On k-perfect polynomials over \mathbb{F}_{2}

Haissam Chehade*
The International University of Beirut
School of Arts and Sciences
Department of Mathematics and Physics
Lebanon
haissam.chehade@liu.edu.lb
Yousuf Alkhezi
The Public Authority for Applied Education and Training
College of Basic Education
Department of Mathematics
Kuwait
ya.alkhezi@paaet.edu.kw
\section*{Wiam Zeid}
Lebanese International University
School of Arts and Sciences
Department of Mathematics and Physics
Lebanon
wiam.zeid@liu.edu.lb

Abstract

A polynomial A is called k-perfect over the finite field \mathbb{F}_{2} if the sum of the $k^{\text {th }}$ powers of all distinct divisors of A equals A^{k}, where k is a positive integer. We show that a k-perfect polynomial A over \mathbb{F}_{2} must be even when $k=2^{n}, n$ is a non-negative integer, and we characterize all 2^{n}-perfect polynomials over \mathbb{F}_{2} that are of the form $x^{a}(x+1)^{b} \prod_{i=1}^{r} P_{i}^{h_{i}}$, where each P_{i} is a Mersenne prime and a, b and h_{i} are positive integers.

Keywords: sum of divisors, multiplicative function, polynomials, finite fields, characteristic 2.

1. Introduction

Let n be a positive integer and let $\sigma(n)$ denote the sum of positive divisors of the integer n. We call the number n a k-super perfect number if $\sigma^{k}(n)=$ $\underbrace{\sigma(\sigma(\ldots(\sigma(n))))}_{k-\text { times }}=2 n$. When $k=1, n$ is called a perfect number. An integer $M=2^{p}-1$, where p is a prime number, is called a Mersenne number. It is also well known that an even integer n is perfect if and only if $n=M(M+1) / 2$ for some Mersenne prime number M. Suryanarayana [11] considered k-super perfect numbers in the case $k=2$. Numbers of the form 2^{p-1} (p is prime) are
*. Corresponding author

2-super perfect if $2^{p-1}-1$ is a Mersenne prime. It is not known if there are odd k-super perfect numbers.

Researchers also studied the arithmetic function $\sigma_{k}(n)$ that finds the sum of the k th powers of the positive divisors of n. Recently, Luca and Ferdinands [10] showed that $\sigma_{k}(n)$ is divisible by n for infinitely many n when $k \geq 2$. Cai et al. [1] proved that if $n=2^{a-1} p$ divides $\sigma_{3}(n)$, where $a>1$ is an integer and p is an odd prime, then n is an even perfect number. Also, they proved that the converse is true when $n \neq 28$. Jiang [9] made an improvement to the result of Cai et al. They showed that $n=2^{a-1} p^{b-1}$ divides $\sigma_{3}(n)$, where $a, b>1$ are integers and p is an odd prime, if and only if n is an even perfect number other than 28. Chu [3] found a relation between an even perfect number n and $\sigma_{k}(n)$. He generalized the work of Cai et al. as given in the following theorem.

Theorem 1.1. Let $k>2$ be a prime such that $2^{k}-1$ is a Mersenne prime. If $n=2^{a-1} p$, where $a>1$ and $p<3 \cdot 2^{a-1}-1$ is an odd prime. Then n divides $\sigma_{k}(n)$ if and only if n is an even perfect number other than $2^{k-1}\left(2^{k}-1\right)$.

Chu also generalized the work of Jiang as follows.
Theorem 1.2. If $n=2^{a-1} p^{b-1}$, where $a, b>1$ and $p<3 \cdot 2^{a-1}-1$ is an odd prime. Then n divides $\sigma_{5}(n)$ if and only if n is an even perfect number other than 496.

Chu conjectured if $k>2$ is a prime such that $2^{k}-1$ is a Mersenne prime and if $n=2^{a-1} p^{b-1}$, where $a, b>1$ and $p<3.2^{a-1}-1$ is an odd prime, then n divides $\sigma_{k}(n)$ if and only if n is an even perfect number other than $2^{k-1}\left(2^{k}-1\right)$.

The present paper gives a polynomial analogue of the arithmetic function $\sigma_{k}(n)$. Let k be a positive integer and let A be a nonzero polynomial defined over the prime field \mathbb{F}_{2}. We denote by $\sigma_{k}(A)$ the sum of the $k^{t h}$ powers of the distinct divisors B of A. That is,

$$
\sigma_{k}(A)=\sum_{B \mid A} B^{k}
$$

If $A \in \mathbb{F}_{2}[x]$ has the canonical decomposition $\prod_{i=1}^{r} P_{i}^{\alpha_{i}}$ where the primes $P_{i} \in \mathbb{F}_{2}[x]$ are distinct and $\alpha_{i}>0$, then

$$
\sigma_{k}(A)=\prod_{i=1}^{r} \frac{P_{i}^{k\left(\alpha_{i}+1\right)}-1}{P_{i}^{k}-1}
$$

In the case where $k=1, \sigma_{k}$ becomes the well-known σ function. For example, if $A=x(x+1)^{2}\left(x^{2}+x+1\right) \in \mathbb{F}_{2}[x]$ then

$$
\begin{aligned}
\sigma(A) & =\sum_{B \mid A} B \\
& =1+x+(x+1)+(x+1)^{2}+\left(x^{2}+x+1\right)+x(x+1)+x(x+1)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& +x\left(x^{2}+x+1\right)+(x+1)\left(x^{2}+x+1\right)+(x+1)^{2}\left(x^{2}+x+1\right) \\
& +x(x+1)\left(x^{2}+x+1\right)+x(x+1)^{2}\left(x^{2}+x+1\right) \\
& =x(x+1)^{2}\left(x^{2}+x+1\right)
\end{aligned}
$$

and

$$
\sigma_{4}(A)=\sum_{B \mid A} B^{4}=x^{4}(x+1)^{8}\left(x^{2}+x+1\right)^{4}
$$

Note that the function σ_{k} is multiplicative over \mathbb{F}_{2}.
Notation 1.1. We use the following notations throughout the paper.

- $\operatorname{deg}(A)$ denotes the degree of the polynomial A.
- \bar{A} is the polynomial obtained from A with x replaced by $x+1$, that is $\bar{A}(x)=A(x+1)$.
- A^{*} is the inverse of the polynomial A with $\operatorname{deg}(A)=m$, in this sense $A^{*}(x)=x^{m} A\left(\frac{1}{x}\right)$.
- P and Q are distinct irreducible odd polynomials.

A nonzero polynomial A defined over \mathbb{F}_{2} is an even polynomial if it has a linear factor in $\mathbb{F}_{2}[x]$ else it is an odd polynomial. A polynomial T of the form $1+x^{a}(x+1)^{b}$ with $\operatorname{gcd}(a, b)=1$ is called a Mersenne polynomial, see [6]. The first five Mersenne polynomials over \mathbb{F}_{2} are: $T_{1}=1+x+x^{2}, T_{2}=1+x+x^{3}$, $T_{3}=1+x^{2}+x^{3}, T_{4}=1+x+x^{2}+x^{3}+x^{4}, T_{5}=1+x^{3}+x^{4}$. Note that all these polynomials are irreducible, so we call them Mersenne primes.

The next definition is the main object of this study in which we introduce a new concept of k-perfect polynomials over \mathbb{F}_{2}.

Definition 1.1. Let k be a positive integer. A polynomial A is called $a k$-perfect polynomial over \mathbb{F}_{2} if $\sigma_{k}(A)=A^{k}$.

A 1-perfect polynomial A over \mathbb{F}_{2} is a perfect polynomial, so we are interested in studying the case when $k>1$. The polynomial $B=x(x+1)^{2}\left(x^{2}+x+1\right)$ is a 4 -perfect polynomial in $\mathbb{F}_{2}[x]$. Note that B is a perfect polynomial over \mathbb{F}_{2}. A natural question arise: Is there a relation between perfect polynomials and k-perfect polynomials in $\mathbb{F}_{2}[x]$? In Section 3, we answer this question and we find a relation between the sum of the divisors function $\sigma(A)$ and the sum of the powers of the divisors function $\sigma_{k}(A), k>1$, of the polynomial A over the finite field \mathbb{F}_{2}. We show that there are no odd 2^{n}-perfect polynomials over \mathbb{F}_{2} and we characterize all even 2^{n}-perfect polynomials over \mathbb{F}_{2} that have the form $x^{a}(x+1)^{b} \prod_{i=1}^{r} P_{i}^{h_{i}}$, where each P_{i} is a Mersenne prime and a, b and h_{i} are positive integers.

Our main result is given in the following theorem:

Theorem 1.3. Let $a, b, t, h_{i} \in \mathbb{N}$ and let P_{i} be a Mersenne prime in $\mathbb{F}_{2}[x]$. Then, $A=x^{a}(x+1)^{b} \prod_{i=1}^{r} P_{i}^{h_{i}}$ is a 2^{n}-perfect polynomial over \mathbb{F}_{2} for some $n \in \mathbb{N}$ if and only if $A \in\left\{x^{2^{t}-1}(x+1)^{2^{t}-1}, x^{2}(x+1) T_{1}, x(x+1)^{2} T_{1}, x^{3}(x+1)^{4} T_{5}, x^{4}(x+\right.$ 1) ${ }^{3} T_{4}, x^{4}(x+1)^{4} T_{4} T_{5}, x^{6}(x+1)^{3} T_{2} T_{3}, x^{3}(x+1)^{6} T_{2} T_{3}, x^{6}(x+1)^{4} T_{2} T_{3} T_{5}, x^{4}(x+$ 1) $\left.{ }^{6} T_{2} T_{3} T_{5}\right\}$.

2. Preliminaries

The notion of perfect polynomials over \mathbb{F}_{2} was introduced first by Canaday [2]. A polynomial A is perfect if $\sigma(A)=A$. Let $\omega(A)$ be the number of distinct irreducible polynomials that divide A. Canaday studied the case of even perfect polynomials with $\omega(A) \leq 3$. In the recent years, Gallardo and Rahavandrainy $[4,6,7]$ showed the non-existence of odd perfect polynomials over \mathbb{F}_{2} with either $\omega(A)=3$ or with $\omega(A) \leq 9$ in the case where all the exponents of the irreducible factors of A are equal to 2 . If the nonconstant polynomial A in $\mathbb{F}_{2}[x]$ is perfect, then $\omega(A) \geq 2$ (see [4], Lemma 2.3). Moreover, Canaday [2] showed that the only even perfect polynomials over \mathbb{F}_{2} with exactly two prime divisors are $x^{2^{n}-1}(x+$ $1)^{2^{n}-1}$ for some positive integers n.

It is well known that an even perfect number is exactly divisible by two distinct prime numbers but a non-trivial even perfect polynomial $A \in \mathbb{F}_{2}[x]$ may be divisible by more than 2 distinct primes as Gallardo and Rahavandrainy [6] gave some results with $\omega(A) \leq 5$. Although they did not give a general form of such polynomials in terms of Mersenne primes but all the non-trivial even perfect polynomials they found, with only two exceptions, have Mersenne primes as odd divisors.

The following two lemmas are useful.
Lemma 2.1 (Lemma 2.3 in [6]). If $A=A_{1} A_{2}$ is perfect over \mathbb{F}_{2} and if $\operatorname{gcd}\left(A_{1}, A_{2}\right)$ $=1$, then A_{1} is perfect if and only if A_{2} is perfect.

Lemma 2.2 (Lemma 2.4 in [6]). If A is perfect over \mathbb{F}_{2}, then the polynomial \bar{A} is also perfect over \mathbb{F}_{2}

In [5], Gallardo and Rahavandrainy gave a complete list for all even perfect polynomials with at most 5 irreducible factors as given in the following lemma.

Lemma 2.3. The complete list of all even perfect polynomials over \mathbb{F}_{2} with $\omega(A) \leq 5$ is:

$\omega(A)$	A
0	0
1	1
2	$\left(x^{2}+x\right)^{2^{n}-1}$
3	$A_{1}=x^{2}(x+1) T_{1}, A_{2}=\overline{A_{1}}(x), A_{3}=x^{3}(x+1)^{4} T_{5}, A_{4}(x)=\overline{A_{3}}$
4	$A_{5}=x^{2}(x+1)\left(x^{4}+x+1\right) T_{1}^{2}, A_{6}=\overline{A_{5}}$,
	$A_{7}=x^{4}(x+1)^{4} T_{4} T_{5}, A_{8}=x^{6}(x+1)^{3} T_{2} T_{3}, C_{9}(x)=\overline{A_{8}}$
5	$A_{10}=x^{6}(x+1)^{4} T_{2} T_{3} T_{5}, A_{11}=\overline{A_{10}}$.

Lemma 2.4 (Proposition 5.1 in [6]). If P is an odd irreducible polynomial in $\mathbb{F}_{2}[x]$, then $x(x+1)$ divides $\sigma\left(P^{2 m-1}\right)$ for $m \in \mathbb{N}$.

The following lemma shows a nice relation between $\sigma_{k}(A)$ and $(\sigma(A))^{k}$ when A has exactly one prime factor.

Lemma 2.5. Let $A=P^{\alpha} \in \mathbb{F}_{2}[x]$ with $\alpha \geq 1$. Then $\sigma_{k}(A)=\sigma(A)^{k}$ if and only if $k=2^{n}$.

Proof.

$$
\sigma_{2^{n}}(A)=1+P^{2^{n}}+\ldots+P^{2^{n} \alpha}=\left(1+P+\ldots+P^{\alpha}\right)^{2^{n}}=(\sigma(A))^{2^{n}}
$$

For the sufficient condition, the proof is done by contrapositive. Let $k=2^{n} u$, $u>1$ is odd, then $(\sigma(A))^{k}=(\sigma(A))^{2^{n} u}=\left(1+P+\ldots+P^{\alpha}\right)^{2^{n} u}=\left(1+P^{2^{n}}+\right.$ $\left.\ldots+P^{2^{n} \alpha}\right)^{u} \neq\left(1+P^{2^{n} u}+\ldots+P^{2^{n} u \alpha}\right)=\sigma_{k}(A)$.

Corollary 2.1. Let $A=\prod_{i=1}^{r} P_{i}^{\alpha_{i}} \in \mathbb{F}_{2}[x]$, then $\sigma_{2^{n}}(A)=(\sigma(A))^{2^{n}}$.
Lemma 2.6. Let $A=P^{\alpha} \in \mathbb{F}_{2}[x]$ be an irreducible polynomial and $\alpha \geq 1$. Then A is not a factor of $\sigma_{k}(A)$.

Proof. Assume that A divides $\sigma_{k}(A)$, then there exists a nonconstant $B \in \mathbb{F}_{2}[x]$ such that $\sigma_{k}(A)=A B$ with $\operatorname{deg}(B)<\operatorname{deg}\left(A^{k}\right)$. So, $1+P^{k}+\ldots+P^{k(\alpha-1)}+P^{k \alpha}=$ $P^{\alpha} B$ and $P\left(P^{k-1}+\ldots+P^{k(\alpha-1)-1}+P^{\alpha-1}\left(P^{k}+B\right)\right)=1$. Hence, $P=1$ and this contradicts the fact that P is prime in $\mathbb{F}_{2}[x]$.

Lemma 2.7 (Lemma 2.6 in [8]). Let m be a positive integer and let T be a Mersenne prime in $\mathbb{F}_{2}[x]$, then $\sigma\left(x^{2 m}\right)$ and $\sigma\left(T^{2 m}\right)$ are both odd and squarefree.

Lemma 2.8. If m and k are positive integers, then $\sigma_{k}\left(P^{2 m-1}\right)$ is divisible by $x(x+1)$.

Proof. Let $2 m=2^{h} s$, where s is odd and $h \geq 1$. Then,

$$
\begin{aligned}
\sigma_{k}\left(P^{2 m-1}\right) & =1+P^{k}+\ldots+P^{k\left(2^{h} s-1\right)} \\
& =\left(1+P^{k}\right)^{2^{h}-1}\left(1+P^{k}+\ldots+P^{k(s-1)}\right)^{2^{h}}
\end{aligned}
$$

But $x(x+1)$ divides $1+P^{k}, P$ is odd. This completes the proof.
Lemma 2.9. If m and k are positive integers, then $\sigma_{k}\left(P^{2 m}\right)$ is not divisible by $x(x+1)$.

Proof. $\sigma_{k}\left(P^{2 m}\right)=1+P^{k}+\ldots+P^{2 k m}$. So, $\sigma_{k}\left(P^{2 m}\right)(0)=1+\underbrace{P^{k}(0)+\ldots+P^{2 k m}}_{2 m-\text { times }}(0)=$ 1 and x is not factor of $\sigma_{k}\left(P^{2 m}\right)$. Also, $\sigma_{k}\left(P^{2 m}\right)(1)=1$ and hence $\sigma_{k}\left(P^{2 m}\right)$ is not divisible by $x+1$. The proof is now complete.

Next we give some properties when $k=2$.
Lemma 2.10. Let t be a positive integer, then $\sigma_{2}\left(x^{3.2^{t-1}-1}\right)=(1+x)^{2^{t}-2} T_{1}^{2^{t}}$.
Proof. We use induction. For $t=1$, we have $\sigma_{2}\left(x^{2}\right)=\left(1+x+x^{2}\right)^{2}=T_{1}^{2}$. Hence, the statement is true for $t=1$. Now assume it is true for t, so

$$
\begin{aligned}
\sigma_{2}\left(x^{3.2^{t}-1}\right) & =\left(1+x+\ldots+x^{3.2^{t-1}-1}+x^{3.2^{t-1}}\left(1+x+\ldots+x^{3.2^{t-1}-1}\right)\right)^{2} \\
& =\left(1+x+\ldots+x^{3.2^{t-1}-1}\right)^{2}\left(1+x^{3.2^{t-1}}\right)^{2} \\
& =\sigma_{2}\left(x^{3.2^{t-1}-1}\right)\left(1+x^{3}\right)^{2^{t}} \\
& =(1+x)^{2^{t}-2} T_{1}^{2^{t}}\left((1+x) T_{1}\right)^{2^{t}} \\
& =(1+x)^{2^{t+1}-2} T_{1}^{2^{t+1}} .
\end{aligned}
$$

We are done.
Lemma 2.11. Let t be a positive integer, then $\sigma_{2}\left((1+x)^{3.2^{t-1}-1}\right)=x^{2^{t}-2} T_{1}^{2^{t}}$.
Lemma 2.12. Let t be a positive integer, then $\sigma_{2}\left(T_{1}^{2^{t}-1}\right)=\left(x^{2}+x\right)^{2\left(2^{t}-1\right)}$.
Proof. For $t=1$, we have $\sigma_{2}\left(T_{1}\right)=\left(1+T_{1}\right)^{2}=\left(x^{2}+x\right)^{2}$. Hence, the statement is true for $t=1$. Now assume $\sigma_{2}\left(T_{1}^{2^{t}-1}\right)=\left(x^{2}+x\right)^{2\left(2^{t}-1\right)}$. And,

$$
\begin{aligned}
\sigma_{2}\left(T_{1}^{2^{t+1}-1}\right) & =\left(1+T_{1}+\ldots+T_{1}^{2^{t}-1}+T_{1}^{2^{t}}\left(1+T_{1}+\ldots+T_{1}^{2^{t}-1}\right)\right)^{2} \\
& =\left(1+T_{1}+\ldots+T_{1}^{2^{t}-1}\right)^{2}\left(1+T_{1}^{2^{t}}\right)^{2} \\
& =\sigma_{2}\left(T_{1}^{2^{t}-1}\right)\left(1+T_{1}\right)^{2^{t+1}} \\
& =\left(x^{2}+x\right)^{2\left(2^{t}-1\right)}\left(x^{2}+x\right)^{2^{t+1}} \\
& =\left(x^{2}+x\right)^{2\left(2^{t+1}-1\right)} .
\end{aligned}
$$

The proof is complete.
The following lemma follows directly from Lemmas 2.10, 2.11, and 2.12.
Lemma 2.13. Let $t \in \mathbb{N}$ and let $A=x^{a} T_{1}^{h}$ or $A=(1+x)^{a} T_{1}^{h}$ be polynomials in $\mathbb{F}_{2}[x]$, where $a=3.2^{t-1}-1$ and $h=2^{t}-1$. Then $\sigma_{2}(A)=x^{2 h}(1+x)^{2(a-1)} T_{1}^{h+1}$.

Lemma 2.14. If $a=2^{t} u-1$ with u odd. Then,

$$
\begin{aligned}
& i-\sigma_{2}\left(x^{a}\right)=(1+x)^{2^{t+1}-2}\left(\sigma\left(x^{u-1}\right)\right)^{2^{t+1}} \\
& i i-\sigma_{2}\left(P^{a}\right)=(1+P)^{2^{t+1}-2}\left(\sigma\left(P^{u-1}\right)\right)^{2^{t+1}}
\end{aligned}
$$

Lemma 2.15. Let $t \in \mathbb{N}$ and let $A=x^{a} T_{1}^{h}$ or $A=(1+x)^{a} T_{1}^{h} \in \mathbb{F}_{2}[x]$. If A divides $\sigma_{2}(A)$, then $a=3.2^{t-1}-1$ and $h=2^{t}-1$.
Definition 2.1. Let $A \in \mathbb{F}_{2}[x]$ be a polynomial of degree m. Then,
i. A inverts into itself if $A^{*}=A$.
ii. A is said to be k-complete if there exists $h \in \mathbb{N}^{*}$ such that $A=\sigma_{k}\left(x^{h}\right)=$ $1+x^{k}+\ldots+x^{k h}$.

Lemma 2.16. i. Any k-complete polynomial inverts to itself.
ii. If $1+x^{k}+\ldots+x^{k m}=P Q$, then $P=P^{*}$ and $Q=Q^{*}$ or $P=Q^{*}$ and $Q=P^{*}$, where P and Q are irreducible polynomials in $\mathbb{F}_{2}[x]$.

Proof. i. Let A be a k-complete polynomial, then there exists $h \in \mathbb{N}$ such that

$$
\begin{aligned}
A & =\sigma_{k}\left(x^{h}\right) \\
& =1+x^{k}+\ldots+x^{k h} \\
A^{*} & =x^{k h} A\left(\frac{1}{x}\right) \\
& =x^{k h}\left(1+\frac{1}{x^{k}}+\ldots+\frac{1}{x^{k h}}\right), A \text { is } k-\text { complete } \\
& =A
\end{aligned}
$$

Hence, A inverts to itself.
ii. If $1+x^{k}+\ldots+x^{k m}=P Q$, then $P Q$ is k-complete. Using the above results, then $P Q$ inverts to itself. Hence, $(P Q)^{*}=P Q=P^{*} Q^{*}$. Therefore, $P=P^{*}$ and $Q=Q^{*}$ or $P=Q^{*}$ and $Q=P^{*}$.

3. Proof of Theorem 1.3

The following lemma is a direct consequence of Lemma 2.6.
Lemma 3.1. The polynomial $A=P^{\alpha}, \alpha \geq 1$, is not a k-perfect polynomial over \mathbb{F}_{2}, for every $k \geq 1$.

The preceding lemma shows that a k-perfect polynomial A over \mathbb{F}_{2} has at least 2 prime factors.

Lemma 3.2. Let $m \leq n$ be positive integers and let $A \in \mathbb{F}_{2}[x]$, then $\sigma_{2^{m}}(A)$ divides $\sigma_{2^{n}}(A)$.
Proof.

$$
\begin{aligned}
\sigma_{2^{n}}(A) & =(\sigma(A))^{2^{n}} \\
& =(\sigma(A))^{2^{m}}(\sigma(A))^{2^{n-m}} \\
& =\sigma_{2^{m}}(A)(\sigma(A))^{2^{n-m}}
\end{aligned}
$$

Notice that $\sigma_{2}(A)$ divides $\sigma_{2^{n}}(A)$ for any any $n \geq 1$. Hence, if A is a multiperfect polynomial over \mathbb{F}_{2}, i.e. A divides $\sigma(A)$, then A is a k-multi-perfect polynomial over \mathbb{F}_{2} when $k=2^{n}$ for a positive integer n.
Lemma 3.3. If $t \in \mathbb{N}$ and $A=x^{a} T_{1}^{h}$ or $A=(1+x)^{a} T_{1}^{h}$ be polynomials in $\mathbb{F}_{2}[x]$, where $a=3.2^{t-1}-1$ and $h=2^{t}-1$, then A divides $\sigma_{2^{n}}(A)$ for any $n \geq 1$.
Proof. Since σ_{2} divides $\sigma_{2^{n}}$ and $\sigma_{2}(A)=x^{2 h}(1+x)^{2(a-1)} T_{1}^{h+1}$ with $2 h=$ $a+2^{t-1}-1$.

Lemma 3.4. If $a=2^{t} u-1$ with u odd and $\left.n \in \mathbb{Z}_{\geq 0}\right)$. Then,
i - $1+x$ divides $\sigma_{2^{n}}\left(x^{a}\right)$
ii- $x(1+x)$ divides $\sigma_{2^{n}}\left(P^{a}\right)$
Proof. We have $\sigma_{2}(A)$ divides $\sigma_{2^{n}}(A)$ and $1+x$ divides $\sigma_{2}(A)$ (Lemma 2.14).

Lemma 3.5. If A is k-perfect over \mathbb{F}_{2}, then \bar{A} is also k-perfect over \mathbb{F}_{2}.
Proof. Let $A(x)=\prod_{i=1}^{r} P_{i}^{\alpha_{i}}(x)$, where the primes $P_{i}(x) \in \mathbb{F}_{2}[x]$. Since A is k-perfect, then

$$
\begin{equation*}
\sigma_{k}(A)=\prod_{i=1}^{r} \frac{P_{i}^{k\left(\alpha_{i}+1\right)}-1}{P_{i}^{k}-1}=A^{k} . \tag{1}
\end{equation*}
$$

Let $F_{2^{t}}$ be a splitting field for $A(x)$ over \mathbb{F}_{2}, then there exists $a_{1}, a_{2}, \ldots, a_{k} \in$ $F_{2^{t}}$ such that for each $i, 1 \leq i \leq k$, we have $P_{i}^{\alpha_{i}}(x)=\prod_{j=0}^{\beta_{i}-1}\left(x-a_{i}^{2^{j}}\right)^{\alpha_{i}}$, where $\operatorname{deg}\left(P_{i}(x)\right)=\beta_{i}$. Since $\operatorname{gcd}\left(P_{i}(x), P_{j}(x)\right)=1$ over \mathbb{F}_{2}, for every $i \neq j$, then $\operatorname{gcd}\left(P_{i}(x), P_{j}(x)\right)=1$ over $F_{2^{t}}$, for every $i \neq j$. Moreover,

$$
P_{i}(x+1)=\prod_{j=0}^{\beta_{i}-1}\left(x+1-a_{i}^{2^{j}}\right)=\prod_{j=0}^{\beta_{i}-1}\left(x-\left(a_{i}-1\right)^{2^{j}}\right)
$$

Since $a_{i}-1$ has degree β_{i}, it follows that each $Q_{i}(x)=P_{i}(x+1)$ is prime of degree β_{i} in $\mathbb{F}_{2}[x]$. We have $\operatorname{gcd}\left(Q_{i}(x), Q_{j}(x)\right)=1$ in $\mathbb{F}_{2}[x]$, for every $i \neq j$, and hence the primes $Q_{i}(x)$ are distinct. Let $B(x)=\bar{A}(x)=\prod_{i=1}^{r} P_{i}^{\alpha_{i}}(x+1)=$ $\prod_{i=1}^{r} Q_{i}^{\alpha_{i}}(x)$.

By substituting $B(x)$ in (1), we get

$$
\begin{aligned}
\sigma_{k}(\bar{A}(x)) & =\sigma_{k}(B(x)) \\
& =\prod_{i=1}^{r} \frac{P_{i}^{k\left(\alpha_{i}+1\right)}(x+1)-1}{P_{i}^{k}(x+1)-1} \\
& =\prod_{i=1}^{r} \frac{Q_{i}^{k\left(\alpha_{i}+1\right)}(x)-1}{Q_{i}^{k}(x)-1} \\
& =B^{k}(x) \\
& =(\bar{A}(x))^{k} .
\end{aligned}
$$

So, $B(x)=\bar{A}(x)$ is k-perfect over \mathbb{F}_{2}
Lemma 2.1 shows the relation between $\sigma_{k}(A)$ and $\sigma(A)$ when $k=2^{n}$, and its important consequence, Theorem 3.1, completely characterizes all k-perfect polynomials over \mathbb{F}_{2} when $k=2^{n}$.

Theorem 3.1. A is perfect over \mathbb{F}_{2} if and only if A is 2^{n}-perfect over \mathbb{F}_{2}.
Proof. Let $A=\prod_{i=1}^{r} P_{i}^{\alpha_{i}} \in \mathbb{F}_{2}[x]$ be a perfect polynomial over \mathbb{F}_{2}, where P_{i} is an irreducible polynomial, then

$$
\sigma_{2^{n}}(A)=(\sigma(A))^{2^{n}}=A^{2^{n}}
$$

The converse is done by contrapositive. Assume that A is not perfect. Then,

$$
\sigma_{2^{n}}(A)=(\sigma(A))^{2^{n}} \neq A^{2^{n}}
$$

and we are done.
Lemma 3.6. Let $\omega(A) \geq 2$ and let A be a 2^{n}-perfect polynomial over \mathbb{F}_{2}, then $x(x+1)$ divides A.

The proof of the following lemma can be done by a direct computation.
Lemma 3.7. Let t be a positive integer, then the polynomial $x^{2^{t}-1}(x+1)^{2^{t}-1}$ is 2^{n}-perfect over \mathbb{F}_{2}.

Lemma 3.8. If $A=A_{1} A_{2}$ is 2^{n}-perfect over \mathbb{F}_{2} and if $\operatorname{gcd}\left(A_{1}, A_{2}\right)=1$, then A_{1} is 2^{n}-perfect if and only if A_{2} is 2^{n}-perfect.

The following lemma contains some interesting results from Canaday's paper (see [2], Lemma 6 and Theorem 8).

Lemma 3.9. Let $A, B \in \mathbb{F}_{2}[x]$ and let $n, m \in \mathbb{N}$.
(i) If $\sigma\left(P^{2 n}\right)=B^{m} A$, with $m>1$ and $A \in \mathbb{F}_{2}[x]$ is nonconstant, then $\operatorname{deg}(A)(P)>\operatorname{deg}(A)(B)$.
(ii) If $\sigma\left(x^{2 n}\right)$ has a Mersenne factor, then $n \in\{1,2,3\}$.

Gallardo and Rahavandrainy [6] conjectured that $\sigma\left(T^{2 m}\right)$ is always divisible by a non-Mersenne prime, for any $m \in \mathbb{N}$, when $T=x^{a}(x+1)^{b}+1$ is a Mersenne prime with $a+b \neq 3$.

Lemma 3.10. Let $A=x^{a}(x+1)^{b} \prod_{i} P_{i}^{h_{i}}$ be a 2^{n}-perfect polynomial over \mathbb{F}_{2} with each P_{i} is a Mersenne prime. Then $h_{i}=2^{c_{i}}-1$, for every i.

Proof. Assume that h_{i} is even for every i. $A=x^{a}(x+1)^{b} \prod_{i} P_{i}^{h_{i}}$ be a 2^{n}-perfect then there exists a non Mersenne prime S such that S divides $\sigma\left(P_{i}^{h_{i}}\right)$. So, S divides $\sigma_{2^{n}}(A)=A^{2^{n}}$. Therefore, $S=x$ or $S=x+1$ and this contradicts Lemmas 2.8 and 2.9 as h_{i} must be odd. Now, suppose that $h_{i}+1=2^{c_{i}} u$, u is odd and $c_{i} \in \mathbb{N}$. But $\sigma\left(P_{i}^{h_{i}}\right)=\left(1+P_{i}\right)^{2^{c_{i}-1}}\left(\sigma\left(P_{i}^{u-1}\right)\right)^{2^{c_{i}}}$. If $u-1 \geq 2$, again there exists a non Mersenne prime W such that W divides $\sigma\left(P_{i}^{u-1}\right)$. So, W divides $\sigma_{2^{n}}(A)=A^{2^{n}}$. By Lemma 2.9, $W \neq x$ and $W \neq x+1$. But any prime divisor of A which is not a Mersenne prime is either x or $x+1$, a contradiction. Hence, $u=1$ and the result follows.

Lemma 3.11. Let $c_{i} \in \mathbb{N}$, and let $A=x^{a}(x+1)^{b} \prod_{i} P_{i}^{2^{c_{i}-1}}$ be a 2^{n}-perfect polynomial over \mathbb{F}_{2} with each P_{i} is a Mersenne prime. Then, $P_{i} \in\left\{T_{1}, T_{2}, \ldots, T_{5}\right\}$, with $c_{i}=1$ or 2 .

Proof. Since A is 2^{n}-perfect, then any irreducible factor Q of $\sigma\left(x^{a}\right)$ or $\sigma((1+$ $x)^{b}$) must divide A. So, $Q \in\left\{x, x+1, P_{1}, P_{2}, \ldots\right\}$. From Lemma 3.9(ii.), we have $P i \in\left\{T_{1}, T_{2}, \ldots, T_{5}\right\}$. Now, we want to prove that $c_{j} \in\{1,2\}$. Note that $\sigma\left(P_{i}^{2^{c_{i}}-1}\right)=\left(1+P_{i}\right)^{2^{c_{i}-1}}$ is not divisible by P_{j}, for any i, j. Moreover, if α_{j} are the exponents of P_{j} that are found in $\sigma\left(x^{a}\right)$ and in $\sigma\left((1+x)^{b}\right)$, then α_{j} $\in\left\{0,1,2^{r}: r \in \mathbb{N}\right\}$ (Lemma 3.9(ii.)). Comparing exponents of P_{j}, we get α_{j} $=2^{c_{j}}-1 \in\left\{0,1,2,2^{r}, 2^{r}+1,2^{r}+2^{s}: r, s \in \mathbb{N}\right\}$. Hence, $c_{j}=1$ or 2.

Lemma 3.12. Let $c_{i} \in \mathbb{N}, P_{i} \in\left\{T_{1}, T_{2}, \ldots, T_{5}\right\}$, and $A=x^{a}(x+1)^{b} \prod_{i} P_{i}^{c_{i}}$ be a 2^{n}-perfect polynomial over \mathbb{F}_{2} with $c_{i} \in\{1,3\}$. Then a or b must be even.

Proof. For contradictional purpose, assume that a and b are both odd. By Lemma 3.13, we have $a=2^{r} u-1$ and $b=2^{s} v-1$ for some $t, s \in \mathbb{N}$, and u and v are odd positive integers less than or equal to 7 . But,

$$
\sigma\left(x^{a}\right)=(x+1)^{2^{t}-1}\left(1+x+\ldots+x^{u-1}\right)^{2^{t}}
$$

and

$$
\sigma\left((1+x)^{b}\right)=x^{2^{s}-1}\left(1+(1+x)+\ldots+(1+x)^{v-1}\right)^{2^{s}}
$$

Also, P_{i} is not a factor of $\sigma\left(P_{j}^{c_{j}}\right)=\left(1+P_{j}\right)^{c_{j}}$ for any i, j. Suppose that P_{i} is a factor of $1+x+\ldots+x^{u-1}$ but is not a factor of $1+(1+x)+\ldots+(1+x)^{v-1}$ for some i, with $u \geq 3$. Hence, $2^{t}=c_{i}=2^{h_{i}}-1$, a contradiction.

Now, assume that P_{i} is a factor of both $1+x+\ldots+x^{u-1}$ and $1+(1+x)+$ $\ldots+(1+x)^{v-1}$, then $2^{t}+2^{s}=c_{i}=2^{h_{i}}-1$, also a contradiction. Therefore, $u=1$ and in a similar manner we get $v=1$. So, $\sigma\left(x^{a}\right)=\sigma\left(x^{2^{t}-1}\right)=(x+1)^{a}$ and $\sigma\left((x+1)^{b}\right)=\sigma\left((x+1)^{2^{s}-1}\right)=x^{b}$. Hence, $a=b$ and $x^{a}(x+1)^{b}$ is a 2^{n}-perfect (Lemma 3.7). By Lemma 3.8, the polynomial $\prod_{i=1}^{r} P_{i}^{h_{i}}$ is also 2^{n}-perfect. This contradicts Lemma 3.1.

Lemma 3.13. Let $c_{i} \in \mathbb{N}, u \geq 1$ and a be odd integers and let $A=x^{a}(x+$ $1)^{b} \prod_{i} P_{i}^{2^{c_{i}-1}}$ be a 2^{n}-perfect polynomial over \mathbb{F}_{2}, where each P_{i} is a Mersenne prime. Then, a is of the form $2^{t} u-1$ with $u \leq 7$.

Proof. Suppose that $a=2^{t} u-1$ with u is odd and $t \geq 1$. Since A is $2^{n}-$ perfect over \mathbb{F}_{2}, then

$$
x^{2^{n} a}(x+1)^{2^{n} b} \prod_{i=1} P_{i}^{2^{n}\left(2^{\left.c_{i}-1\right)}\right.}=\left(\sigma\left(x^{a}\right) \sigma\left((x+1)^{b}\right) \prod_{i=1} \sigma\left(P_{i}^{2^{c_{i}-1}}\right)\right)^{2^{n}}
$$

But $\sigma\left(x^{a}\right)=1+x+\ldots+x^{2^{t} u-1}=(1+x)^{2^{t}-1} \sigma\left(x^{u-1}\right)^{2^{t}}$. If $u>2$, then as done in the proof of the preceding lemma we get $u-1 \leq 6$ and hence the result.

Lemma 3.14. Let $a, b, c_{i} \in \mathbb{N}$ such that a is even and let $A=x^{a}(x+1)^{b} \prod_{i=1}^{m} P_{i}^{2^{c_{i}}-1}$ be a 2^{n}-perfect polynomial over \mathbb{F}_{2}, where each P_{i} is a Mersenne prime. Then, $a \leq 6$.

Proof. Let $a=2 m$. Since A is 2^{n}-perfect over \mathbb{F}_{2}, then

$$
\begin{aligned}
x^{2^{n+1} m}(x+1)^{2^{n} b} \prod_{i=1} P_{i}^{2^{n}\left(2^{\left.c_{i}-1\right)}\right.} & =A^{2^{n}} \\
& =\sigma_{2^{n}}(A) \\
& =\left(\sigma\left(x^{2 m}\right) \sigma\left((x+1)^{b}\right) \prod_{i=1} \sigma\left(P_{i}^{2^{c_{i}-1}}\right)\right)^{2^{n}} .
\end{aligned}
$$

But x and $x+1$ do not divide $\sigma\left(x^{2 m}\right)$ and P_{i} does not divide $\sigma\left(P_{i}^{2^{c_{i}-1}}\right)$ so P_{i} divides $\sigma\left(x^{2 m}\right)$. We are done by Lemma 3.9 (ii.).

3.1 Cases of the Proof

Let $A=x^{a}(x+1)^{b} \prod_{i=1}^{r} P_{i}^{h_{i}}$, where P_{i}, is a Mersenne prime be a 2^{n}-perfect over F_{2}. From Lemma 3.11, we have $h_{i}=1$ or 3. By Lemma 3.12, we have a or b is even. To complete the proof of Theorem 1.3, we study the below cases:
Case 1. Both a and b are even:
In this case, we have

$$
\begin{equation*}
1+x+\ldots+x^{a}=P_{i_{1}} \ldots P_{i_{s}} . \tag{2}
\end{equation*}
$$

Since the $P_{i_{j}}$'s are Mersenne primes, then $a, b \in\{2,4,6\}$. Since if A is a 2^{n}-perfect polynomial over F_{2}, then \bar{A} is a 2^{n}-perfect polynomial over \mathbb{F}_{2} so a and b can be chosen in the way $a \leq b$ and $a, b \in\{2,4,6\}$.

- If $a=b=2$, then $1+x+x^{2}=1+(x+1)+(x+1)^{2}=T_{1}$. Hence, $A=$ $x^{2}(x+1)^{2} T_{1}$ and $\sigma(A)=\sigma\left(x^{2}\right) \sigma\left((x+1)^{2}\right) \sigma\left(T_{1}\right)=\left(T_{1}\right)\left(T_{1}\right)(x(1+x))=$ $x(1+x) T_{1}^{2} \neq A$. Therefore A is not perfect over \mathbb{F}_{2} and hence A is not 2^{n}-perfect over \mathbb{F}_{2} (Theorem 3.1).
- If $a=2$ and $b=4$, then $1+x+x^{2}=T_{1}$ and $1+(x+1)+\ldots+(x+$ $1)^{4}=1+x^{3}(x+1)=T_{5}$. Hence, $A=x^{2}(x+1)^{4} T_{1} T_{5}$ and $\sigma(A)=$ $\sigma\left(x^{2}\right) \sigma\left((x+1)^{4}\right) \sigma\left(T_{1}\right) \sigma\left(T_{5}\right)=\left(T_{1}\right)\left(T_{5}\right)(x(1+x))\left(x^{3}(1+x)\right)=x^{4}(1+$ $x)^{2} T_{1} T_{5} \neq A$. So, A is not 2^{n}-perfect over F_{2} (Theorem 3.1).
- If $a=b=4$, then $1+x+\ldots+x^{4}=T_{4}$ and $1+(x+1)+\ldots+(x+$ $1)^{4}=1+x^{3}+x^{4}=T_{5}$. Hence, $A=x^{4}(x+1)^{4} T_{4} T_{5}$ and $\sigma(A)=$ $\sigma\left(x^{4}\right) \sigma\left((x+1)^{4}\right) \sigma\left(T_{4}\right) \sigma\left(T_{5}\right)=\left(T_{4}\right)\left(T_{5}\right)\left(x(1+x)^{3}\right)\left(x^{3}(1+x)\right)=x^{4}(1+$ $x)^{4} T_{4} T_{5}=A$. So, A is 2^{n}-perfect over \mathbb{F}_{2} (Theorem 3.1).
- If $a=2$ and $b=6$, then $1+x+x^{2}=T_{1}$ and $1+(x+1)+\ldots+(x+1)^{6}=$ $\left(1+x+x^{3}\right)\left(1+x^{2}+x^{3}\right)=T_{2} T_{3}$. Hence, $A=x^{2}(x+1)^{6} T_{1} T_{2} T_{3}$ and

$$
\begin{aligned}
\sigma(A) & =\sigma\left(x^{2}\right) \sigma\left((x+1)^{6}\right) \sigma\left(T_{1}\right) \sigma\left(T_{2}\right) \sigma\left(T_{3}\right) \\
& =\left(T_{1}\right)\left(T_{2} T_{3}\right)(x(1+x))\left(x(1+x)^{2}\right)\left(x^{2}(1+x)\right) \\
& =x^{4}(1+x)^{4} T_{1} T_{2} T_{3} \\
& \neq A
\end{aligned}
$$

Therefore, A is not 2^{n}-perfect over \mathbb{F}_{2}.

- If $a=4$ and $b=6$, then $1+x+\ldots+x^{4}=T_{4}$ and $1+(x+1)+\ldots+(x+1)^{6}=$ $T_{2} T_{3}$. Hence, $A=x^{4}(x+1)^{6} T_{2} T_{3} T_{4}$ and $\sigma(A)=A$. So, A is 2^{n}-perfect over \mathbb{F}_{2}.
- If $a=b=6$, then $1+x+\ldots+x^{6}=\left(1+x+x^{3}\right)\left(1+x^{2}+x^{3}\right)=T_{2} T_{3}=$ $1+(x+1)+\ldots+(x+1)^{6}$. Hence, $A=x^{6}(x+1)^{6} T_{2}^{2} T_{3}^{2}$ and $\sigma(A)=\sigma\left(x^{6}\right) \sigma\left((x+1)^{6}\right) \sigma\left(T_{2}^{2}\right) \sigma\left(T_{3}^{2}\right)=T_{1}^{2} T_{2}^{2} T_{3}^{2} T_{4} T_{5} \neq A$. Therefore, A is not 2^{n}-perfect over \mathbb{F}_{2}.

Case 2. a is even and b is odd:
By Lemmas 3.13 and 3.14, we have $a \in\{2,4,6\}$ and $b=2^{t} u-1$ for some $t \in \mathbb{Z}_{\geq 1}$ and $u \in\{1,3,5,7\}$.

- If $u=1$ and $a=2$, then $\sigma\left(x^{2}\right)=T_{1}, \sigma\left((x+1)^{2^{t}-1}\right)=x^{2^{t}-1}$, and $\sigma\left(T_{1}\right)=$ $x(x+1)$. Hence, $2^{t}-1+1=b+1 \leq a=2$. Thus, $t=1$ and $A=x^{2}(x+1) T_{1}$.
- If $u=1$ and $a=4$, then $\sigma\left(x^{4}\right)=T_{4}, \sigma\left((x+1)^{2^{t}-1}\right)=x^{2^{t}-1}$, and $\sigma\left(T_{4}\right)=$ $x(x+1)^{3}$. Hence, $2^{t}-1+1=b+1 \leq a=4$. Thus, $t \leq 2$ and $3 \leq b=2^{t}-1$, so $t=2$ and $A=x^{4}(x+1)^{3} T_{4}$.
- If $u=1$ and $a=6$, then $\sigma\left(x^{6}\right)=T_{2} T_{3}, \sigma\left((x+1)^{2^{t}-1}\right)=x^{2^{t}-1}, \sigma\left(T_{2}\right)=$ $x(x+1)^{2}$ and $\sigma\left(T_{3}\right)=x^{2}(x+1)$. Hence, $2^{t}-1+2+1=b+3 \leq a=6$. Thus, $t \leq 2$ and $3 \leq b=2^{t}-1$, so $t=2$ and $A=x^{6}(x+1)^{3} T_{2} T_{3}$.
- If $u=3$ and $a=2$, then $\sigma\left(x^{2}\right)=T_{1}, \sigma\left((x+1)^{3.2^{t}-1}\right)=x^{2^{t}-1} T_{1}^{2^{t}}$. Hence, $T_{1}^{2^{t}+1}$ divides $\sigma(A)=A$ but $T_{1}^{2^{t}+2}$ does not divide $\sigma(A)=A$. By Lemma 3.11, we have $2^{t}+1 \in\{1,3\}$ and thus $t=1$ and $A=x^{2}(1+x)^{5} T_{1}$. But $\sigma\left(x^{2}(1+x)^{5} T_{1}\right) \neq x^{2}(1+x)^{5} T_{1}$ and hence A is not 2^{n}-perfect over F_{2}.
- If $u=3$ and $a=4$, then $\sigma\left(x^{4}\right)=T_{4}$. Since T_{1} does not divide $\sigma\left(x^{4}\right)$, then $T_{1}^{2^{t}}$ divides $\sigma(A)=A$ but $T_{1}^{2^{t}+1}$ does not divide $\sigma(A)=A$. By Lemma 3.11, we have $2^{t} \in\{1,3\}$, a contradiction.
- The case $u=3$ and $a=6$ is similar to the preceding one.
- If $u=5$ and $a \in\{2,6\}$, then $\sigma\left((x+1)^{5.2^{t}-1}\right)=x^{2^{t}-1} T_{4}^{2^{t}}$. Since T_{4} does not divide $\sigma\left(x^{a}\right)$, then $T_{4}^{2^{t}}$ divides $\sigma(A)=A$ where $T_{1}^{2^{t}+1}$ does not divide $\sigma(A)=A$. By Lemma 3.11, we have $2^{t} \in\{1,3\}$, a contradiction.
- If $u=5$ and $a=4$, then $\sigma\left(x^{4}\right)=T_{4}$. Since $T_{4}^{2^{t}+1}$ divides A and $T_{1}^{2^{t}+2}$ does not divide A. By Lemma 3.11, we have $2^{t}+1 \in\{1,3\}$. Thus $t=1$ and $A=x^{4}(1+x)^{9} T_{1}^{3}$. But $\sigma\left(x^{4}(1+x)^{9} T_{1}^{3}\right) \neq x^{4}(1+x)^{9} T_{1}^{3}$. Hence, A is not 2^{n}-perfect over F_{2}.
- If $u=7$ and $a \in\{2,4\}$, then $\sigma\left((x+1)^{7.2^{t}-1}\right)=x^{2^{t}-1} T_{2}^{2^{t}} T_{3}^{2^{t}}$. Since T_{2} and T_{3} do not divide $\sigma\left(x^{a}\right)$, then $T_{2}^{2^{t}}$ divides A and $T_{2}^{2^{t}+1}$ does not divide $\sigma(A)=A$. By Lemma 3.11, we have $2^{t} \in\{1,3\}$, a contradiction.
- If $u=7$ and $a=6$, then $\sigma\left(x^{6}\right)=T_{2} T_{3}$. So, $T_{2}^{2^{t}+1}\left(\right.$ resp. $\left.T_{3}^{2^{t}+1}\right)$ divides A and $T_{2}^{2^{t}+1}$ (resp. $T_{3}^{2^{t}+1}$) does not divide A. By Lemma 3.11, we have $2^{t}+1 \in$ $\{1,3\}$. Thus $t=1$ and $A=x^{6}(1+x)^{13} T_{2}^{3} T_{3}^{3}$. But $\sigma\left(x^{6}(1+x)^{13} T_{2}^{3} T_{3}^{3}\right) \neq$ $x^{6}(1+x)^{13} T_{2}^{3} T_{3}^{3}$. Hence, A is not 2^{n}-perfect over F_{2}.

The proof of Theorem 1.3 is now complete

4. Conclusion

We show the non existence of odd 2^{n}-perfect, $n \in \mathbb{N}$, polynomials over \mathbb{F}_{2}. A characterization of 2^{n}-perfect polynomials A over the prime field with two elements that are divisible by $x, x+1$, and Mersenne primes is given.

References

[1] T. Cai, D. Chen, Y. Zhang, Perfect numbers and Fibonacci primes (I), Int. J. Number Theory, 11 (2015), 159-169.
[2] E. F. Canaday, The sum of the divisors of a polynomial, Duke Mathematical Journal, 8 (1941), 721-737.
[3] H. V. Chu, Divisibility of divisor functions of even perfect numbers, Journal of Integer Sequences, 24 (2021), p. 3.
[4] L. H. Gallardo, O. Rahavandrainy, Odd perfect polynomials over \mathbb{F}_{2}, J. Théor. Nombres Bordeaux, (2007), 165-174.
[5] L. H. Gallardo, O. Rahavandrainy, There is no odd perfect polynomial over \mathbb{F}_{2} with four prime factors, Port. Math. (N.S.), 66 (2009), 131-145.
[6] L. H. Gallardo, O. Rahavandrainy, On even (unitary) perfect polynomials over \mathbb{F}_{2}, Finite Fields and Their Applications, 18 (2012), 920-932.
[7] L. H. Gallardo, O. Rahavandrainy, All unitary perfect polynomials over \mathbb{F}_{2} with at most four distinct irreducible factors, Journal of Symbolic Computation, (2012), 429-502.
[8] L. H. Gallardo, O. Rahavandrainy, Characterization of sporadic perfect polynomials over \mathbb{F}_{2}, Functiones et Approximatio Commentarii Mathematici, 55 (2016), 7-21.
[9] X. Jiang, On even perfect numbers, Colloq. Math., 154 (2018), 131-135
[10] F. Luca, J. Ferdinands, Sometimes n divides $\sigma_{k}(n): 11090$, The American Mathematical Monthly, 113 (2006), 372-373.
[11] D. Suryanarayana, Super perfect numbers, Elem. Math., 24 (1969), 16-17.
Accepted: December 14, 2022

