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Abstract. In this paper the application of the M-projective curvature tensor in the
general theory of relativity has been studied. Firstly, we have proved that an M-
projectively flat quasi-Einstein spacetime is of a special class with respect to an associ-
ated symmetric tensor field, followed by the theorem that a spacetime with vanishing
M -projective curvature tensor is a spacetime of quasi-constant curvature. Then we have
proved that an M-projectively flat quasi-Einstein spacetime is infinitesimally spatially
isotropic relative to the unit timelike vector field £. In the next section we have proved
that an M-projectively flat Ricci semi-symmetric quasi-Einstein spacetime satisfying a
definite condition is an NV (%Tm)-quasi Einstein spacetime. In the last section, we have
firstly proved that an M-projectively flat perfect fluid spacetime with torse-forming vec-
tor field ¢ satisfying Einstein field equation with cosmological constant represents an
inflation, then we have found out the curvature of such spacetime, followed by proving
the theorem that the spacetime also becomes semi-symmetric under these conditions.
Lastly, we have found out the square of the length of the Ricci tensor in this type of
spacetime and also proved that if an M-projectively flat perfect fluid spacetime satisfy-
ing Einstein field equation with cosmological constant, with torse-forming vector field
¢ admits a symmetric (0,2) tensor « parallel to V then either A = g(p —o)oraisa
constant multiple of g.
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1. Introduction

An Einstein manifold is a Riemannian or pseudo-Riemannian manifold whose
Ricci tensor S of type (0,2) is non-zero and proportional to the metric tensor.
Finstein manifolds form a natural subclass of various classes of Riemannian or
semi-Riemannian manifolds by a curvature condition imposed on their Ricci ten-
sor [4]. Also in Riemannian geometry as well as in general relativity theory, the
Einstein manifold plays a very important role. Chaki and Maity [18] generalised
the concept of Einstein manifold and introduced the notion of quasi-Einstein
manifold. According to them, a Riemannian or semi-Riemannian manifold is
said to be a quasi-Einstein manifold if its Ricci tensor S of type (0, 2) is non-zero
and satisfies the condition

(1) S(U,V)=1g(UV)+mAU)AV),

where [ and m are two real-valued scalar functions where m # 0 and A is
a non-zero 1-form equivalent to the unit vector field &, ie. g(U,&) = A(U),
g9(&,§) = 1. If m = 0 then the manifold becomes Einstein. Quasi-Einstein
manifolds are denoted by (QFE),, where n is the dimension of the manifold.
There are many examples of quasi-Einstein manifolds, like the Robertson-Walker
spacetime is a quasi-Einstein manifold. Also, quasi-Einstein manifolds can be
taken as a model of perfect fluid spacetime in general relativity. The importance
of quasi-Einstein spacetimes lies in the fact that 4-dimensional semi-Riemannian
manifolds are related to study of general relativistic fluid spacetimes, where the
unit vector field ¢ is taken as timelike velocity vector field, that is, g(§,&) = —1.
In the recent papers [1], [23], the application of quasi-Einstein spacetime and
generalised quasi-Einstein spacetime in general relativity have been studied.
Many more works have been done in the spacetime of general relativity [2],
[16], [25], [26], [29], [30], [31]. Let (M,,g) be an n-dimensional differentiable
manifold of class C*° with the metric tensor g and the Riemannian connection
V. In 1971 G. P. Pokhariyal and R. S. Mishra ([12]) defined the M-projective
curvature tensor as follows

P(U VYW = R(U, V)W — [S(V, W)U — S(U, W)V

2(n—1)
(2) +9(V,W)QU — g(U,W)QV],

where R and S are the curvature tensor and the Ricci tensor of M,,, respectively.
Such a tensor field P is known as the M-projective curvature tensor. Some
authors studied the properties and applications of this tensor [11], [15], [20] and
[21]. In 2010, S. K. Chaubey and R. H. Ojha investigated the M-projective
curvature tensor of a Kenmotsu manifold [24]. The concept of perfect fluid
spacetime arose while discussing the structure of this universe. Perfect fluids are
often used in the general relativity to model the idealised distribution of matter,
such as the interior of a star or isotropic pressure. The energy-momentum tensor
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T of a perfect fluid spacetime is given by the following equation
(3) T(U,V) =pg(U,V) + (o +p) AU)A(V),

where o is the energy-density and p is the isotropic pressure, A is defined earlier
and the unit vector field £ is timelike, i.e. g(§,&) = —1. Einstein field equation
with cosmological constant([7]) is given by

(4) S(U,V) - gg(U, V) 4 Ag(U, V) = KT(U, V),

where, S is the Ricci tensor, 7 is the scalar curvature of the spacetime while A,
k are the cosmological constant and the gravitational constant respectively. It’s
used to describe the dark energy of this universe in modern cosmology, which is
responsible for the possible acceleration of this universe. The equations (3) and
(4) together give

(5) S(UV) = (5 = A+ pR)g(U, V) + k(o + p) AU)A(V).

Comparing to the equation (1) we can say the tensor of the equation (5) repre-
sents the tensor of a quasi-Einstein manifold. The k-nullity distribution N (k)
of a Riemannian manifold M is defined by

N(k):p— Ny(k) =
(6) (W eT,(M): RU,V)W = klg(V, W)U — g(U,W)V]},

for all U,V € T, M, where k is a smooth function. For a quasi-Einstein manifold
M, if the generator £ belongs to some N(k), then M is said to be N(k)-quasi-
Einstein manifold [19] . Ozgiir and Tripathi proved that for an n-dimensional
N (k)-quasi Einstein manifold [9], k = L2 where [ and m are the respec-
tive scalar functions and n is the dimension of the manifold. In this paper
we have first derived some theorems on M-projectively flat spacetimes. After
that we have introduced the concept of Ricci semi-symmetric spacetime with
vanishing M-projective curvature tensor. Lastly we introduced the concept of
torse-forming vector field in this spacetime and derived some theorems on it,
thereby finding the curvature of the spacetime and finding the square of the
length of the Ricci tensor for this spacetime with torse-forming vector field.

2. Preliminaries

Consider a quasi-Einstein spacetime with associated scalars [, m and associated
1-form A. Then by (1), we have

(7) r =4l —m,

where r is a scalar curvature of the spacetime. If £ is a unit timelike vector field,
then g(§,&) = —1. Again from the equation (1), we have

(8) 5,8 =m—1,
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For all vector fields U and V we have the following equation,
9) 9(QU,V) =S, V),

where @ is the symmetric endomorphism of the tangent space at each point of
the manifold corresponding to the Ricci tensor S. From the equation (5) and
(9) we can get

(10) QU = (% A+ pk)U + k(o + p)A(D)E.

If the unit timelike vector field £ is a torse-forming vector field ([5], [6]) then it
satisfies the following equation,

(11) Vo =U+AU).
In [28] Venkatesha and H. A. Kumara proved that:

Theorem 2.1. On a perfect fluid spacetime with torse-forming vector field &,
the following relation holds

(12) (VuA)(V) = g(U, V) + A(U)A(V).

Considering a frame field and taking a contraction over U and V from the
equation (5) we get,

(13) 7 =4\ + k(o — 3p).

3. M-projectively flat quasi-Einstein spacetime

In this section we consider a quasi-Einstein spacetime with vanishing M-projective
curvature tensor. If a spacetime with dimension n = 4 is M-projectively flat
then from the equation (2) we have

(14) R(U,V)W = %[S(V, WU — S(U, W)V + g(V, W)QU — g(U,W)QV].

Using the equation (9) in the equation (1) we get
(15) QU =1U + mA(U)E.

Using the equations (1), (15) and taking the inner product with 7" from (14) we
get

R(UV,W.T) = L[g(V,W)g(U.T) — g(U, W)g(V,T)

Sw

+ 59U T)AWV)AW) + g(V,W)AU)A(T)
(16) —g(V,T)A(U)AW) — g(U, W)A(V)A(T)].
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Now, taking

(17) Dwmwwﬁmuw+;%mwmw,

from the equation (16) we have

(18) R(U,V,W,T) = D(V,W)D(U,T) — D(U,W)D(V,T).

It is known that an n-dimensional Riemannian or semi-Riemannian manifold
whose curvature tensor R of type (0,4) satisfies the condition (18), is called a
special manifold with the associated symmetric tensor D and is denoted by the
symbol ¥(D),,, where D is a symmetric tensor field of type (0, 2). Recently, these
types of manifolds are studied in [10] and [27]. With the use of the equations
(17) and (18) we can state the following theorem:

Theorem 3.1. An M -projectively flat quasi-FEinstein spacetime is (D)4, where
D is the associated symmetric tensor field.

In [8], B.Y. Chen and K. Yano introduced the concept of quasi-constant
curvature. A manifold is said to be a manifold of quasi-constant curvature if it
satisfies the following condition

R(U,V,W,T) = plg(V,W)g(U,T) — g(U,W)g(V,T)]
+ alg(U, T)n(V)n(W) — g(V, T)n(U)n(W)
(19) +9(V.W)n(U)n(T) — g(U,W)n(Vn(T)],
where R is the scalar curvature of type (0, 4), p and ¢ are scalar functions

while g(U,v) = n(U), v is the unit vector field, n is the respective 1-form and
g(v,v) = 1. Thus, in the view of (16) and (19) we state the following theorem:

Theorem 3.2. A spacetime with vanishing M -projective curvature tensor is a
spacetime of quasi-constant curvature.

Now, let us consider the space £+ = {X : g(X,£) =0,V X € x(M)}. Let U,
V, W € &4, then the equation (16) will imply
l
(20) R, V)W = S[g(V, W)U — g(U, W)V

So, we can state the following theorem:

Theorem 3.3. An M -projectively flat quasi-Einstein spacetime becomes an
N(%)—quasi Einstein spacetime provided U, V., W € &+, € is a unit timelike
vector field and | is a non-zero real-valued scalar function.

We also derive the following corollary:
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Corollary 3.1. An M -projectively flat quasi-Einstein spacetime satisfies the
following results,

m — 21
6
m — 21
6

() R(U, &V = g(U, V)¢,

(i) R(U, §)§ =

Ua
(21)

where U, V € &+, € is a unit timelike vector field and 1, m are two non-zero
real-valued scalar functions.

Lorentzian manifolds are extremely important in applications to general rel-
ativity. Lorentzian manifolds are of signature (3,1) or, equivalently, (1,3). A
Lorentzian manifold is called infinitesimally spatially isotropic ([13]) relative to
a unit timelike vector field £ if its curvature tensor R satisfies the relation

(22) R(X,Y)Z = alg(Y, 2)X — g(X, Z)Y],

for all X, Y, Z € ¢- and R(X,€)¢ = BX for all X € ¢4, o and B are two non-
zero real-valued functions. From the equation (20) and the result (iz) of corollary
(14) it is obvious that the manifold is infinitesimally spatially isotropic. Thus,
we can state the following theorem:

Theorem 3.4. An M -projectively flat quasi-Einstein spacetime is infinitesi-
mally spatially isotropic relative to the unit timelike vector field &.

4. M-projectively flat Ricci semi-symmetric quasi-Einstein spacetime

In this section we consider a quasi-Einstein spacetime which is Ricci semi-
symmetric. An n-dimensional semi-Riemannian manifold is said to be Ricci

semi-symmetric if the tensor R.S and the Tachibana tensor (g, S) are linearly
dependent, i.e.,

(23) R(U,V) - S(W,T) = FsQ(g,8)(W,T;U,V)

holds on Ug where Us = {x € M : S # ~g at x} and Fy is a scalar function on
Us. Now, we know that

(24) RWU,V)-S(W,T)=-S(RU, V)W, T) - S(W,R(U,V)T),
using the equation (23) we have

(25) FsQ(g,S)(W,T;U,V) = —=S(R(U,V)W,T) — S(W, R(U,V)T).
We also know that

(26) (U N VIW = g(V, W)U — g(U, W)V.
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Now, if it is a Ricci semi-symmetric quasi-Einstein spacetime then using the
equations (24), (25) and (26) we get

S(R(U, V)W, T) + S(W, R(U,V)T) = Fs[g(V,W)S(U,T) — g(U,W)S(V, T)
(27) +g(V.T)S(W,U) — g(U, T)S(V,W)].

Since we know R(U,V,W,T) = —R(U,V, T, W), thus using the equation (1) in
the equation (27) we obtain
AR(U,VYW)A(T) + AW)A(R(U,V)T)
= Fs[g(V,W)A(U)A(T) — g(UW)A(V)A(T)
(28) +9(V,T)AW)AU) — g(U,T)A(V)A(W)],
putting 7" = ¢ in the equation (28) and applying the result g(R(U, V)¢, §) =
9(R(§,§)U, V) we get,
(29) AR(U, V)W) = Fs[g(V,W)A(U) — g(U,W)A(V)],
applying the equation (16) from (29) we get,

20— m
6

So, if g(V,W)A(U) — g(U,W)A(V') # 0 then

(30) (Fs — Ng(V,W)AU) — g(U,W)A(V)] = 0.

_2l—m

(31) FS 6 )

thus using the equations (29) and (31) we get,

(32) R, V)W = =™

[g(V, W)U — g(U,W)V],

from the equations (6) and (32) we observe that the spacetime becomes an
N(Ql%m)—quasi Einstein spacetime provided g(V,W)A(U) — g(U,W)A(V') # 0.
This leads us to the next theorem:

Theorem 4.1. An M -projectively flat Ricci semi-symmetric quasi- Finstein space-
time with g(V,W)A(U)—g(U,W)A(V) # 0 is an N(ﬂ%m)—quasi FEinstein space-
time, where | and m are two non-zero real valued scalar functions.

5. M-projectively flat perfect fluid spacetime with torse-forming
vector field

If a manifold is M-projectively flat then using the divergence V to both the
sides of the equation (14) we get

(33) (VuS)(V,W) = (Vv S)(U, W) =0,
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using the equation (9) we get,
(34) 9((VuQ)V = (VyQ)U, W) = 0.

From the equation (13) since we observe 7 is a constant thus using the equation
(10) we get

(35) k(e +p)[(VvA(V)E+ AV)VrE — (Vv A)(U)E - A(U)VvE] =0,
using the equations (11) and (12) we get

(36) k(o +p)g(V, U — g(U,)V] = 0,

since k is the gravitational constant hence k # 0. Thus, g(V, &)U — g(U,£)V #0
implies

(37) o+p=0,

which means either o = p = 0 (empty spacetime) or the perfect fluid satisfies the
vacuum-like equation of state. This allows us to derive the following theorem:

Theorem 5.1. An M -projectively flat perfect fluid spacetime with torse-forming
vector field £ satisfying Finstein field equation with cosmological constant is
either an empty spacetime or satisfies the vacuumlike equation of state, provided

gV, U —g(U,§)V # 0.

Now, 0 + p = 0 means the fluid behaves as a cosmological constant [14].
This is also termed as Phantom Barrier [22]. Now, in cosmology we know such
a choice 0 = —p leads to rapid expansion of the spacetime which is now termed
as inflation [17], [3]. So, we obtain the following theorem:

Theorem 5.2. An M -projectively flat perfect fluid spacetime with torse-forming
vector field & satisfying Finstein field equation with cosmological constant repre-
sents an inflation.

Now, putting o + p = 0 from the equation (5) we get,

(38) SW.V) =+ & (0~ Do V),
thus, the equation (10) becomes
(39) QU:D+§@—pWL

Using the equations (38) and (39) in the equation (14) we get

2A + k(o —p)

(40) mmmwz{ :

} G(V, W)U — g(U. W)V,

Hence, we can state the following theorem:
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Theorem 5.3. An M -Projectively flat perfect fluid spacetime with torse-forming
vector field &, satisfying Einstein field equation with cosmological constant is of
constant curvature %(Ufp).

Consequently we obtain the following theorem as:

Theorem 5.4. An M -projectively flat perfect fluid spacetime with torse-forming
vector field & satisfying Finstein field equation with cosmological constant is an
FEinstein spacetime.

From the equation (40) we easily obtain

(R(U,V)-R)(X,Y,Z,W)=—-R(R(U,V)X,Y, Z,W)
(41) — R(X,R(U V)Y, Z,W)
—R(X,Y,R(U,V)Z,W) - R(X,Y,Z R(U, V)W) =0,

which implies the manifold is semi-symmetric. Hence, we obtain the following
theorem:

Theorem 5.5. An M -projectively flat perfect fluid spacetime with torse-forming
vector field & satisfying Finstein field equation with cosmological constant is a
semi-symmetric spacetime.

Replacing U by QU from the equation (38) we get

(42) S(QUV) =N+ 5 (0~ plo(QU, V).

Using the equation (38)which becomes
k k 9
43)  S@QUV) =+ 5@ =pSUV) =+ (o -p) gl V).

Considering a frame field and taking a contraction over U and V from the
equation (43) we get

k
(44) QI =4\ + (0 —p)I* = 2A + k(o = p)I*.
Hence, we can state the following theorem:
Theorem 5.6. The square of the length of the Ricci tensor of an M -projectively

flat perfect fluid spacetime with torse-forming vector field £ satisfying Finstein

field equation with cosmological constant is [2)\ + k(o — p)]?.

The Ricci identity is given by

(45)  Viypa(X,Y) - Viga(X,Y)=a(RUV)X,Y)+a(X,R(U,V)Y),
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where « is a symmetric (0, 2) tensor. Now, if « is parallel to V then
(46) Va =0,

which further implies

(47) Via =0.

Thus, from the equation (45) we get

(48) a(R(U,V)X,Y) 4+ (X, R(U,V)Y) =0.

Thus, from the equation (40) we get

PR )00 Y) - g0 X)a(v.Y)

(49) +9(V,Y)a(U,X) — g(U,Y)a(V, X)] = 0.

Putting X =Y =V = ¢ in the equation (49) we get,

(50) A PIHOZDhw6) + aw)ate ) =0,
which means either A\ = %(p — o) or
(51) a(U,§) = —A(U)a(§,9).

Now, taking the derivative of (¢, &) with respect to V' and using the equations
(11) and (51) we get

(52) V(a(£,€) =0.

Taking the derivative of the equation (51) with respect to V' and using the
equation (52) we get

(53) V(a(U,§)) = —a(§, )V (9(U, ).

Since « is parallel with respect to V thus using the equation (11) from the
equation (53) we get

(54) a(U,V) = —a(§,§)g(U, V).
Therefore we obtain the following theorem as:

Theorem 5.7. If an M -projectively flat perfect fluid spacetime satisfying Fin-
stein field equation with cosmological constant, with torse-forming vector field &
admits a symmetric (0,2) tensor a parallel to V then either A = %(p —0) or o
s a constant multiple of g.
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