1 =b+1 < a = 2. Thus, ¢t = 1 and A = 2?(x+1)T}.

If u=1and a =4, then o(z*) = Ty,0((z + 1) 1) = 221, and o(T}) =
r(r+1)3. Hence, 2! —14+1=b+1<a=4. Thus, t <2and 3 < b =2 -1,
sot=2and A =az(z +1)3Ty.

If u=1and a = 6, then o(2%) = ToT3,0((z + )% 1) = 221, o(Ty) =
z(z+ 1) and o(T3) = 2%(z + 1). Hence, 2! —1+2+1=b+3<a =6.
Thus, t <2and 3<b=2'—1,s0t=2and A=a2%x+1)>T1T3.

If u =3 and a = 2, then o(2?) = Ty, 0((z + 1)32 1) = 22~172", Hence,
TftH divides o(A) = A but T12t+2 does not divide o(A) = A. By Lemma
3.11, we have 2! + 1 € {1,3} and thus t = 1 and A = 22(1 + x)°T}. But
o(2%(1 + 2)°T1) # 2%(1 + x)°T} and hence A is not 2" —perfect over Fy.

If u =3 and a = 4, then o(z*) = T}. Since T} does not divide o(x*), then
T2 divides o(A) = A but Tft'H does not divide 0(A) = A. By Lemma
3.11, we have 2! € {1,3}, a contradiction.
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The case u = 3 and a = 6 is similar to the preceding one.

e If u=5and a € {2,6}, then o((z +1)>2 1) = 22 -T2, Since T} does
not divide o(z), then 72" divides o(A) = A where Tl2th1 does not divide
o(A) = A. By Lemma 3.11, we have 2' € {1, 3}, a contradiction.

e If u =5 and a = 4, then o(2*) = Ty. Since Tftﬂ divides A and T12t+2
does not divide A. By Lemma 3.11, we have 2! +1 € {1,3}. Thus t = 1
and A = 24(1 +2)°T3. But o(z*(1 + 2)°T}) # 2*(1 4+ 2)°T}. Hence, A is
not 2" —perfect over Fs.

o If u=7and a € {2,4}, then o((x + 1)72' 1) = 22172 T2, Since Ty
and T3 do not divide o(2%), then T2 divides A and T 22t+1 does not divide
o(A) = A. By Lemma 3.11, we have 2! € {1, 3}, a contradiction.

e If u=7and a =6, then o (mﬁ) = T,T3. So, T22t+1 (resp. T32t+1) divides A
and T22t+1(resp. T32t+1) does not divide A. By Lemma 3.11, we have 2'+1 €
{1,3}. Thus t = 1 and A = 2%(1 + 2)BT3T3. But o (2(1 + 2)BTHTS) #
29(1 4+ 2)B3TST3. Hence, A is not 2"—perfect over Fy.

The proof of Theorem 1.3 is now complete

4. Conclusion

We

show the non existence of odd 2"—perfect, n € N, polynomials over Fs.

A characterization of 2" —perfect polynomials A over the prime field with two
elements that are divisible by x, x + 1, and Mersenne primes is given.
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