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Abstract. A polynomial A is called k−perfect over the finite field F2 if the sum of
the kth powers of all distinct divisors of A equals Ak, where k is a positive integer.
We show that a k−perfect polynomial A over F2 must be even when k = 2n, n is a
non-negative integer, and we characterize all 2n−perfect polynomials over F2 that are
of the form xa(x+1)b

∏r
i=1 P

hi
i , where each Pi is a Mersenne prime and a, b and hi are

positive integers.

Keywords: sum of divisors, multiplicative function, polynomials, finite fields, char-
acteristic 2.

1. Introduction

Let n be a positive integer and let σ(n) denote the sum of positive divisors
of the integer n. We call the number n a k−super perfect number if σk(n) =
σ(σ(...(σ(︸ ︷︷ ︸
k−times

n)))) = 2n. When k = 1, n is called a perfect number. An integer

M = 2p − 1, where p is a prime number, is called a Mersenne number. It is also
well known that an even integer n is perfect if and only if n = M(M + 1)/2
for some Mersenne prime number M . Suryanarayana [11] considered k−super
perfect numbers in the case k = 2. Numbers of the form 2p−1 (p is prime) are
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2-super perfect if 2p−1− 1 is a Mersenne prime. It is not known if there are odd
k−super perfect numbers.

Researchers also studied the arithmetic function σk(n) that finds the sum
of the kth powers of the positive divisors of n. Recently, Luca and Ferdinands
[10] showed that σk(n) is divisible by n for infinitely many n when k ≥ 2. Cai
et al. [1] proved that if n = 2a−1p divides σ3(n), where a > 1 is an integer and
p is an odd prime, then n is an even perfect number. Also, they proved that
the converse is true when n ̸= 28. Jiang [9] made an improvement to the result
of Cai et al. They showed that n = 2a−1pb−1 divides σ3(n), where a, b > 1 are
integers and p is an odd prime, if and only if n is an even perfect number other
than 28. Chu [3] found a relation between an even perfect number n and σk(n).
He generalized the work of Cai et al. as given in the following theorem.

Theorem 1.1. Let k > 2 be a prime such that 2k − 1 is a Mersenne prime. If
n = 2a−1p, where a > 1 and p < 3·2a−1 − 1 is an odd prime. Then n divides
σk(n) if and only if n is an even perfect number other than 2k−1(2k − 1).

Chu also generalized the work of Jiang as follows.

Theorem 1.2. If n = 2a−1pb−1, where a, b > 1 and p < 3·2a−1 − 1 is an odd
prime. Then n divides σ5(n) if and only if n is an even perfect number other
than 496.

Chu conjectured if k > 2 is a prime such that 2k − 1 is a Mersenne prime
and if n = 2a−1pb−1, where a, b > 1 and p < 3.2a−1 − 1 is an odd prime, then n
divides σk(n) if and only if n is an even perfect number other than 2k−1(2k−1).

The present paper gives a polynomial analogue of the arithmetic function
σk(n). Let k be a positive integer and let A be a nonzero polynomial defined
over the prime field F2. We denote by σk(A) the sum of the kth powers of the
distinct divisors B of A. That is,

σk(A) =
∑

Bk

B|A

.

If A ∈ F2[x] has the canonical decomposition
∏r

i=1 P
αi
i where the primes

Pi ∈ F2[x] are distinct and αi > 0, then

σk(A) =

r∏
i=1

P
k(αi+1)
i − 1

P k
i − 1

.

In the case where k = 1, σk becomes the well-known σ function. For example,
if A = x(x+ 1)2(x2 + x+ 1) ∈ F2[x] then

σ(A) =
∑

B

B|A

= 1 + x+ (x+ 1) + (x+ 1)2 + (x2 + x+ 1) + x(x+ 1) + x(x+ 1)2
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+ x(x2 + x+ 1) + (x+ 1)(x2 + x+ 1) + (x+ 1)2(x2 + x+ 1)

+ x(x+ 1)(x2 + x+ 1) + x(x+ 1)2(x2 + x+ 1)

= x(x+ 1)2(x2 + x+ 1)

and

σ4(A) =
∑

B4

B|A

= x4(x+ 1)8(x2 + x+ 1)4.

Note that the function σk is multiplicative over F2.

Notation 1.1. We use the following notations throughout the paper.

� deg(A) denotes the degree of the polynomial A.

� A is the polynomial obtained from A with x replaced by x + 1, that is
A(x) = A(x+ 1).

� A∗ is the inverse of the polynomial A with deg(A) = m, in this sense
A∗(x) = xmA( 1x).

� P and Q are distinct irreducible odd polynomials.

A nonzero polynomial A defined over F2 is an even polynomial if it has a
linear factor in F2[x] else it is an odd polynomial. A polynomial T of the form
1 + xa(x+ 1)b with gcd(a, b) = 1 is called a Mersenne polynomial, see [6]. The
first five Mersenne polynomials over F2 are: T1 = 1 + x + x2, T2 = 1 + x + x3,
T3 = 1 + x2 + x3, T4 = 1 + x + x2 + x3 + x4, T5 = 1 + x3 + x4. Note that all
these polynomials are irreducible, so we call them Mersenne primes.

The next definition is the main object of this study in which we introduce a
new concept of k−perfect polynomials over F2.

Definition 1.1. Let k be a positive integer. A polynomial A is called a k−perfect
polynomial over F2 if σk(A) = Ak.

A 1−perfect polynomial A over F2 is a perfect polynomial, so we are inter-
ested in studying the case when k > 1. The polynomial B = x(x+1)2(x2+x+1)
is a 4−perfect polynomial in F2[x]. Note that B is a perfect polynomial over
F2. A natural question arise: Is there a relation between perfect polynomials
and k−perfect polynomials in F2[x]? In Section 3, we answer this question and
we find a relation between the sum of the divisors function σ(A) and the sum
of the powers of the divisors function σk(A), k > 1, of the polynomial A over
the finite field F2. We show that there are no odd 2n−perfect polynomials over
F2 and we characterize all even 2n−perfect polynomials over F2 that have the
form xa(x + 1)b

∏r
i=1 P

hi
i , where each Pi is a Mersenne prime and a, b and hi

are positive integers.
Our main result is given in the following theorem:
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Theorem 1.3. Let a, b, t, hi ∈ N and let Pi be a Mersenne prime in F2[x]. Then,
A = xa(x+ 1)b

∏r
i=1 P

hi
i is a 2n−perfect polynomial over F2 for some n ∈ N if

and only if A ∈ {x2t−1(x+1)2
t−1, x2(x+1)T1, x(x+1)2T1, x

3(x+1)4T5, x
4(x+

1)3T4, x
4(x+ 1)4T4T5, x

6(x+ 1)3T2T3, x
3(x+ 1)6T2T3, x

6(x+ 1)4T2T3T5, x
4(x+

1)6T2T3T5}.

2. Preliminaries

The notion of perfect polynomials over F2 was introduced first by Canaday [2].
A polynomial A is perfect if σ(A) = A. Let ω(A) be the number of distinct
irreducible polynomials that divide A. Canaday studied the case of even perfect
polynomials with ω(A) ≤ 3. In the recent years, Gallardo and Rahavandrainy
[4, 6, 7] showed the non-existence of odd perfect polynomials over F2 with either
ω(A) = 3 or with ω(A) ≤ 9 in the case where all the exponents of the irreducible
factors of A are equal to 2. If the nonconstant polynomial A in F2[x] is perfect,
then ω(A) ≥ 2 (see [4], Lemma 2.3). Moreover, Canaday [2] showed that the only
even perfect polynomials over F2 with exactly two prime divisors are x2

n−1(x+
1)2

n−1 for some positive integers n.
It is well known that an even perfect number is exactly divisible by two

distinct prime numbers but a non-trivial even perfect polynomial A ∈ F2[x]
may be divisible by more than 2 distinct primes as Gallardo and Rahavandrainy
[6] gave some results with ω(A) ≤ 5. Although they did not give a general
form of such polynomials in terms of Mersenne primes but all the non-trivial
even perfect polynomials they found, with only two exceptions, have Mersenne
primes as odd divisors.

The following two lemmas are useful.

Lemma 2.1 (Lemma 2.3 in [6]). If A=A1A2 is perfect over F2 and if gcd(A1, A2)
= 1, then A1 is perfect if and only if A2 is perfect.

Lemma 2.2 (Lemma 2.4 in [6]). If A is perfect over F2, then the polynomial A
is also perfect over F2

In [5], Gallardo and Rahavandrainy gave a complete list for all even perfect
polynomials with at most 5 irreducible factors as given in the following lemma.

Lemma 2.3. The complete list of all even perfect polynomials over F2 with
ω(A) ≤ 5 is:

ω(A) A

0 0
1 1
2 (x2 + x)2

n−1

3 A1 = x2(x+ 1)T1, A2 = A1(x), A3 = x3(x+ 1)4T5, A4(x) = A3

4 A5 = x2(x+ 1)(x4 + x+ 1)T 2
1 , A6 = A5,

A7 = x4(x+ 1)4T4T5, A8 = x6(x+ 1)3T2T3, C9(x) = A8

5 A10 = x6(x+ 1)4T2T3T5, A11 = A10.
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Lemma 2.4 (Proposition 5.1 in [6]). If P is an odd irreducible polynomial in
F2[x], then x(x+ 1) divides σ(P 2m−1) for m ∈ N.

The following lemma shows a nice relation between σk(A) and (σ(A))k when
A has exactly one prime factor.

Lemma 2.5. Let A = Pα ∈ F2[x] with α ≥ 1. Then σk(A) = σ(A)k if and only
if k = 2n.

Proof.

σ2n(A) = 1 + P 2n + ...+ P 2nα = (1 + P + ...+ Pα)2
n
= (σ(A))2

n
.

For the sufficient condition, the proof is done by contrapositive. Let k = 2nu,
u > 1 is odd, then (σ(A))k = (σ(A))2

nu = (1 + P + ... + Pα)2
nu = (1 + P 2n +

...+ P 2nα)u ̸= (1 + P 2nu + ...+ P 2nuα) = σk(A).

Corollary 2.1. Let A =
∏r

i=1 P
αi
i ∈ F2[x], then σ2n(A) = (σ(A))2

n
.

Lemma 2.6. Let A = Pα ∈ F2[x] be an irreducible polynomial and α ≥ 1. Then
A is not a factor of σk(A).

Proof. Assume that A divides σk(A), then there exists a nonconstant B ∈ F2[x]
such that σk(A) = AB with deg(B) < deg(Ak). So, 1+P k+...+P k(α−1)+P kα =
PαB and P

(
P k−1 + ...+ P k(α−1)−1 + Pα−1(P k +B)

)
= 1. Hence, P = 1 and

this contradicts the fact that P is prime in F2[x].

Lemma 2.7 (Lemma 2.6 in [8]). Let m be a positive integer and let T be a
Mersenne prime in F2[x], then σ(x2m) and σ(T 2m) are both odd and squarefree.

Lemma 2.8. If m and k are positive integers, then σk(P
2m−1) is divisible by

x(x+ 1).

Proof. Let 2m = 2hs, where s is odd and h ≥ 1. Then,

σk(P
2m−1) = 1 + P k + ...+ P k(2hs−1)

= (1 + P k)2
h−1

(
1 + P k + ...+ P k(s−1)

)2h
But x(x+ 1) divides 1 + P k, P is odd. This completes the proof.

Lemma 2.9. If m and k are positive integers, then σk(P
2m) is not divisible by

x(x+ 1).

Proof. σk(P
2m)=1+P k+...+P 2km. So, σk(P

2m)(0)=1+P k(0)+...+P 2km︸ ︷︷ ︸
2m−times

(0) =

1 and x is not factor of σk(P
2m). Also, σk(P

2m)(1) = 1 and hence σk(P
2m) is

not divisible by x+ 1. The proof is now complete.
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Next we give some properties when k = 2.

Lemma 2.10. Let t be a positive integer, then σ2(x
3.2t−1−1) = (1 + x)2

t−2T 2t
1 .

Proof. We use induction. For t = 1, we have σ2(x
2) = (1 + x + x2)2 = T 2

1 .
Hence, the statement is true for t = 1. Now assume it is true for t, so

σ2

(
x3.2

t−1
)
=
(
1 + x+ ...+ x3.2

t−1−1 + x3.2
t−1
(
1 + x+ ...+ x3.2

t−1−1
))2

=
(
1 + x+ ...+ x3.2

t−1−1
)2 (

1 + x3.2
t−1
)2

= σ2

(
x3.2

t−1−1
) (

1 + x3
)2t

= (1 + x)2
t−2T 2t

1 ((1 + x)T1)
2t

= (1 + x)2
t+1−2T 2t+1

1 .

We are done.

Lemma 2.11. Let t be a positive integer, then σ2((1 + x)3.2
t−1−1) = x2

t−2T 2t
1 .

Lemma 2.12. Let t be a positive integer, then σ2(T
2t−1
1 ) = (x2 + x)2(2

t−1).

Proof. For t = 1, we have σ2(T1) = (1+T1)
2 = (x2+x)2. Hence, the statement

is true for t = 1. Now assume σ2(T
2t−1
1 ) = (x2 + x)2(2

t−1). And,

σ2

(
T 2t+1−1
1

)
=
(
1 + T1 + ...+ T 2t−1

1 + T 2t

1

(
1 + T1 + ...+ T 2t−1

1

))2
=
(
1 + T1 + ...+ T 2t−1

1

)2 (
1 + T 2t

1

)2
= σ2

(
T 2t−1
1

)
(1 + T1)

2t+1

= (x2 + x)2(2
t−1)

(
x2 + x

)2t+1

= (x2 + x)2(2
t+1−1).

The proof is complete.

The following lemma follows directly from Lemmas 2.10, 2.11, and 2.12.

Lemma 2.13. Let t ∈ N and let A = xaT h
1 or A = (1+x)aT h

1 be polynomials in
F2[x], where a = 3.2t−1−1 and h = 2t−1. Then σ2(A) = x2h(1+x)2(a−1)T h+1

1 .

Lemma 2.14. If a = 2tu− 1 with u odd. Then,

i- σ2 (x
a) = (1 + x)2

t+1−2
(
σ
(
xu−1

))2t+1

ii- σ2 (P
a) = (1 + P )2

t+1−2
(
σ
(
P u−1

))2t+1

.
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Lemma 2.15. Let t ∈ N and let A = xaT h
1 or A = (1 + x)aT h

1 ∈ F2[x]. If A
divides σ2(A), then a = 3.2t−1 − 1 and h = 2t − 1.

Definition 2.1. Let A ∈ F2[x] be a polynomial of degree m. Then,

i. A inverts into itself if A∗ = A.

ii. A is said to be k−complete if there exists h ∈ N∗ such that A = σk(x
h) =

1 + xk + ...+ xkh.

Lemma 2.16. i. Any k−complete polynomial inverts to itself.

ii. If 1 + xk + ... + xkm = PQ, then P = P ∗ and Q = Q∗ or P = Q∗ and
Q = P ∗, where P and Q are irreducible polynomials in F2[x].

Proof. i. Let A be a k−complete polynomial, then there exists h ∈ N such that

A = σk(x
h)

= 1 + xk + ...+ xkh

A∗ = xkhA

(
1

x

)
= xkh

(
1 +

1

xk
+ ...+

1

xkh

)
, A is k−complete

= A.

Hence, A inverts to itself.
ii. If 1 + xk + ... + xkm = PQ, then PQ is k−complete. Using the above

results, then PQ inverts to itself. Hence, (PQ)∗ = PQ = P ∗Q∗. Therefore,
P = P ∗ and Q = Q∗ or P = Q∗ and Q = P ∗.

3. Proof of Theorem 1.3

The following lemma is a direct consequence of Lemma 2.6.

Lemma 3.1. The polynomial A = Pα, α ≥ 1, is not a k−perfect polynomial
over F2, for every k ≥ 1.

The preceding lemma shows that a k−perfect polynomial A over F2 has at
least 2 prime factors.

Lemma 3.2. Let m ≤ n be positive integers and let A ∈ F2[x], then σ2m(A)
divides σ2n(A).

Proof.

σ2n(A) = (σ(A))2
n

= (σ(A))2
m

(σ(A))2
n−m

= σ2m(A) (σ(A))2
n−m

.
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Notice that σ2(A) divides σ2n(A) for any any n ≥ 1. Hence, if A is a multi-
perfect polynomial over F2, i.e. A divides σ(A), then A is a k−multi-perfect
polynomial over F2 when k = 2n for a positive integer n.

Lemma 3.3. If t ∈ N and A = xaT h
1 or A = (1+x)aT h

1 be polynomials in F2[x],
where a = 3.2t−1 − 1 and h = 2t − 1, then A divides σ2n(A) for any n ≥ 1.

Proof. Since σ2 divides σ2n and σ2(A) = x2h(1 + x)2(a−1)T h+1
1 with 2h =

a+ 2t−1 − 1.

Lemma 3.4. If a = 2tu− 1 with u odd and n ∈ Z≥0). Then,

i- 1 + x divides σ2n (x
a)

ii- x(1 + x) divides σ2n (P
a)

Proof. We have σ2(A) divides σ2n(A) and 1 + x divides σ2(A) (Lemma 2.14).

Lemma 3.5. If A is k−perfect over F2, then A is also k−perfect over F2.

Proof. Let A(x) =
∏r

i=1 P
αi
i (x), where the primes Pi(x) ∈ F2[x]. Since A is

k−perfect, then

(1) σk(A) =
r∏

i=1

P
k(αi+1)
i − 1

P k
i − 1

= Ak.

Let F2t be a splitting field for A(x) over F2, then there exists a1, a2, ..., ak ∈
F2t such that for each i, 1 ≤ i ≤ k, we have Pαi

i (x) =
∏βi−1

j=0 (x− a2
j

i )αi , where
deg(Pi(x)) = βi. Since gcd(Pi(x), Pj(x)) = 1 over F2, for every i ̸= j, then
gcd(Pi(x), Pj(x)) = 1 over F2t , for every i ̸= j. Moreover,

Pi(x+ 1) =

βi−1∏
j=0

(x+ 1− a2
j

i ) =

βi−1∏
j=0

(x− (ai − 1)2
j
).

Since ai − 1 has degree βi, it follows that each Qi(x) = Pi(x + 1) is prime
of degree βi in F2[x]. We have gcd(Qi(x), Qj(x)) = 1 in F2[x], for every i ̸= j,
and hence the primes Qi(x) are distinct. Let B(x) = A(x) =

∏r
i=1 P

αi
i (x+1) =∏r

i=1Q
αi
i (x).

By substituting B(x) in (1), we get

σk(A(x)) = σk(B(x))

=

r∏
i=1

P
k(αi+1)
i (x+ 1)− 1

P k
i (x+ 1)− 1

=
r∏

i=1

Q
k(αi+1)
i (x)− 1

Qk
i (x)− 1

= Bk(x)

= (A(x))k.
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So, B(x) = A(x) is k−perfect over F2

Lemma 2.1 shows the relation between σk(A) and σ(A) when k = 2n, and
its important consequence, Theorem 3.1, completely characterizes all k−perfect
polynomials over F2 when k = 2n.

Theorem 3.1. A is perfect over F2 if and only if A is 2n−perfect over F2.

Proof. Let A =
∏r

i=1 P
αi
i ∈ F2[x] be a perfect polynomial over F2, where Pi is

an irreducible polynomial, then

σ2n(A) = (σ(A))2
n
= A2n .

The converse is done by contrapositive. Assume that A is not perfect. Then,

σ2n(A) = (σ(A))2
n ̸= A2n ,

and we are done.

Lemma 3.6. Let ω(A) ≥ 2 and let A be a 2n−perfect polynomial over F2, then
x(x+ 1) divides A.

The proof of the following lemma can be done by a direct computation.

Lemma 3.7. Let t be a positive integer, then the polynomial x2
t−1(x + 1)2

t−1

is 2n−perfect over F2.

Lemma 3.8. If A = A1A2 is 2n−perfect over F2 and if gcd(A1, A2) = 1, then
A1 is 2n−perfect if and only if A2 is 2n−perfect.

The following lemma contains some interesting results from Canaday’s paper
(see [2], Lemma 6 and Theorem 8).

Lemma 3.9. Let A,B ∈ F2[x] and let n,m ∈ N.

(i) If σ(P 2n) = BmA, with m > 1 and A ∈ F2[x] is nonconstant, then
deg(A)(P ) > deg(A)(B).

(ii) If σ
(
x2n
)
has a Mersenne factor, then n ∈ {1, 2, 3}.

Gallardo and Rahavandrainy [6] conjectured that σ(T 2m) is always divisible
by a non-Mersenne prime, for any m ∈ N, when T = xa(x+1)b+1 is a Mersenne
prime with a+ b ̸= 3.

Lemma 3.10. Let A = xa(x + 1)b
∏

i P
hi
i be a 2n−perfect polynomial over F2

with each Pi is a Mersenne prime. Then hi = 2ci − 1, for every i.
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Proof. Assume that hi is even for every i. A = xa(x + 1)b
∏

i P
hi
i be a

2n−perfect then there exists a non Mersenne prime S such that S divides σ(P hi
i ).

So, S divides σ2n(A) = A2n . Therefore, S = x or S = x+1 and this contradicts
Lemmas 2.8 and 2.9 as hi must be odd. Now, suppose that hi + 1 = 2ciu, u is

odd and ci ∈ N. But σ(P hi
i ) = (1 + Pi)

2ci−1
(
σ(P u−1

i )
)2ci

. If u − 1 ≥ 2, again
there exists a non Mersenne prime W such that W divides σ(P u−1

i ). So, W
divides σ2n(A) = A2n . By Lemma 2.9, W ̸= x and W ̸= x + 1. But any prime
divisor of A which is not a Mersenne prime is either x or x+1, a contradiction.
Hence, u = 1 and the result follows.

Lemma 3.11. Let ci ∈ N, and let A = xa(x+1)b
∏

i P
2ci−1
i be a 2n−perfect poly-

nomial over F2 with each Pi is a Mersenne prime. Then, Pi ∈ {T1, T2, ..., T5},
with ci = 1 or 2.

Proof. Since A is 2n−perfect, then any irreducible factor Q of σ(xa) or σ((1 +
x)b) must divide A. So, Q ∈ {x, x + 1, P1, P2, ...}. From Lemma 3.9(ii.), we
have Pi ∈ {T1, T2, ..., T5}. Now, we want to prove that cj ∈ {1, 2}. Note that
σ(P 2ci−1

i ) = (1 + Pi)
2ci−1 is not divisible by Pj , for any i, j. Moreover, if αj

are the exponents of Pj that are found in σ(xa) and in σ((1 + x)b), then αj

∈ {0, 1, 2r : r ∈ N} (Lemma 3.9(ii.)). Comparing exponents of Pj , we get αj

= 2cj − 1 ∈ {0, 1, 2, 2r, 2r + 1, 2r + 2s : r, s ∈ N}. Hence, cj = 1 or 2.

Lemma 3.12. Let ci ∈ N, Pi ∈ {T1, T2, ..., T5}, and A = xa(x+ 1)b
∏

i P
ci
i be a

2n−perfect polynomial over F2 with ci ∈ {1, 3}. Then a or b must be even.

Proof. For contradictional purpose, assume that a and b are both odd. By
Lemma 3.13, we have a = 2ru− 1 and b = 2sv − 1 for some t, s ∈ N, and u and
v are odd positive integers less than or equal to 7. But,

σ(xa) = (x+ 1)2
t−1(1 + x+ ...+ xu−1)2

t

and
σ((1 + x)b) = x2

s−1
(
1 + (1 + x) + ...+ (1 + x)v−1

)2s
.

Also, Pi is not a factor of σ(P
cj
j ) = (1 + Pj)

cj for any i, j. Suppose that Pi is a

factor of 1 + x + ... + xu−1 but is not a factor of 1 + (1 + x) + ... + (1 + x)v−1

for some i, with u ≥ 3. Hence, 2t = ci = 2hi − 1, a contradiction.
Now, assume that Pi is a factor of both 1 + x+ ...+ xu−1 and 1 + (1 + x) +

...+(1+x)v−1, then 2t+2s = ci = 2hi−1, also a contradiction. Therefore, u = 1
and in a similar manner we get v = 1. So, σ(xa) = σ(x2

t−1) = (x + 1)a and
σ
(
(x+ 1)b

)
= σ

(
(x+ 1)2

s−1
)
= xb. Hence, a = b and xa(x+1)b is a 2n−perfect

(Lemma 3.7). By Lemma 3.8, the polynomial
∏r

i=1 P
hi
i is also 2n−perfect. This

contradicts Lemma 3.1.

Lemma 3.13. Let ci ∈ N, u ≥ 1 and a be odd integers and let A = xa(x +
1)b
∏

i P
2ci−1
i be a 2n−perfect polynomial over F2, where each Pi is a Mersenne

prime. Then, a is of the form 2tu− 1 with u ≤ 7.
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Proof. Suppose that a = 2tu−1 with u is odd and t ≥ 1. Since A is 2n−perfect
over F2, then

x2
na(x+ 1)2

nb
∏
i=1

P
2n(2ci−1)
i =

(
σ(xa)σ

(
(x+ 1)b

)∏
i=1

σ
(
P 2ci−1
i

))2n

.

But σ(xa) = 1+ x+ ...+ x2
tu−1 = (1 + x)2

t−1 σ(xu−1)2
t
. If u > 2, then as done

in the proof of the preceding lemma we get u− 1 ≤ 6 and hence the result.

Lemma 3.14. Let a, b, ci∈N such that a is even and let A=xa(x+1)b
∏m

i=1 P
2ci−1
i

be a 2n−perfect polynomial over F2, where each Pi is a Mersenne prime. Then,
a ≤ 6.

Proof. Let a = 2m. Since A is 2n−perfect over F2, then

x2
n+1m(x+ 1)2

nb
∏
i=1

P
2n(2ci−1)
i = A2n

= σ2n(A)

=

(
σ(x2m)σ

(
(x+ 1)b

)∏
i=1

σ
(
P 2ci−1
i

))2n

.

But x and x+ 1 do not divide σ(x2m) and Pi does not divide σ
(
P 2ci−1
i

)
so Pi

divides σ(x2m). We are done by Lemma 3.9 (ii.).

3.1 Cases of the Proof

Let A = xa(x + 1)b
∏r

i=1 P
hi
i , where Pi, is a Mersenne prime be a 2n-perfect

over F2. From Lemma 3.11, we have hi = 1 or 3. By Lemma 3.12, we have a or
b is even. To complete the proof of Theorem 1.3, we study the below cases:
Case 1. Both a and b are even:

In this case, we have

(2) 1 + x+ ...+ xa = Pi1 ...Pis .

Since the Pij ’s are Mersenne primes, then a, b ∈ {2, 4, 6}. Since if A is a

2n−perfect polynomial over F2, then A is a 2n−perfect polynomial over F2

so a and b can be chosen in the way a ≤ b and a, b ∈ {2, 4, 6}.

� If a = b = 2, then 1 + x + x2 = 1 + (x + 1) + (x + 1)2 = T1. Hence, A =
x2(x+1)2T1 and σ(A) = σ

(
x2
)
σ
(
(x+ 1)2

)
σ(T1) = (T1) (T1) (x(1 + x)) =

x(1 + x)T 2
1 ̸= A. Therefore A is not perfect over F2 and hence A is not

2n−perfect over F2 (Theorem 3.1).

� If a = 2 and b = 4, then 1 + x + x2 = T1 and 1 + (x + 1) + ... + (x +
1)4 = 1 + x3(x + 1) = T5. Hence, A = x2(x + 1)4T1T5 and σ(A) =
σ
(
x2
)
σ
(
(x+ 1)4

)
σ(T1)σ(T5) = (T1) (T5) (x(1 + x))

(
x3(1 + x)

)
= x4(1+

x)2T1T5 ̸= A. So, A is not 2n−perfect over F2 (Theorem 3.1).
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� If a = b = 4, then 1 + x + ... + x4 = T4 and 1 + (x + 1) + ... + (x +
1)4 = 1 + x3 + x4 = T5. Hence, A = x4(x + 1)4T4T5 and σ(A) =
σ
(
x4
)
σ
(
(x+ 1)4

)
σ(T4)σ(T5) = (T4) (T5)

(
x(1 + x)3

) (
x3(1 + x)

)
= x4(1+

x)4T4T5 = A. So, A is 2n−perfect over F2 (Theorem 3.1).

� If a = 2 and b = 6, then 1+ x+ x2 = T1 and 1+ (x+ 1)+ ...+ (x+ 1)6 =
(1 + x+ x3)(1 + x2 + x3) = T2T3. Hence, A = x2(x+ 1)6T1T2T3 and

σ(A) = σ
(
x2
)
σ
(
(x+ 1)6

)
σ(T1)σ(T2)σ(T3)

= (T1) (T2T3) (x(1 + x))
(
x(1 + x)2

) (
x2(1 + x)

)
= x4(1 + x)4T1T2T3

̸= A.

Therefore, A is not 2n−perfect over F2.

� If a = 4 and b = 6, then 1+x+ ...+x4 = T4 and 1+(x+1)+ ...+(x+1)6 =
T2T3. Hence, A = x4(x + 1)6T2T3T4 and σ(A) = A. So, A is 2n−perfect
over F2.

� If a = b = 6, then 1 + x + ... + x6 = (1 + x + x3)(1 + x2 + x3) = T2T3 =
1 + (x+ 1) + ...+ (x+ 1)6. Hence, A = x6(x+ 1)6T 2

2 T
2
3 and

σ(A) = σ
(
x6
)
σ
(
(x+ 1)6

)
σ
(
T 2
2

)
σ
(
T 2
3

)
= T 2

1 T
2
2 T

2
3 T4T5 ̸= A. Therefore,

A is not 2n−perfect over F2.

Case 2. a is even and b is odd:
By Lemmas 3.13 and 3.14, we have a ∈ {2, 4, 6} and b = 2tu − 1 for some

t ∈ Z≥1 and u ∈ {1, 3, 5, 7}.

� If u = 1 and a = 2, then σ(x2) = T1, σ((x+ 1)2
t−1) = x2

t−1, and σ(T1) =
x(x+1). Hence, 2t−1+1 = b+1 ≤ a = 2. Thus, t = 1 and A = x2(x+1)T1.

� If u = 1 and a = 4, then σ(x4) = T4, σ((x+ 1)2
t−1) = x2

t−1, and σ(T4) =
x(x+1)3. Hence, 2t−1+1 = b+1 ≤ a = 4. Thus, t ≤ 2 and 3 ≤ b = 2t−1,
so t = 2 and A = x4(x+ 1)3T4.

� If u = 1 and a = 6, then σ(x6) = T2T3, σ((x + 1)2
t−1) = x2

t−1, σ(T2) =
x(x + 1)2 and σ(T3) = x2(x + 1). Hence, 2t − 1 + 2 + 1 = b + 3 ≤ a = 6.
Thus, t ≤ 2 and 3 ≤ b = 2t − 1, so t = 2 and A = x6(x+ 1)3T2T3.

� If u = 3 and a = 2, then σ(x2) = T1, σ((x + 1)3.2
t−1) = x2

t−1T 2t
1 . Hence,

T 2t+1
1 divides σ(A) = A but T 2t+2

1 does not divide σ(A) = A. By Lemma
3.11, we have 2t + 1 ∈ {1, 3} and thus t = 1 and A = x2(1 + x)5T1. But
σ(x2(1 + x)5T1) ̸= x2(1 + x)5T1 and hence A is not 2n−perfect over F2.

� If u = 3 and a = 4, then σ(x4) = T4. Since T1 does not divide σ(x4), then

T 2t
1 divides σ(A) = A but T 2t+1

1 does not divide σ(A) = A. By Lemma
3.11, we have 2t ∈ {1, 3}, a contradiction.
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� The case u = 3 and a = 6 is similar to the preceding one.

� If u = 5 and a ∈ {2, 6}, then σ((x + 1)5.2
t−1) = x2

t−1T 2t
4 . Since T4 does

not divide σ(xa), then T 2t
4 divides σ(A) = A where T 2t+1

1 does not divide
σ(A) = A. By Lemma 3.11, we have 2t ∈ {1, 3}, a contradiction.

� If u = 5 and a = 4, then σ(x4) = T4. Since T 2t+1
4 divides A and T 2t+2

1

does not divide A. By Lemma 3.11, we have 2t + 1 ∈ {1, 3}. Thus t = 1
and A = x4(1 + x)9T 3

1 . But σ(x4(1 + x)9T 3
1 ) ̸= x4(1 + x)9T 3

1 . Hence, A is
not 2n−perfect over F2.

� If u = 7 and a ∈ {2, 4}, then σ((x + 1)7.2
t−1) = x2

t−1T 2t
2 T 2t

3 . Since T2

and T3 do not divide σ(xa), then T 2t
2 divides A and T 2t+1

2 does not divide
σ(A) = A. By Lemma 3.11, we have 2t ∈ {1, 3}, a contradiction.

� If u = 7 and a = 6, then σ
(
x6
)
= T2T3. So, T

2t+1
2 (resp. T 2t+1

3 ) divides A

and T 2t+1
2 (resp. T 2t+1

3 ) does not divide A. By Lemma 3.11, we have 2t+1 ∈
{1, 3}. Thus t = 1 and A = x6(1 + x)13T 3

2 T
3
3 . But σ

(
x6(1 + x)13T 3

2 T
3
3

)
̸=

x6(1 + x)13T 3
2 T

3
3 . Hence, A is not 2n−perfect over F2.

The proof of Theorem 1.3 is now complete

4. Conclusion

We show the non existence of odd 2n−perfect, n ∈ N, polynomials over F2.
A characterization of 2n−perfect polynomials A over the prime field with two
elements that are divisible by x, x+ 1, and Mersenne primes is given.
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