On k-perfect polynomials over \mathbb{F}_2

Haissam Chehade^{*}

The International University of Beirut School of Arts and Sciences Department of Mathematics and Physics Lebanon haissam.chehade@liu.edu.lb

Yousuf Alkhezi

The Public Authority for Applied Education and Training College of Basic Education Department of Mathematics Kuwait ya.alkhezi@paaet.edu.kw

Wiam Zeid

Lebanese International University School of Arts and Sciences Department of Mathematics and Physics Lebanon wiam.zeid@liu.edu.lb

Abstract. A polynomial A is called k-perfect over the finite field \mathbb{F}_2 if the sum of the k^{th} powers of all distinct divisors of A equals A^k , where k is a positive integer. We show that a k-perfect polynomial A over \mathbb{F}_2 must be even when $k = 2^n$, n is a non-negative integer, and we characterize all 2^n -perfect polynomials over \mathbb{F}_2 that are of the form $x^a(x+1)^b \prod_{i=1}^r P_i^{h_i}$, where each P_i is a Mersenne prime and a, b and h_i are positive integers.

Keywords: sum of divisors, multiplicative function, polynomials, finite fields, characteristic 2.

1. Introduction

Let *n* be a positive integer and let $\sigma(n)$ denote the sum of positive divisors of the integer *n*. We call the number *n* a *k*-super perfect number if $\sigma^k(n) = \underbrace{\sigma(\sigma(...(\sigma(n))))}_{k-\text{times}} = 2n$. When k = 1, n is called a perfect number. An integer

 $M = 2^p - 1$, where p is a prime number, is called a Mersenne number. It is also well known that an even integer n is perfect if and only if n = M(M + 1)/2 for some Mersenne prime number M. Suryanarayana [11] considered k-super perfect numbers in the case k = 2. Numbers of the form 2^{p-1} (p is prime) are

^{*.} Corresponding author

2-super perfect if $2^{p-1} - 1$ is a Mersenne prime. It is not known if there are odd k-super perfect numbers.

Researchers also studied the arithmetic function $\sigma_k(n)$ that finds the sum of the *k*th powers of the positive divisors of *n*. Recently, Luca and Ferdinands [10] showed that $\sigma_k(n)$ is divisible by *n* for infinitely many *n* when $k \ge 2$. Cai et al. [1] proved that if $n = 2^{a-1}p$ divides $\sigma_3(n)$, where a > 1 is an integer and *p* is an odd prime, then *n* is an even perfect number. Also, they proved that the converse is true when $n \ne 28$. Jiang [9] made an improvement to the result of Cai et al. They showed that $n = 2^{a-1}p^{b-1}$ divides $\sigma_3(n)$, where a, b > 1 are integers and *p* is an odd prime, if and only if *n* is an even perfect number other than 28. Chu [3] found a relation between an even perfect number *n* and $\sigma_k(n)$. He generalized the work of Cai et al. as given in the following theorem.

Theorem 1.1. Let k > 2 be a prime such that $2^k - 1$ is a Mersenne prime. If $n = 2^{a-1}p$, where a > 1 and $p < 3 \cdot 2^{a-1} - 1$ is an odd prime. Then n divides $\sigma_k(n)$ if and only if n is an even perfect number other than $2^{k-1}(2^k - 1)$.

Chu also generalized the work of Jiang as follows.

Theorem 1.2. If $n = 2^{a-1}p^{b-1}$, where a, b > 1 and $p < 3 \cdot 2^{a-1} - 1$ is an odd prime. Then n divides $\sigma_5(n)$ if and only if n is an even perfect number other than 496.

Chu conjectured if k > 2 is a prime such that $2^k - 1$ is a Mersenne prime and if $n = 2^{a-1}p^{b-1}$, where a, b > 1 and $p < 3 \cdot 2^{a-1} - 1$ is an odd prime, then ndivides $\sigma_k(n)$ if and only if n is an even perfect number other than $2^{k-1}(2^k - 1)$.

The present paper gives a polynomial analogue of the arithmetic function $\sigma_k(n)$. Let k be a positive integer and let A be a nonzero polynomial defined over the prime field \mathbb{F}_2 . We denote by $\sigma_k(A)$ the sum of the k^{th} powers of the distinct divisors B of A. That is,

$$\sigma_k(A) = \sum_{B|A} B^k$$

If $A \in \mathbb{F}_2[x]$ has the canonical decomposition $\prod_{i=1}^r P_i^{\alpha_i}$ where the primes $P_i \in \mathbb{F}_2[x]$ are distinct and $\alpha_i > 0$, then

$$\sigma_k(A) = \prod_{i=1}^r \frac{P_i^{k(\alpha_i+1)} - 1}{P_i^k - 1}$$

In the case where k = 1, σ_k becomes the well-known σ function. For example, if $A = x(x+1)^2(x^2+x+1) \in \mathbb{F}_2[x]$ then

$$\sigma(A) = \sum_{B|A} B$$

= 1 + x + (x + 1) + (x + 1)² + (x² + x + 1) + x(x + 1) + x(x + 1)²

$$+ x(x^{2} + x + 1) + (x + 1)(x^{2} + x + 1) + (x + 1)^{2}(x^{2} + x + 1)$$

+ x(x + 1)(x² + x + 1) + x(x + 1)^{2}(x^{2} + x + 1)
= x(x + 1)^{2}(x^{2} + x + 1)

and

$$\sigma_4(A) = \sum_{B|A} B^4 = x^4 (x+1)^8 (x^2 + x + 1)^4.$$

Note that the function σ_k is multiplicative over \mathbb{F}_2 .

Notation 1.1. We use the following notations throughout the paper.

- $\deg(A)$ denotes the degree of the polynomial A.
- \overline{A} is the polynomial obtained from A with x replaced by x + 1, that is $\overline{A}(x) = A(x+1)$.
- A^* is the inverse of the polynomial A with $\deg(A) = m$, in this sense $A^*(x) = x^m A(\frac{1}{x}).$
- P and Q are distinct irreducible odd polynomials.

A nonzero polynomial A defined over \mathbb{F}_2 is an even polynomial if it has a linear factor in $\mathbb{F}_2[x]$ else it is an odd polynomial. A polynomial T of the form $1 + x^a(x+1)^b$ with gcd(a,b) = 1 is called a Mersenne polynomial, see [6]. The first five Mersenne polynomials over \mathbb{F}_2 are: $T_1 = 1 + x + x^2$, $T_2 = 1 + x + x^3$, $T_3 = 1 + x^2 + x^3$, $T_4 = 1 + x + x^2 + x^3 + x^4$, $T_5 = 1 + x^3 + x^4$. Note that all these polynomials are irreducible, so we call them Mersenne primes.

The next definition is the main object of this study in which we introduce a new concept of k-perfect polynomials over \mathbb{F}_2 .

Definition 1.1. Let k be a positive integer. A polynomial A is called a k-perfect polynomial over \mathbb{F}_2 if $\sigma_k(A) = A^k$.

A 1-perfect polynomial A over \mathbb{F}_2 is a perfect polynomial, so we are interested in studying the case when k > 1. The polynomial $B = x(x+1)^2(x^2+x+1)$ is a 4-perfect polynomial in $\mathbb{F}_2[x]$. Note that B is a perfect polynomial over \mathbb{F}_2 . A natural question arise: Is there a relation between perfect polynomials and k-perfect polynomials in $\mathbb{F}_2[x]$? In Section 3, we answer this question and we find a relation between the sum of the divisors function $\sigma(A)$ and the sum of the powers of the divisors function $\sigma_k(A)$, k > 1, of the polynomial A over the finite field \mathbb{F}_2 . We show that there are no odd 2^n -perfect polynomials over \mathbb{F}_2 and we characterize all even 2^n -perfect polynomials over \mathbb{F}_2 that have the form $x^a(x+1)^b \prod_{i=1}^r P_i^{h_i}$, where each P_i is a Mersenne prime and a, b and h_i are positive integers.

Our main result is given in the following theorem:

Theorem 1.3. Let $a, b, t, h_i \in \mathbb{N}$ and let P_i be a Mersenne prime in $\mathbb{F}_2[x]$. Then, $A = x^a (x+1)^b \prod_{i=1}^r P_i^{h_i}$ is a 2^n -perfect polynomial over \mathbb{F}_2 for some $n \in \mathbb{N}$ if and only if $A \in \{x^{2^t-1}(x+1)^{2^t-1}, x^2(x+1)T_1, x(x+1)^2T_1, x^3(x+1)^4T_5, x^4(x+1)^3T_4, x^4(x+1)^4T_4T_5, x^6(x+1)^3T_2T_3, x^3(x+1)^6T_2T_3, x^6(x+1)^4T_2T_3T_5, x^4(x+1)^6T_2T_3T_5\}.$

2. Preliminaries

The notion of perfect polynomials over \mathbb{F}_2 was introduced first by Canaday [2]. A polynomial A is perfect if $\sigma(A) = A$. Let $\omega(A)$ be the number of distinct irreducible polynomials that divide A. Canaday studied the case of even perfect polynomials with $\omega(A) \leq 3$. In the recent years, Gallardo and Rahavandrainy [4, 6, 7] showed the non-existence of odd perfect polynomials over \mathbb{F}_2 with either $\omega(A) = 3$ or with $\omega(A) \leq 9$ in the case where all the exponents of the irreducible factors of A are equal to 2. If the nonconstant polynomial A in $\mathbb{F}_2[x]$ is perfect, then $\omega(A) \geq 2$ (see [4], Lemma 2.3). Moreover, Canaday [2] showed that the only even perfect polynomials over \mathbb{F}_2 with exactly two prime divisors are $x^{2^n-1}(x+1)^{2^n-1}$ for some positive integers n.

It is well known that an even perfect number is exactly divisible by two distinct prime numbers but a non-trivial even perfect polynomial $A \in \mathbb{F}_2[x]$ may be divisible by more than 2 distinct primes as Gallardo and Rahavandrainy [6] gave some results with $\omega(A) \leq 5$. Although they did not give a general form of such polynomials in terms of Mersenne primes but all the non-trivial even perfect polynomials they found, with only two exceptions, have Mersenne primes as odd divisors.

The following two lemmas are useful.

Lemma 2.1 (Lemma 2.3 in [6]). If $A = A_1A_2$ is perfect over \mathbb{F}_2 and if $gcd(A_1, A_2) = 1$, then A_1 is perfect if and only if A_2 is perfect.

Lemma 2.2 (Lemma 2.4 in [6]). If A is perfect over \mathbb{F}_2 , then the polynomial \overline{A} is also perfect over \mathbb{F}_2

In [5], Gallardo and Rahavandrainy gave a complete list for all even perfect polynomials with at most 5 irreducible factors as given in the following lemma.

Lemma 2.3. The complete list of all even perfect polynomials over \mathbb{F}_2 with $\omega(A) \leq 5$ is:

$(\Lambda) \geq 0$ is.		
	$\omega(A)$	A
	0	0
	1	1
	2	$(x^2+x)^{2^n-1}$
	3	$A_1 = x^2(x+1)T_1, A_2 = \overline{A_1}(x), A_3 = x^3(x+1)^4T_5, A_4(x) = \overline{A_3}$
	4	$A_5 = x^2(x+1)(x^4 + x + 1)T_1^2, A_6 = \overline{A_5},$
		$A_7 = x^4(x+1)^4 T_4 T_5, A_8 = x^6(x+1)^3 T_2 T_3, C_9(x) = \overline{A_8}$
	5	$A_{10} = x^6 (x+1)^4 T_2 T_3 T_5, \ A_{11} = \overline{A_{10}}.$

Lemma 2.4 (Proposition 5.1 in [6]). If P is an odd irreducible polynomial in $\mathbb{F}_2[x]$, then x(x+1) divides $\sigma(P^{2m-1})$ for $m \in \mathbb{N}$.

The following lemma shows a nice relation between $\sigma_k(A)$ and $(\sigma(A))^k$ when A has exactly one prime factor.

Lemma 2.5. Let $A = P^{\alpha} \in \mathbb{F}_2[x]$ with $\alpha \ge 1$. Then $\sigma_k(A) = \sigma(A)^k$ if and only if $k = 2^n$.

Proof.

$$\sigma_{2^n}(A) = 1 + P^{2^n} + \dots + P^{2^n \alpha} = (1 + P + \dots + P^{\alpha})^{2^n} = (\sigma(A))^{2^n}.$$

For the sufficient condition, the proof is done by contrapositive. Let $k = 2^n u$, u > 1 is odd, then $(\sigma(A))^k = (\sigma(A))^{2^n u} = (1 + P + ... + P^{\alpha})^{2^n u} = (1 + P^{2^n} + ... + P^{2^n \alpha})^u \neq (1 + P^{2^n u} + ... + P^{2^n u \alpha}) = \sigma_k(A).$

Corollary 2.1. Let $A = \prod_{i=1}^{r} P_i^{\alpha_i} \in \mathbb{F}_2[x]$, then $\sigma_{2^n}(A) = (\sigma(A))^{2^n}$.

Lemma 2.6. Let $A = P^{\alpha} \in \mathbb{F}_2[x]$ be an irreducible polynomial and $\alpha \geq 1$. Then A is not a factor of $\sigma_k(A)$.

Proof. Assume that A divides $\sigma_k(A)$, then there exists a nonconstant $B \in \mathbb{F}_2[x]$ such that $\sigma_k(A) = AB$ with $\deg(B) < \deg(A^k)$. So, $1 + P^k + \ldots + P^{k(\alpha-1)} + P^{k\alpha} = P^{\alpha}B$ and $P\left(P^{k-1} + \ldots + P^{k(\alpha-1)-1} + P^{\alpha-1}(P^k + B)\right) = 1$. Hence, P = 1 and this contradicts the fact that P is prime in $\mathbb{F}_2[x]$.

Lemma 2.7 (Lemma 2.6 in [8]). Let *m* be a positive integer and let *T* be a Mersenne prime in $\mathbb{F}_2[x]$, then $\sigma(x^{2m})$ and $\sigma(T^{2m})$ are both odd and squarefree.

Lemma 2.8. If m and k are positive integers, then $\sigma_k(P^{2m-1})$ is divisible by x(x+1).

Proof. Let $2m = 2^h s$, where s is odd and $h \ge 1$. Then,

$$\sigma_k(P^{2m-1}) = 1 + P^k + \dots + P^{k(2^h s - 1)}$$
$$= (1 + P^k)^{2^h - 1} \left(1 + P^k + \dots + P^{k(s-1)} \right)^{2^h}$$

But x(x+1) divides $1 + P^k$, P is odd. This completes the proof.

Lemma 2.9. If m and k are positive integers, then $\sigma_k(P^{2m})$ is not divisible by x(x+1).

Proof.
$$\sigma_k(P^{2m}) = 1 + P^k + \dots + P^{2km}$$
. So, $\sigma_k(P^{2m})(0) = 1 + \underbrace{P^k(0) + \dots + P^{2km}}_{2m - \text{times}}(0) =$

1 and x is not factor of $\sigma_k(P^{2m})$. Also, $\sigma_k(P^{2m})(1) = 1$ and hence $\sigma_k(P^{2m})$ is not divisible by x + 1. The proof is now complete.

Next we give some properties when k = 2.

Lemma 2.10. Let t be a positive integer, then $\sigma_2(x^{3.2^{t-1}-1}) = (1+x)^{2^t-2}T_1^{2^t}$.

Proof. We use induction. For t = 1, we have $\sigma_2(x^2) = (1 + x + x^2)^2 = T_1^2$. Hence, the statement is true for t = 1. Now assume it is true for t, so

$$\sigma_{2}\left(x^{3.2^{t}-1}\right) = \left(1 + x + \dots + x^{3.2^{t-1}-1} + x^{3.2^{t-1}}\left(1 + x + \dots + x^{3.2^{t-1}-1}\right)\right)^{2}$$
$$= \left(1 + x + \dots + x^{3.2^{t-1}-1}\right)^{2} \left(1 + x^{3.2^{t-1}}\right)^{2}$$
$$= \sigma_{2}\left(x^{3.2^{t-1}-1}\right) \left(1 + x^{3}\right)^{2^{t}}$$
$$= (1 + x)^{2^{t}-2}T_{1}^{2^{t}} \left((1 + x)T_{1}\right)^{2^{t}}$$
$$= (1 + x)^{2^{t+1}-2}T_{1}^{2^{t+1}}.$$

We are done.

Lemma 2.11. Let t be a positive integer, then $\sigma_2((1+x)^{3\cdot 2^{t-1}-1}) = x^{2^t-2}T_1^{2^t}$. **Lemma 2.12.** Let t be a positive integer, then $\sigma_2(T_1^{2^t-1}) = (x^2+x)^{2(2^t-1)}$.

Proof. For t = 1, we have $\sigma_2(T_1) = (1+T_1)^2 = (x^2+x)^2$. Hence, the statement is true for t = 1. Now assume $\sigma_2(T_1^{2^t-1}) = (x^2+x)^{2(2^t-1)}$. And,

$$\sigma_2 \left(T_1^{2^{t+1}-1} \right) = \left(1 + T_1 + \dots + T_1^{2^t-1} + T_1^{2^t} \left(1 + T_1 + \dots + T_1^{2^t-1} \right) \right)^2$$

= $\left(1 + T_1 + \dots + T_1^{2^t-1} \right)^2 \left(1 + T_1^{2^t} \right)^2$
= $\sigma_2 \left(T_1^{2^t-1} \right) (1 + T_1)^{2^{t+1}}$
= $(x^2 + x)^{2(2^{t-1})} (x^2 + x)^{2^{t+1}}$
= $(x^2 + x)^{2(2^{t+1}-1)}.$

The proof is complete.

The following lemma follows directly from Lemmas 2.10, 2.11, and 2.12.

Lemma 2.13. Let $t \in \mathbb{N}$ and let $A = x^a T_1^h$ or $A = (1+x)^a T_1^h$ be polynomials in $\mathbb{F}_2[x]$, where $a = 3 \cdot 2^{t-1} - 1$ and $h = 2^t - 1$. Then $\sigma_2(A) = x^{2h} (1+x)^{2(a-1)} T_1^{h+1}$.

Lemma 2.14. If $a = 2^t u - 1$ with u odd. Then,

i-
$$\sigma_2(x^a) = (1+x)^{2^{t+1}-2} \left(\sigma(x^{u-1})\right)^{2^{t+1}}$$

ii- $\sigma_2(P^a) = (1+P)^{2^{t+1}-2} \left(\sigma(P^{u-1})\right)^{2^{t+1}}$.

Lemma 2.15. Let $t \in \mathbb{N}$ and let $A = x^a T_1^h$ or $A = (1+x)^a T_1^h \in \mathbb{F}_2[x]$. If A divides $\sigma_2(A)$, then $a = 3 \cdot 2^{t-1} - 1$ and $h = 2^t - 1$.

Definition 2.1. Let $A \in \mathbb{F}_2[x]$ be a polynomial of degree m. Then,

- i. A inverts into itself if $A^* = A$.
- ii. A is said to be k-complete if there exists $h \in \mathbb{N}^*$ such that $A = \sigma_k(x^h) = 1 + x^k + \dots + x^{kh}$.

Lemma 2.16. *i.* Any k-complete polynomial inverts to itself.

ii. If $1 + x^k + \ldots + x^{km} = PQ$, then $P = P^*$ and $Q = Q^*$ or $P = Q^*$ and $Q = P^*$, where P and Q are irreducible polynomials in $\mathbb{F}_2[x]$.

Proof. i. Let A be a k-complete polynomial, then there exists $h \in \mathbb{N}$ such that

$$A = \sigma_k(x^h)$$

= 1 + x^k + ... + x^{kh}
$$A^* = x^{kh}A\left(\frac{1}{x}\right)$$

= x^{kh} $\left(1 + \frac{1}{x^k} + \dots + \frac{1}{x^{kh}}\right)$, A is k-complete
= A.

Hence, A inverts to itself.

ii. If $1 + x^k + ... + x^{km} = PQ$, then PQ is k-complete. Using the above results, then PQ inverts to itself. Hence, $(PQ)^* = PQ = P^*Q^*$. Therefore, $P = P^*$ and $Q = Q^*$ or $P = Q^*$ and $Q = P^*$.

3. Proof of Theorem 1.3

The following lemma is a direct consequence of Lemma 2.6.

Lemma 3.1. The polynomial $A = P^{\alpha}$, $\alpha \ge 1$, is not a k-perfect polynomial over \mathbb{F}_2 , for every $k \ge 1$.

The preceding lemma shows that a k-perfect polynomial A over \mathbb{F}_2 has at least 2 prime factors.

Lemma 3.2. Let $m \leq n$ be positive integers and let $A \in \mathbb{F}_2[x]$, then $\sigma_{2^m}(A)$ divides $\sigma_{2^n}(A)$.

Proof.

$$\sigma_{2^n}(A) = (\sigma(A))^{2^n}$$
$$= (\sigma(A))^{2^m} (\sigma(A))^{2^{n-m}}$$
$$= \sigma_{2^m}(A) (\sigma(A))^{2^{n-m}}.$$

Notice that $\sigma_2(A)$ divides $\sigma_{2^n}(A)$ for any any $n \ge 1$. Hence, if A is a multiperfect polynomial over \mathbb{F}_2 , i.e. A divides $\sigma(A)$, then A is a k-multi-perfect polynomial over \mathbb{F}_2 when $k = 2^n$ for a positive integer n.

Lemma 3.3. If $t \in \mathbb{N}$ and $A = x^a T_1^h$ or $A = (1+x)^a T_1^h$ be polynomials in $\mathbb{F}_2[x]$, where $a = 3 \cdot 2^{t-1} - 1$ and $h = 2^t - 1$, then A divides $\sigma_{2^n}(A)$ for any $n \ge 1$.

Proof. Since σ_2 divides σ_{2^n} and $\sigma_2(A) = x^{2h}(1+x)^{2(a-1)}T_1^{h+1}$ with $2h = a + 2^{t-1} - 1$.

Lemma 3.4. If $a = 2^t u - 1$ with u odd and $n \in \mathbb{Z}_{\geq 0}$). Then,

i- 1 + x divides $\sigma_{2^n}(x^a)$ *ii*- x(1 + x) divides $\sigma_{2^n}(P^a)$

Proof. We have $\sigma_2(A)$ divides $\sigma_{2^n}(A)$ and 1 + x divides $\sigma_2(A)$ (Lemma 2.14).

Lemma 3.5. If A is k-perfect over \mathbb{F}_2 , then \overline{A} is also k-perfect over \mathbb{F}_2 . **Proof.** Let $A(x) = \prod_{i=1}^r P_i^{\alpha_i}(x)$, where the primes $P_i(x) \in \mathbb{F}_2[x]$. Since A is k-perfect, then

(1)
$$\sigma_k(A) = \prod_{i=1}^r \frac{P_i^{k(\alpha_i+1)} - 1}{P_i^k - 1} = A^k.$$

Let F_{2^t} be a splitting field for A(x) over \mathbb{F}_2 , then there exists $a_1, a_2, ..., a_k \in F_{2^t}$ such that for each $i, 1 \leq i \leq k$, we have $P_i^{\alpha_i}(x) = \prod_{j=0}^{\beta_i-1} (x-a_i^{2^j})^{\alpha_i}$, where $\deg(P_i(x)) = \beta_i$. Since $\gcd(P_i(x), P_j(x)) = 1$ over \mathbb{F}_2 , for every $i \neq j$, then $\gcd(P_i(x), P_j(x)) = 1$ over F_{2^t} , for every $i \neq j$. Moreover,

$$P_i(x+1) = \prod_{j=0}^{\beta_i - 1} (x+1 - a_i^{2^j}) = \prod_{j=0}^{\beta_i - 1} (x - (a_i - 1)^{2^j}).$$

Since $a_i - 1$ has degree β_i , it follows that each $Q_i(x) = P_i(x+1)$ is prime of degree β_i in $\mathbb{F}_2[x]$. We have $gcd(Q_i(x), Q_j(x)) = 1$ in $\mathbb{F}_2[x]$, for every $i \neq j$, and hence the primes $Q_i(x)$ are distinct. Let $B(x) = \overline{A}(x) = \prod_{i=1}^r P_i^{\alpha_i}(x+1) = \prod_{i=1}^r Q_i^{\alpha_i}(x)$.

By substituting B(x) in (1), we get

$$\sigma_k(A(x)) = \sigma_k(B(x))$$

= $\prod_{i=1}^r \frac{P_i^{k(\alpha_i+1)}(x+1) - 1}{P_i^k(x+1) - 1}$
= $\prod_{i=1}^r \frac{Q_i^{k(\alpha_i+1)}(x) - 1}{Q_i^k(x) - 1}$
= $B^k(x)$
= $(\overline{A}(x))^k$.

So, $B(x) = \overline{A}(x)$ is k-perfect over \mathbb{F}_2

Lemma 2.1 shows the relation between $\sigma_k(A)$ and $\sigma(A)$ when $k = 2^n$, and its important consequence, Theorem 3.1, completely characterizes all k-perfect polynomials over \mathbb{F}_2 when $k = 2^n$.

Theorem 3.1. A is perfect over \mathbb{F}_2 if and only if A is 2^n -perfect over \mathbb{F}_2 .

Proof. Let $A = \prod_{i=1}^{r} P_i^{\alpha_i} \in \mathbb{F}_2[x]$ be a perfect polynomial over \mathbb{F}_2 , where P_i is an irreducible polynomial, then

$$\sigma_{2^n}(A) = (\sigma(A))^{2^n} = A^{2^n}.$$

The converse is done by contrapositive. Assume that A is not perfect. Then,

$$\sigma_{2^n}(A) = (\sigma(A))^{2^n} \neq A^{2^n},$$

and we are done.

Lemma 3.6. Let $\omega(A) \geq 2$ and let A be a 2^n -perfect polynomial over \mathbb{F}_2 , then x(x+1) divides A.

The proof of the following lemma can be done by a direct computation.

Lemma 3.7. Let t be a positive integer, then the polynomial $x^{2^{t}-1}(x+1)^{2^{t}-1}$ is 2^{n} -perfect over \mathbb{F}_{2} .

Lemma 3.8. If $A = A_1A_2$ is 2^n -perfect over \mathbb{F}_2 and if $gcd(A_1, A_2) = 1$, then A_1 is 2^n -perfect if and only if A_2 is 2^n -perfect.

The following lemma contains some interesting results from Canaday's paper (see [2], Lemma 6 and Theorem 8).

Lemma 3.9. Let $A, B \in \mathbb{F}_2[x]$ and let $n, m \in \mathbb{N}$.

- (i) If $\sigma(P^{2n}) = B^m A$, with m > 1 and $A \in \mathbb{F}_2[x]$ is nonconstant, then $\deg(A)(P) > \deg(A)(B)$.
- (ii) If $\sigma(x^{2n})$ has a Mersenne factor, then $n \in \{1, 2, 3\}$.

Gallardo and Rahavandrainy [6] conjectured that $\sigma(T^{2m})$ is always divisible by a non-Mersenne prime, for any $m \in \mathbb{N}$, when $T = x^a(x+1)^b + 1$ is a Mersenne prime with $a + b \neq 3$.

Lemma 3.10. Let $A = x^a(x+1)^b \prod_i P_i^{h_i}$ be a 2^n -perfect polynomial over \mathbb{F}_2 with each P_i is a Mersenne prime. Then $h_i = 2^{c_i} - 1$, for every *i*.

Proof. Assume that h_i is even for every *i*. $A = x^a(x+1)^b \prod_i P_i^{h_i}$ be a 2^n -perfect then there exists a non Mersenne prime S such that S divides $\sigma(P_i^{h_i})$. So, S divides $\sigma_{2^n}(A) = A^{2^n}$. Therefore, S = x or S = x+1 and this contradicts Lemmas 2.8 and 2.9 as h_i must be odd. Now, suppose that $h_i + 1 = 2^{c_i}u$, u is odd and $c_i \in \mathbb{N}$. But $\sigma(P_i^{h_i}) = (1+P_i)^{2^{c_i}-1} (\sigma(P_i^{u-1}))^{2^{c_i}}$. If $u-1 \ge 2$, again there exists a non Mersenne prime W such that W divides $\sigma(P_i^{u-1})$. So, W divides $\sigma_{2^n}(A) = A^{2^n}$. By Lemma 2.9, $W \ne x$ and $W \ne x+1$. But any prime divisor of A which is not a Mersenne prime is either x or x+1, a contradiction. Hence, u = 1 and the result follows.

Lemma 3.11. Let $c_i \in \mathbb{N}$, and let $A = x^a(x+1)^b \prod_i P_i^{2^{c_i-1}}$ be a 2^n -perfect polynomial over \mathbb{F}_2 with each P_i is a Mersenne prime. Then, $P_i \in \{T_1, T_2, ..., T_5\}$, with $c_i = 1$ or 2.

Proof. Since A is 2^n -perfect, then any irreducible factor Q of $\sigma(x^a)$ or $\sigma((1 + x)^b)$ must divide A. So, $Q \in \{x, x + 1, P_1, P_2, ...\}$. From Lemma 3.9(*ii*.), we have $Pi \in \{T_1, T_2, ..., T_5\}$. Now, we want to prove that $c_j \in \{1, 2\}$. Note that $\sigma(P_i^{2^{c_i}-1}) = (1 + P_i)^{2^{c_i}-1}$ is not divisible by P_j , for any i, j. Moreover, if α_j are the exponents of P_j that are found in $\sigma(x^a)$ and in $\sigma((1 + x)^b)$, then $\alpha_j \in \{0, 1, 2^r : r \in \mathbb{N}\}$ (Lemma 3.9(*ii*.)). Comparing exponents of P_j , we get $\alpha_j = 2^{c_j} - 1 \in \{0, 1, 2, 2^r, 2^r + 1, 2^r + 2^s : r, s \in \mathbb{N}\}$. Hence, $c_j = 1$ or 2.

Lemma 3.12. Let $c_i \in \mathbb{N}$, $P_i \in \{T_1, T_2, ..., T_5\}$, and $A = x^a(x+1)^b \prod_i P_i^{c_i}$ be a 2^n -perfect polynomial over \mathbb{F}_2 with $c_i \in \{1,3\}$. Then a or b must be even.

Proof. For contradictional purpose, assume that a and b are both odd. By Lemma 3.13, we have $a = 2^r u - 1$ and $b = 2^s v - 1$ for some $t, s \in \mathbb{N}$, and u and v are odd positive integers less than or equal to 7. But,

$$\sigma(x^a) = (x+1)^{2^t - 1}(1+x+\ldots+x^{u-1})^{2^t}$$

and

$$\sigma((1+x)^b) = x^{2^s-1} \left(1 + (1+x) + \dots + (1+x)^{v-1}\right)^{2^s}.$$

Also, P_i is not a factor of $\sigma(P_j^{c_j}) = (1+P_j)^{c_j}$ for any i, j. Suppose that P_i is a factor of $1 + x + \ldots + x^{u-1}$ but is not a factor of $1 + (1+x) + \ldots + (1+x)^{v-1}$ for some i, with $u \ge 3$. Hence, $2^t = c_i = 2^{h_i} - 1$, a contradiction.

Now, assume that P_i is a factor of both $1 + x + \ldots + x^{u-1}$ and $1 + (1+x) + \ldots + (1+x)^{v-1}$, then $2^t + 2^s = c_i = 2^{h_i} - 1$, also a contradiction. Therefore, u = 1 and in a similar manner we get v = 1. So, $\sigma(x^a) = \sigma(x^{2^t-1}) = (x+1)^a$ and $\sigma((x+1)^b) = \sigma((x+1)^{2^s-1}) = x^b$. Hence, a = b and $x^a(x+1)^b$ is a 2^n -perfect (Lemma 3.7). By Lemma 3.8, the polynomial $\prod_{i=1}^r P_i^{h_i}$ is also 2^n -perfect. This contradicts Lemma 3.1.

Lemma 3.13. Let $c_i \in \mathbb{N}$, $u \ge 1$ and a be odd integers and let $A = x^a(x + 1)^b \prod_i P_i^{2^{c_i}-1}$ be a 2^n -perfect polynomial over \mathbb{F}_2 , where each P_i is a Mersenne prime. Then, a is of the form $2^t u - 1$ with $u \le 7$.

Proof. Suppose that $a = 2^t u - 1$ with u is odd and $t \ge 1$. Since A is 2^n -perfect over \mathbb{F}_2 , then

$$x^{2^{n}a}(x+1)^{2^{n}b}\prod_{i=1}P_{i}^{2^{n}(2^{c_{i}}-1)} = \left(\sigma(x^{a})\sigma\left((x+1)^{b}\right)\prod_{i=1}\sigma\left(P_{i}^{2^{c_{i}}-1}\right)\right)^{2^{n}}.$$

But $\sigma(x^a) = 1 + x + \dots + x^{2^t u - 1} = (1 + x)^{2^t - 1} \sigma(x^{u - 1})^{2^t}$. If u > 2, then as done in the proof of the preceding lemma we get $u - 1 \le 6$ and hence the result. \Box

Lemma 3.14. Let $a, b, c_i \in \mathbb{N}$ such that a is even and let $A = x^a (x+1)^b \prod_{i=1}^m P_i^{2^{c_i}-1}$ be a 2^n -perfect polynomial over \mathbb{F}_2 , where each P_i is a Mersenne prime. Then, $a \leq 6$.

Proof. Let a = 2m. Since A is 2^n -perfect over \mathbb{F}_2 , then

$$\begin{aligned} x^{2^{n+1}m}(x+1)^{2^n b} \prod_{i=1} P_i^{2^n (2^{c_i}-1)} &= A^{2^n} \\ &= \sigma_{2^n}(A) \\ &= \left(\sigma(x^{2m})\sigma\left((x+1)^b\right) \prod_{i=1} \sigma\left(P_i^{2^{c_i}-1}\right)\right)^{2^n}. \end{aligned}$$

But x and x + 1 do not divide $\sigma(x^{2m})$ and P_i does not divide $\sigma(P_i^{2^{c_i}-1})$ so P_i divides $\sigma(x^{2m})$. We are done by Lemma 3.9 (*ii*.).

3.1 Cases of the Proof

Let $A = x^a (x+1)^b \prod_{i=1}^r P_i^{h_i}$, where P_i , is a Mersenne prime be a 2^n -perfect over F_2 . From Lemma 3.11, we have $h_i = 1$ or 3. By Lemma 3.12, we have a or b is even. To complete the proof of Theorem 1.3, we study the below cases: **Case 1.** Both a and b are even:

In this case, we have

(2)
$$1 + x + \dots + x^a = P_{i_1} \dots P_{i_s}.$$

Since the P_{i_j} 's are Mersenne primes, then $a, b \in \{2, 4, 6\}$. Since if A is a 2^n -perfect polynomial over F_2 , then \overline{A} is a 2^n -perfect polynomial over \mathbb{F}_2 so a and b can be chosen in the way $a \leq b$ and $a, b \in \{2, 4, 6\}$.

- If a = b = 2, then $1 + x + x^2 = 1 + (x + 1) + (x + 1)^2 = T_1$. Hence, $A = x^2(x+1)^2T_1$ and $\sigma(A) = \sigma(x^2) \sigma((x + 1)^2) \sigma(T_1) = (T_1)(T_1)(x(1+x)) = x(1+x)T_1^2 \neq A$. Therefore A is not perfect over \mathbb{F}_2 and hence A is not 2^n -perfect over \mathbb{F}_2 (Theorem 3.1).
- If a = 2 and b = 4, then $1 + x + x^2 = T_1$ and $1 + (x + 1) + ... + (x + 1)^4 = 1 + x^3(x + 1) = T_5$. Hence, $A = x^2(x + 1)^4 T_1 T_5$ and $\sigma(A) = \sigma(x^2) \sigma((x + 1)^4) \sigma(T_1)\sigma(T_5) = (T_1)(T_5)(x(1 + x))(x^3(1 + x)) = x^4(1 + x)^2 T_1 T_5 \neq A$. So, A is not 2^n -perfect over F_2 (Theorem 3.1).

- If a = b = 4, then $1 + x + ... + x^4 = T_4$ and $1 + (x + 1) + ... + (x + 1)^4 = 1 + x^3 + x^4 = T_5$. Hence, $A = x^4(x + 1)^4 T_4 T_5$ and $\sigma(A) = \sigma(x^4) \sigma((x + 1)^4) \sigma(T_4) \sigma(T_5) = (T_4) (T_5) (x(1 + x)^3) (x^3(1 + x)) = x^4(1 + x)^4 T_4 T_5 = A$. So, A is 2^n -perfect over \mathbb{F}_2 (Theorem 3.1).
- If a = 2 and b = 6, then $1 + x + x^2 = T_1$ and $1 + (x + 1) + \dots + (x + 1)^6 = (1 + x + x^3)(1 + x^2 + x^3) = T_2T_3$. Hence, $A = x^2(x + 1)^6T_1T_2T_3$ and

$$\begin{aligned} \sigma(A) &= \sigma(x^2) \sigma((x+1)^6) \sigma(T_1) \sigma(T_2) \sigma(T_3) \\ &= (T_1) (T_2 T_3) (x(1+x)) (x(1+x)^2) (x^2(1+x)) \\ &= x^4 (1+x)^4 T_1 T_2 T_3 \\ &\neq A. \end{aligned}$$

Therefore, A is not 2^n -perfect over \mathbb{F}_2 .

- If a = 4 and b = 6, then $1 + x + ... + x^4 = T_4$ and $1 + (x+1) + ... + (x+1)^6 = T_2T_3$. Hence, $A = x^4(x+1)^6T_2T_3T_4$ and $\sigma(A) = A$. So, A is 2^n -perfect over \mathbb{F}_2 .
- If a = b = 6, then $1 + x + ... + x^6 = (1 + x + x^3)(1 + x^2 + x^3) = T_2T_3 = 1 + (x + 1) + ... + (x + 1)^6$. Hence, $A = x^6(x + 1)^6T_2^2T_3^2$ and $\sigma(A) = \sigma(x^6) \sigma((x + 1)^6) \sigma(T_2^2) \sigma(T_3^2) = T_1^2T_2^2T_3^2T_4T_5 \neq A$. Therefore, A is not 2^n -perfect over \mathbb{F}_2 .

Case 2. a is even and b is odd:

By Lemmas 3.13 and 3.14, we have $a \in \{2, 4, 6\}$ and $b = 2^t u - 1$ for some $t \in \mathbb{Z}_{\geq 1}$ and $u \in \{1, 3, 5, 7\}$.

- If u = 1 and a = 2, then $\sigma(x^2) = T_1, \sigma((x+1)^{2^t-1}) = x^{2^t-1}$, and $\sigma(T_1) = x(x+1)$. Hence, $2^t 1 + 1 = b + 1 \le a = 2$. Thus, t = 1 and $A = x^2(x+1)T_1$.
- If u = 1 and a = 4, then $\sigma(x^4) = T_4$, $\sigma((x+1)^{2^t-1}) = x^{2^t-1}$, and $\sigma(T_4) = x(x+1)^3$. Hence, $2^t 1 + 1 = b + 1 \le a = 4$. Thus, $t \le 2$ and $3 \le b = 2^t 1$, so t = 2 and $A = x^4(x+1)^3T_4$.
- If u = 1 and a = 6, then $\sigma(x^6) = T_2T_3, \sigma((x+1)^{2^t-1}) = x^{2^t-1}, \sigma(T_2) = x(x+1)^2$ and $\sigma(T_3) = x^2(x+1)$. Hence, $2^t 1 + 2 + 1 = b + 3 \le a = 6$. Thus, $t \le 2$ and $3 \le b = 2^t - 1$, so t = 2 and $A = x^6(x+1)^3T_2T_3$.
- If u = 3 and a = 2, then $\sigma(x^2) = T_1, \sigma((x+1)^{3.2^t-1}) = x^{2^t-1}T_1^{2^t}$. Hence, $T_1^{2^t+1}$ divides $\sigma(A) = A$ but $T_1^{2^t+2}$ does not divide $\sigma(A) = A$. By Lemma 3.11, we have $2^t + 1 \in \{1, 3\}$ and thus t = 1 and $A = x^2(1+x)^5T_1$. But $\sigma(x^2(1+x)^5T_1) \neq x^2(1+x)^5T_1$ and hence A is not 2^n -perfect over F_2 .
- If u = 3 and a = 4, then $\sigma(x^4) = T_4$. Since T_1 does not divide $\sigma(x^4)$, then $T_1^{2^t}$ divides $\sigma(A) = A$ but $T_1^{2^{t+1}}$ does not divide $\sigma(A) = A$. By Lemma 3.11, we have $2^t \in \{1, 3\}$, a contradiction.

- The case u = 3 and a = 6 is similar to the preceding one.
- If u = 5 and $a \in \{2, 6\}$, then $\sigma((x+1)^{5 \cdot 2^t 1}) = x^{2^t 1} T_4^{2^t}$. Since T_4 does not divide $\sigma(x^a)$, then $T_4^{2^t}$ divides $\sigma(A) = A$ where $T_1^{2^t + 1}$ does not divide $\sigma(A) = A$. By Lemma 3.11, we have $2^t \in \{1, 3\}$, a contradiction.
- If u = 5 and a = 4, then $\sigma(x^4) = T_4$. Since $T_4^{2^t+1}$ divides A and $T_1^{2^t+2}$ does not divide A. By Lemma 3.11, we have $2^t + 1 \in \{1,3\}$. Thus t = 1 and $A = x^4(1+x)^9T_1^3$. But $\sigma(x^4(1+x)^9T_1^3) \neq x^4(1+x)^9T_1^3$. Hence, A is not 2^n -perfect over F_2 .
- If u = 7 and $a \in \{2, 4\}$, then $\sigma((x + 1)^{7.2^t 1}) = x^{2^t 1}T_2^{2^t}T_3^{2^t}$. Since T_2 and T_3 do not divide $\sigma(x^a)$, then $T_2^{2^t}$ divides A and $T_2^{2^t + 1}$ does not divide $\sigma(A) = A$. By Lemma 3.11, we have $2^t \in \{1, 3\}$, a contradiction.
- If u = 7 and a = 6, then $\sigma(x^6) = T_2T_3$. So, $T_2^{2^t+1}$ (resp. $T_3^{2^t+1}$) divides A and $T_2^{2^t+1}$ (resp. $T_3^{2^t+1}$) does not divide A. By Lemma 3.11, we have $2^t+1 \in \{1,3\}$. Thus t = 1 and $A = x^6(1+x)^{13}T_2^3T_3^3$. But $\sigma(x^6(1+x)^{13}T_2^3T_3^3) \neq x^6(1+x)^{13}T_2^3T_3^3$. Hence, A is not 2^n -perfect over F_2 .

The proof of Theorem 1.3 is now complete

4. Conclusion

We show the non existence of odd 2^n -perfect, $n \in \mathbb{N}$, polynomials over \mathbb{F}_2 . A characterization of 2^n -perfect polynomials A over the prime field with two elements that are divisible by x, x + 1, and Mersenne primes is given.

References

- T. Cai, D. Chen, Y. Zhang, Perfect numbers and Fibonacci primes (I), Int. J. Number Theory, 11 (2015), 159-169.
- [2] E. F. Canaday, The sum of the divisors of a polynomial, Duke Mathematical Journal, 8 (1941), 721-737.
- [3] H. V. Chu, Divisibility of divisor functions of even perfect numbers, Journal of Integer Sequences, 24 (2021), p. 3.
- [4] L. H. Gallardo, O. Rahavandrainy, Odd perfect polynomials over F₂, J. Théor. Nombres Bordeaux, (2007), 165-174.
- [5] L. H. Gallardo, O. Rahavandrainy, There is no odd perfect polynomial over \mathbb{F}_2 with four prime factors, Port. Math. (N.S.), 66 (2009), 131-145.
- [6] L. H. Gallardo, O. Rahavandrainy, On even (unitary) perfect polynomials over \mathbb{F}_2 , Finite Fields and Their Applications, 18 (2012), 920-932.

- [7] L. H. Gallardo, O. Rahavandrainy, All unitary perfect polynomials over F₂ with at most four distinct irreducible factors, Journal of Symbolic Computation, (2012), 429-502.
- [8] L. H. Gallardo, O. Rahavandrainy, Characterization of sporadic perfect polynomials over F₂, Functiones et Approximatio Commentarii Mathematici, 55 (2016), 7–21.
- [9] X. Jiang, On even perfect numbers, Colloq. Math., 154 (2018), 131-135
- [10] F. Luca, J. Ferdinands, Sometimes n divides $\sigma_k(n)$:11090, The American Mathematical Monthly, 113 (2006), 372-373.
- [11] D. Suryanarayana, Super perfect numbers, Elem. Math., 24 (1969), 16-17.

Accepted: December 14, 2022