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Abstract. Let H be a Hilbert space and let B(H) be the algebra of all bounded
linear operator on H. We characterise surjective maps ϕ : B(H) → B(H), such that
F (ϕ(A) ⋄ ϕ(B)) = F (A ⋄ B), for all A,B ∈ B(H), where F (A) denotes any of R(A) or
N(A) and A ⋄B denotes any binary operations A∗B, AB∗A for all A,B ∈ B(H).
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1. Introduction and preliminaries

Throughout this note, H will denote a Hilbert space over the complex field C
and B(H) will denote the algebra of all bounded linear operators on H with unit
I. For A ∈ B(H) denoted by R(A) the range of A, N(A) its kernel and A∗ its
adjoint. The hyper-range of A ∈ B(X) is defined by R∞(A) :=

⋂
n∈NR(An).

For any x, f ∈ H, as usual, we denote x⊗ f the rank at most one operator
defined by (x ⊗ f)(y) = f(y)x =< y, f > x, for every y ∈ H. The set of
all rank one operators is denoted by F1(H). Fix an arbitrary orthogonal basis
{ei}i∈Γ of H. For x ∈ H, write x =

∑
i∈Γ λiei, and define the conjugate operator

J : H → H by Jx = x =
∑

i∈Γ λiei.
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The study of maps on operator algebras preserving certain properties is a
topic which attracts much attention of many authors, see for example [3, 6, 7,
9, 10, 12, 13], and the references therein. In this direction, in the last decades, a
great activity has occurred in characterising maps preserving a certain property
of the product or triple product (see [1, 2, 4, 6, 11]). In [2], the authors determine
the form of surjective maps on B(H) which satisfies F (ϕ(A) ⋄ϕ(B)) = F (A ⋄B)
for all A,B ∈ B(H) where F (A) denotes any of R(A) or N(A) and A⋄B denotes
any binary operations: the usual product AB and triple product ABA for all
A,B ∈ B(X ). They also cover the main results of [12] by characterizing the maps
that satisfy N(ϕ(A)− ϕ(B)) = N(A−B) (or R(ϕ(A)− ϕ(B)) = R(A−B)).

As a continuation, in this direction, we propose to determine the forms of all
surjective maps ϕ : B(H) → B(H) which satisfy one of the following preserving
properties:

� N(ϕ(A)ϕ(B)∗ϕ(A)) = N(AB∗A);

� N(ϕ(A)∗ϕ(B)) = N(A∗B);

� R(ϕ(A)ϕ(B)∗ϕ(A)) = R(AB∗A);

� R(ϕ(A)∗ϕ(B)) = R(A∗B),

for all A,B ∈ B(H).

2. Preliminaries

In this section, we collect some lemmas that will be used in the proof of our
main results. The first one gives the range and kernel of rank one operators.

Lemma 2.1. Let x, f ∈ H nonzeros vectors. We have

1. R(x⊗ f) = span{x} and N(x⊗ f) = {f}⊥.

2. If f(x) = 1, then N(I −x⊗ f) = R(x⊗ f) = span{x} and R(I −x⊗ f) =
N(x⊗ f) = {f}⊥.

3. If f(x) ̸= 0 then R∞(x⊗ f) = R(x⊗ f) = span{x}.

Proof. See, for example, [8, Lemma 2.1].

The second, quoted from [4], characterizes maps preserving zero skew pro-
ducts of operators in both directions.

Lemma 2.2. Let H be a complex Hilbert space with dim H ≥ 3. Suppose
ϕ : B(H) → B(H) is a surjective map such that

(1) A∗B = 0 ⇔ ϕ(A)∗ϕ(B) = 0 for all A,B ∈ B(H).
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Then, ϕ preserves rank one operators in both directions and ϕ(0) = 0. Moreover,
there exist unitary U ∈ B(H) and a map h : H×H → H such that:

ϕ(x⊗ f) = Ux⊗ h(x, f), for all x, f ∈ H,

or
ϕ(x⊗ f) = UJx⊗ h(x, f), for all x, f ∈ H.

Proof. See, [4, Theorem 2.1].

The following lemma determines the structure of surjective maps preserving
the zero skew triple product of operators.

Lemma 2.3. Let H be a complex Hilbert space with dim H ≥ 3. Suppose that
ϕ : B(H) → B(H) is a surjective map. Then, ϕ satisfies

(2) AB∗A = 0 ⇔ ϕ(A)ϕ(B)∗ϕ(A) = 0, for all A, B ∈ B(H),

if and only if there exist unitary linear or conjugate linear operators U , V on H
and functional h : H → C \ {0} such that ϕ is of one of the forms:

ϕ(A) = h(A)UAV, for all A ∈ B(H),

or
ϕ(A) = h(A)UA∗V, for all A ∈ B(H).

Proof. See, [11, Corollary 3.5].

We end this section by stating and proving the following lemma which will
be used later.

Lemma 2.4. Let A,B ∈ B(H). The following statements are equivalent.

1. N(R∗A) = N(R∗B) for all rank one operators R.

2. R(A∗R) = R(B∗R) for all rank one operators R.

3. A = cB for a nonzero scalar c ∈ C.

Proof. It’s easy to check that (3) implies (1) and (3) implies (2).
1 ⇒ 3): Assume that N(R∗A) = N(R∗B) for all rank one operators R. Let

R = x⊗ f be a rank one operator where x, f ∈ H. By hypothesis we have

N(R∗A) = N(R∗B) ⇐⇒ N((A∗R)∗) = N((B∗R)∗)

⇐⇒ R(A∗R)⊥ = R(B∗R)⊥.

Which implies that span{A∗x}⊥ = span{B∗x}⊥.
Since span{A∗x} and span{B∗x} are closed subspaces, we deduce that

span{A∗x} = span{B∗x}. Therefore, A∗x = cxB
∗x, where cx ∈ C is a scalar

depending to x.
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Now, to complete the proof, it is suffice to show that N(A∗) = N(B∗).
Indeed, suppose that there is g ∈ H such that A∗g = 0 and B∗g ̸= 0. Then,
there is a non zero vector x ∈ H such that < x.B∗g >= 1.

Note that, (x ⊗ g)B(x) = x ⊗ B∗g(x) =< x,B∗g > x = x ̸= 0. Then,
x /∈ N((x⊗g)B). But x ∈ N((x⊗g)A) because (x⊗g)A(x) = (x⊗A∗g)(x) = 0.
Which contradict the hypothesis.

2 ⇒ 3) let x be a non zero vector in H. By hypothesis, we have

R(A∗x⊗ x) = R(B∗x⊗ x).

Which implies that span{A∗x} = span{B∗x}. We can show, by the same
method as above, that N(A∗) = N(B∗). Therefore, A∗ and B∗ are linearly
dependent. Thus, A and B are linearly dependent, as desired.

3. Nonlinear maps preserving the kernel

We begin this section with the following result which characterizes surjective
maps that preserve the kernel of triple skew product of operators.

Theorem 3.1. Let H be a complex Hilbert space with dimension ≥ 3. A sur-
jective map ϕ : B(H) → B(H) satisfies

(3) N(ϕ(A)ϕ(B)∗ϕ(A)) = N(AB∗A), for all A, B ∈ B(H),

if and only if there exist φ : B(H) → K \ {0} and U unitairy operator in B(H)
such that ϕ(A) = φ(A)UA for all A ∈ B(H).

Proof. The necessarily condition is easily verified. Conversely, assume that ϕ
satisfies the equation (3). In particular,

N(ϕ(A)ϕ(B)∗ϕ(A)) = H ⇐⇒ N(AB∗A) = H, for all A, B ∈ B(H).

Then, ϕ satisfies the equation (2). Since ϕ is surjective, by Lemma 2.3, there
exist unitary linear or conjugate linear operators U , V on H and functional
h : H → C \ {0} such that ϕ is of one of the forms:

(4) ϕ(A) = h(A)UAV, for all A ∈ B(H),

or

(5) ϕ(A) = h(A)UA∗V, for all A ∈ B(H).

We shall show that ϕ can not take the form (5). Assume for the sak of con-
tradiction that ϕ takes a such form, and let us first show that V is a scalar
operator. It suffices to prove that V ∗ is a scalar operator. To do that, assume,
on the contrary, that there exists a non zero vector x ∈ H such that V ∗x and
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x are linearly independent. We could find f ∈ N such that < x, f >= 1 and
< V ∗x.f >= 0. For any B ∈ B(H), we have ϕ(I) = h(I)UV . Then

(6) N(B∗) = N(ϕ(I)ϕ(B∗)∗ϕ(I)) = N(UBV ), for all B ∈ B(H).

According to the lemma 2.1 and applying (6) to B = I − x⊗ f , we obtain

span{f} = N((I − x⊗ f)∗)

= N(U(I − x⊗ f)V )

= N(UV − Ux⊗ V ∗f)

= N(I − V ∗x⊗ V ∗f)

Since < V ∗f.V ∗x >=< f.x >= 1, then by Lemma 2.1, span{f} = span{V ∗x}.
Therefore, f = λV ∗x, for some non zero λ ∈ H.

This shows that < V ∗x.f >= λ ∥ f ∥2 ̸= 0, which is a contradiction. Hence,
V is a scalar operator and ϕ(A) = φ(A)UA, where φ is a scalar function B(H) →
K∗. Since U is injective, (6) becomes

(7) N(B∗) = N(B), for all B ∈ B(H).

On the other hand, we can find z1, z2 ∈ H such that z1, z2 are linearly
independent and < z1, z2 >= 1. Applying (7) to B = I − z1 ⊗ z2 we obtain

span{z1} = N(I − z1 ⊗ z2)

= N((I − z1 ⊗ z2)
∗) = N(I − z2 ⊗ z1)

= span{z2}.

This contadiction shows that ϕ takes the formes (4).

Now, let x, f ∈ H such that < x, f >= 1. For B = I − x⊗ f , from (3) and
Lemma 2.1, we have

span{f} = N((I − x⊗ f)∗)

= N(B∗) = N(UB∗V )

= N(U(I − f ⊗ x)V )

= N(UV − Uf ⊗ V ∗x)

= N(UV (I − V ∗f ⊗ V ∗x))

= N((I − V ∗f ⊗ V ∗x))

= span{V ∗f}.

Therefore, V ∗ is a scalar operator and V is also. Which proves that ϕ(A) =
φ(A)UA, for all A ∈ B(H), with φ : B(H) → K∗ is a scalar function. This
completes the proof.
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The following theorem characterizes surjective maps that preserve the kernel
of skew product of operators.

Theorem 3.2. Let H be a complex Hilbert space with dimension ≥ 3. A sur-
jective map ϕ : B(H) → B(H) satisfies

(8) N(ϕ(A)∗ϕ(B)) = N(A∗B), for all A, B ∈ B(H),

if and only if there exists c ∈ K \ {0} and and unitary U ∈ B(H) such that

(9) ϕ(A) = cUA, ∀A ∈ B(H).

Proof. The ”if” part is easily verified. We, therefore, will only deal with the
”only if” part. So, assume that ϕ is a surjective map from B(H) into B(H)
satisfying (8). In particular,

N(ϕ(A)∗ϕ(B)) = H ⇐⇒ N(A∗B) = H, for all A, B ∈ B(H).

This entails that ϕ satisfies the equation (1). since ϕ is surjective, by Lemma 2.2,
there exist unitary operator U ∈ B(H) and a map h : H×H → H such that:

(10) ϕ(x⊗ f) = Ux⊗ h(x, f), for all x, f ∈ H,

or

(11) ϕ(x⊗ f) = UJx⊗ h(x, f), for all x, f ∈ H.

Let f, x ∈ H and put g = h(x, f). If (10) holds, then

{f}⊥ = N((x⊗ f)∗(x⊗ f))

= N((ϕ(x⊗ f))∗(ϕ(x⊗ f)))

= N((Ux⊗ g)∗(Ux⊗ g))

= {g}⊥.

So, there exists λ ∈ H such that g = λf .
If (11) holds, with no extra effort, we get the same result. Therefore, for

every R ∈ F1 we obtain

(12) ϕ(R) = λV R,

or

(13) ϕ(R) = λV JR.

Let A ∈ B(H) and R ∈ F1. If (12) holds, then

N(R∗A) = N(ϕ(R)∗ϕ(A)) = N(R∗V ∗ϕ(A)).
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Therefore, by Lemma 2.4, there exists non zero scalar c ∈ H such that ϕ(A) =
cV A or

N(R∗A) = N(ϕ(R)∗ϕ(A)) = N(R∗J∗V ∗ϕ(A)).

Then, ϕ(A) = cV JA, for some non zero scalar c ∈ H.
Now, assume that V is unitary. Take an orthonormal basis {ei}i∈Γ of H and

define the conjugate operator J : H → H by Jx = x =
∑

i∈Γ λiei. Then, J is
conjugate unitary. Let U = V J then U is unitary (see, [5, Claim 3 in Theorem
5.1]). We conclude that ϕ(A) = cUA, for all A ∈ B(H) with U is unitary, the
proof is complete.

4. Nonlinear maps preserving the range

The first theorem in this section characterizes surjective maps that preserve the
Range of triple skew product of operators.

Theorem 4.1. Let H be a real or complex Hilbert space of dimension ≥ 3. A
surjective map ϕ : B(H) → B(H) satisfies

(14) R(ϕ(A)ϕ(B)∗ϕ(A)) = R(AB∗A), for all A, B ∈ B(H),

if and only if there exists φ : B(H) → K \ {0} and V unitairy in B(H) such that
ϕ(A) = φ(A)AV , for all A ∈ B(H).

Proof. The necessary condition is easily verified since the operator V is surjec-
tive. Conversely, assume that ϕ is a surjective map satisfying (14). Then

R(ϕ(A)ϕ(B)∗ϕ(A)) = H ⇐⇒ R(AB∗A) = H, for all A, B ∈ B(H).

Which shows that ϕ satisfying the equation (1). It follows, by Lemma 2.3, that
there exist unitary linear or conjugate linear operators U , V on H and functional
h : H → C \ {0} such that ϕ is of one of the forms:

(15) ϕ(A) = h(A)UAV, for all A ∈ B(H),

or

(16) ϕ(A) = h(A)UA∗V, for all A ∈ B(H).

Similarly to the proof of Theorem 2.1, let us first show that ϕ can not take the
second form. Assume, to the contrary, that ϕ takes a such form. Let x be a non
zero vector in H. By (14) and Lemma 2.3, we have

span{x} = R((x⊗ x)∗)

= R(U(x⊗ x)U∗UV )

= R(Ux⊗ x)U∗)

= R(Ux⊗ Ux)

= span{Ux}.
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Which proves that U is a scalar operator. Thus,

ϕ(A) = h(A)A∗V, for all A ∈ B(H).

In particular, for A = x⊗ y where x and y are linearly independent, we obtain

span{y} = R(B∗) = R(ϕ(I)ϕ(B)∗ϕ(I)) = R(BV ) = R(B) = span{x},

which is a contradiction. We conclude that ϕ takes the form (15).
To finish the proof, it remains to show that U is a scalar operator. Indeed,

for any nonzero vector x ∈ H we have

span{x} = R((x⊗ x)∗)

= R(ϕ(I)ϕ((x⊗ x))∗ϕ(I))

= R(U(x⊗ x)∗V )

= R(Ux⊗ x)

= span{Ux}.

This proves that Ux and x are linearly dependent, for all x ∈ H. Therefore,
there is a non zero scalar C such that U = cI. The proof is complete.

By replacing the range of operator by the hyper-range of operator in the
previous theorem we get the following result.

Theorem 4.2. Let H be a real or complex Hilbert space of dimension ≥ 3.
A surjective map ϕ : B(H) → B(H) satisfies

(17) R∞(ϕ(A)ϕ(B)∗ϕ(A)) = R∞(AB∗A), for all A, B ∈ B(H),

if and only if, there exists φ : B(H) → K \ {0} and V unitary in B(H) such that
ϕ(A) = φ(A)AV , for all A ∈ B(H).

We end this paper by the following result which characterizes surjective maps
that preserve the Range of skew product of operators.

Theorem 4.3. Let H be a complex Hilbert space of dimension ≥ 3. A surjective
map ϕ : B(H) → B(H) satisfies

(18) R(ϕ(A)∗ϕ(B)) = R(A∗B), for all A, B ∈ B(H),

if and only if there exists c ∈ K \ {0} and and unitary U ∈ B(H) such that

(19) ϕ(A) = cUA, for all A ∈ B(H).

Proof. The necessarily condition is easily verified since the operators U is sur-
jective. Conversely, assume that ϕ is a surjective additive map from B(H) into
B(H) satisfying (18). In particular,

R(ϕ(A)∗ϕ(B)) = {0} ⇐⇒ R(A∗B) = {0}, for all A, B ∈ B(H).
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This implies that ϕ satisfies the equation (1). By following the same approach
of the proof of Theorem 3.2, we obtain

ϕ(R) = λUR or ϕ(R) = λUJR, for every R ∈ F1.

By the same reasoning and by applying Lemma 2.4, the map ϕ has the desired
form.
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