Subspace diskcyclic tuples of operators on Banach spaces

Nareen Bamerni

Department of Mathematics University of Duhok Kurdistan Region Iraq nareen_bamerni@yahoo.com

Abstract. In this paper, we study subspace diskcyclic and subspace-disk transitive tuples of operators. We give some characterizations of these tuples. Also, we give a set of sufficient conditions for a tuple to be subspace-diskcyclic. We find a relation between the subspace-diskcyclicity of a tuple of operators and the tuple of the direct sum of those operators. Finally, we show that if a tuple of operators is subspace-diskcyclic, then not every operator in the tuple has to be subspace-diskcyclic.

Keywords: subspace-diskcyclic operators, tuple of operators.

1. Introduction

A bounded linear operator T on a separable Banach space X is hypercyclic if there is a vector $x \in X$ such that $Orb(T, x) = \{T^n x : n \ge 0\}$ is dense in X, such a vector x is called hypercyclic for T. The first example of a hypercyclic operator on a Banach space was constructed by Rolewicz in [12]. He showed that if B is the backward shift on $\ell^p(\mathbb{N})$ then λB is hypercyclic if and only if $|\lambda| > 1$.

In 1974, Hilden and Wallen [6] defined the supercyclicity concept. An operator T is called supercyclic if there is a vector x such that the scaled orbit $\mathbb{C}Orb(T, x)$ is dense in X. The notion of a diskcyclic operator was introduced by Zeana [17]. An operator T is called diskcyclic if there is a vector $x \in X$ such that the disk orbit $\mathbb{D}Orb(T, x) = \{\alpha T^n x : \alpha \in \mathbb{C}, |\alpha| \leq 1, n \in \mathbb{N}\}$ is dense in X, such a vector x is called diskcyclic for T. For more information about diskcyclic operators, the reader may refer to [3] [1] [17].

In 2011, Madore and Martínez-Avendaño [9] considered the density of the orbit in a non-trivial subspace instead of the whole space, this phenomenon is called the subspace-hypercyclicity. An operator is called \mathcal{M} -hypercyclic or subspace-hypercyclic for a subspace \mathcal{M} of X if there exists a vector such that the intersection of its orbit and \mathcal{M} is dense in \mathcal{M} . For more information on subspace-hypercyclicity, one may refer to [7], [8] and [11].

In [14] Xian-Feng et al. defined the subspace-supercyclic operator as follows: An operator is called \mathcal{M} -supercyclic or subspace-supercyclic for a subspace \mathcal{M} of X if there exists a vector such that the intersection of its scaled orbit and \mathcal{M} is dense in \mathcal{M} .

Also, Bamerni and Kılıçman [15] introduced the subspace-diskcyclicity concept in a Banach space X that is the disk orbit of an operator T is dense in a subspace of X.

Let $\mathcal{T} = (T_1, \ldots, T_n)$ be a commuting *n*-tuple of continuous linear operators on a Banach space X and $\mathcal{F} = \left\{T_1^{k_1}T_2^{k_2}\ldots T_n^{k_n}: k_i \geq 0, 1 \leq i \leq n\right\}$ be the semigroup generated by \mathcal{T} , then \mathcal{T} is called hypercyclic if there is $x \in X$ such that $Orb(\mathcal{T}, x) = \{Tx : T \in \mathcal{F}\}$ is dense in X ([5]).

A tuple \mathcal{T} is supercyclic if there exists $x \in X$ such that $\mathbb{C}Orb(\mathcal{T}, x) = \{\alpha Tx : T \in \mathcal{F}, \alpha \in \mathbb{C}\}$ is dense in X ([13]).

For subspaces, Moosapoor [10] defined subspace-hypercyclic tuples of operators as follows: A tuple \mathcal{T} is subspace-hypercyclic for a subspace \mathcal{M} if there exists a vector $x \in X$ such that $Orb(\mathcal{T}, x) \cap \mathcal{M}$ is dense in \mathcal{M} . By the same way, a tuple \mathcal{T} is subspace-suercyclic for a subspace \mathcal{M} if there exists a vector $x \in X$ such that $COrb(\mathcal{T}, x) \cap \mathcal{M}$ is dense in \mathcal{M} ([16]).

Both subspace-hypercyclic and subspace-suercyclic tuples were studied in details; therefore, in this paper, we study some properties of subspace-diskcyclic tuples. In particular, we give an equivalent assertion to subspace-diskcyclic tuple which is called subspace-disk transitive tuple. Also, we give some sufficient conditions for a tuple to be subspace-diskcyclic which we call subspace-diskcyclic tuple criterion. We find a relation between the subspace-diskcyclicity of a tuple of operators and the tuple of the direct sum of those operators. Finally, we show that if a tuple of operators is subspace-diskcyclic, then not every operator in the tuple has to be subspace-diskcyclic.

2. Main results

In this section, we characterize the equivalent conditions for a tuple of operators to be subspace-disk transitive. We provide some sufficient conditions for a tuple to be subspace-diskcyclic which is called subspace-diskcyclic tuple criterion. Also, we study the diskcyclicity of tuples of direct sum of operators.

In what follows, we let $\mathbb{U} = \{ \alpha \in \mathbb{C} : |\alpha| < 1 \}$ and $\mathbb{D}C(\mathcal{T}, \mathcal{M})$ be the set of all \mathcal{M} -diskcyclic vectors for the tuple \mathcal{T} , that is

$$\mathbb{D}C(\mathcal{T},\mathcal{M}) = \{ x \in X : \mathbb{D}Orb(\mathcal{T},x) \cap \mathcal{M} \text{ is dense in } \mathcal{M} \}.$$

Definition 2.1. If $\mathcal{T} = (T_1, \ldots, T_n)$ is a tuple on a Banach space $X, \mathcal{F} = \{T_1^{k_1}T_2^{k_2}\ldots T_n^{k_n}: k_i \geq 0, 1 \leq i \leq n\}$ and \mathcal{M} be a closed subspace of X then the tuple \mathcal{T} is called subspace-diskcyclic for \mathcal{M} (or \mathcal{M} -diskcyclic) if there exists a vector $x \in X$ such that

$$\mathbb{D}Orb(\mathcal{T}, x) \cap \mathcal{M} = \{\alpha Tx : T \in \mathcal{F}, \alpha \in \mathbb{D}\} \cap \mathcal{M}$$

is dense in \mathcal{M} .

It is clear from the above definition, that every subspace-hypercyclic tuple is subspace-diskcyclic which in turn is subspace-supercyclic.

Definition 2.2. If $\mathcal{T} = (T_1, \ldots, T_n)$ is a tuple on a Banach space $X, \mathcal{F} = \{T_1^{k_1}T_2^{k_2}\ldots T_n^{k_n}: k_i \geq 0, 1 \leq i \leq n\}$ and \mathcal{M} be a closed subspace of X then the tuple \mathcal{T} is called subspace-disk transitive (or \mathcal{M} -disk transitive) if for any two nonempty sets U and V in \mathcal{M} , there exists $\alpha \in \mathbb{U}$ and some positive integers $k_i, 1 \leq i \leq n$ such that $T_n^{-k_n}T_{n-1}^{-k_{n-1}}\ldots T_1^{-k_1}(\alpha U) \cap V$ contains a relatively open nonempty subset G of \mathcal{M} .

We give the following example of a subspace-diskcyclic tuple.

Example 2.1. Suppose that T is a diskcyclic operator on a Banach space X and I is the identity operator. Then, it is easy to show that the tuple $\mathcal{T} = (T \oplus I, I \oplus T)$ is both \mathcal{M} -diskcyclic and \mathcal{N} -diskcyclic where $\mathcal{M} = X \oplus \{0\}$ and $\mathcal{N} = \{0\} \oplus X$ since both $T \oplus I$ and $I \oplus T$ are subspace-diskcyclic operators [15, Example 2.2.].

The following example shows that not every subspace-diskcyclic tuples is diskcyclic.

Example 2.2. Let $\mathcal{T} = (\alpha B \oplus I, \beta B \oplus I)$ be a 2-tuple where α, β are complex numbers with modulus greater than 1, I is the identity operator and B is the backward shift on the sequence space $\ell^2(\mathbb{N})$. Since αB is diskcyclic [3] then it has a diskcyclic vector, say x. Therefore, the tuple \mathcal{T} has an \mathcal{M} -diskcyclic vector (x, 0) for the subspace $\mathcal{M} = \ell^2(\mathbb{N}) \oplus \{0\}$. However, the tuple \mathcal{T} is not diskcyclic since $\alpha B \oplus I$ is not diskcyclic operator.

The following proposition gives an equivalent assertion to subspace- disk transitive tuple.

Proposition 2.1. Let M be a subspace of a Banach space X and $\mathcal{T} = (T_1, T_2, \ldots, T_n)$ be a tuple of operators. Then, the following statements are equivalent.

- 1. The tuple \mathcal{T} is \mathcal{M} -disk transitive,
- 2. For any two relatively open subsets U and V of \mathcal{M} there exist $\alpha \in \mathbb{U}^C$ and some positive integers k_i , $1 \leq i \leq n$ such that $T_n^{-k_n} T_{n-1}^{-k_{n-1}} \dots T_1^{-k_1}(\alpha U) \cap$ $V \neq \phi$ and $T_1^{k_1} T_2^{k_2} \dots T_n^{k_n}(\mathcal{M}) \subset \mathcal{M}$.
- 3. For any two relatively open subsets U and V of \mathcal{M} there exists $\alpha \in \mathbb{U}^C$ and some positive integers k_i , $1 \leq i \leq n$ such that $T_n^{-k_n} T_{n-1}^{-k_{n-1}} \dots T_1^{-k_1}(\alpha U) \cap$ V is non-empty open set in \mathcal{M} .

Proof. (1) \Rightarrow (2): Let U and V be two relatively open subsets of \mathcal{M} . By the statement (1), there exist $\alpha \in \mathbb{U}^C$, some positive integers k_i , $1 \leq i \leq n$ and an open set G in \mathcal{M} such that $G \subset T_n^{-k_n} T_{n-1}^{-k_{n-1}} \dots T_1^{-k_1}(\alpha U) \cap V$. It follows that

(1)
$$T_n^{-k_n} T_{n-1}^{-k_{n-1}} \dots T_1^{-k_1}(\alpha U) \cap V \neq \phi.$$

Since $G \subset T_n^{-k_n}T_{n-1}^{-k_{n-1}} \dots T_1^{-k_1}(\alpha U)$, it follows that $\frac{1}{\alpha}T_1^{k_1}T_2^{k_2} \dots T_n^{k_n}(G) \subset U \subset \mathcal{M}$. Let $x \in \mathcal{M}$ and $x_0 \in G$. Then, there exists $r \in \mathbb{N}$ such that $(x_0 + rx) \in G$. Then, we get

$$\frac{1}{\alpha}T_1^{k_1}T_2^{k_2}\dots T_n^{k_n}x_0 + \frac{1}{\alpha}T_1^{k_1}T_2^{k_2}\dots T_n^{k_n}rx = \frac{1}{\alpha}T_1^{k_1}T_2^{k_2}\dots T_n^{k_n}(x_0 + rx)$$
$$\in \frac{1}{\alpha}T_1^{k_1}T_2^{k_2}\dots T_n^{k_n}(G) \subset \mathcal{M}.$$

Since $x_0 \in G$ then $\frac{1}{\alpha}T_1^{k_1}T_2^{k_2}\ldots T_n^{k_n}x_0 \in \frac{1}{\alpha}T_1^{k_1}T_2^{k_2}\ldots T_n^{k_n}(G) \subset \mathcal{M}$, it follows that $\frac{r}{\alpha}T_1^{k_1}T_2^{k_2}\ldots T_n^{k_n}x \in \mathcal{M}$ and so $T_1^{k_1}T_2^{k_2}\ldots T_n^{k_n}x \subset \mathcal{M}$, i.e,

(2)
$$T_1^{k_1}T_2^{k_2}\dots T_n^{k_n}(\mathcal{M}) \subset \mathcal{M}$$

The proof follows by (1) and (2).

(2) \Rightarrow (3): The restriction function $T_1^{k_1}T_2^{k_2}\ldots T_n^{k_n}|_{\mathcal{M}} \in \mathcal{B}(\mathcal{M})$, then $T_n^{-k_n}T_{n-1}^{-k_n}\ldots T_1^{-k_1}(\alpha U)\cap \mathcal{M}$ is open in \mathcal{M} for any open set U of \mathcal{M} . Since $V \subset \mathcal{M}$ is open, it follows that $T_1^{-k_1}T_2^{-k_2}\ldots T_n^{-k_n}(\alpha U)\cap V$ is an open set in \mathcal{M} .

 $(3) \Rightarrow (1)$ is trivial.

The next theorem shows that every subspace-disk transitive tuple is subspacediskcyclic for the same subspace. First, we need the following lemma.

Lemma 2.1. Let $\mathcal{T} = (T_1, T_2, \dots, T_n)$ be \mathcal{M} -diskcyclic tuple. Then, there exists $k_j \in \mathbb{N}, 1 \leq j \leq n$ such that

$$\mathbb{D}C(\mathcal{T},\mathcal{M}) = \bigcap_{i \in \mathbb{N}} \big(\bigcup_{\alpha \in \mathbb{U}^C} T_n^{-k_n} T_{n-1}^{-k_{n-1}} \dots T_1^{-k_1}(\alpha B_i) \big).$$

where $\{B_i : i \in \mathbb{N}\}$ is a countable open basis for the relative topology of a subspace \mathcal{M} .

Proof. We have $x \in \mathbb{D}C(\mathcal{T}, \mathcal{M})$ if and only if

$$\mathbb{D}Orb(\mathcal{T}, x) \cap \mathcal{M} = \{\alpha T x : T \in \mathcal{F}, \alpha \in \mathbb{D}\} \cap \mathcal{M}$$

is dense in \mathcal{M} if and only if for each i > 0, there exist $\alpha \in \mathbb{D} \setminus \{0\}$ and $k_j \in \mathbb{N}$, $1 \leq j \leq n$ such that $\alpha T_1^{k_1} T_2^{k_2} \dots T_n^{k_n x} \in B_i$ if and only if

$$x \in \bigcap_{i \in \mathbb{N}} \left(\bigcup_{\alpha \in \mathbb{U}^C} T_n^{-k_n} T_{n-1}^{-k_{n-1}} \dots T_1^{-k_1} (\alpha B_i) \right).$$

Theorem 2.1. Let \mathcal{M} be a subspace of a Banach space X and $\mathcal{T}=(T_1, T_2, \ldots, T_n)$ be a tuple of operators. Suppose that \mathcal{T} is \mathcal{M} -disk transitive tuple. Then,

$$\bigcap_{i\in\mathbb{N}} \left(\bigcup_{\alpha\in\mathbb{U}^C} T_n^{-k_n} T_{n-1}^{-k_{n-1}} \dots T_1^{-k_1}(\alpha B_i)\right).$$

is dense in \mathcal{M} .

Proof. Since T is \mathcal{M} -transitive, then by Proposition 2.1, for each $i, j \in \mathbb{N}$, there exist $k_{i,j}^{(r)} \in \mathbb{N}$, $1 \leq r \leq n$ and $\alpha_{i,j} \in \mathbb{U}^C$ such that

$$T_n^{-k_{i,j}^{(n)}} T_{n-1}^{-k_{i,j}^{(n-1)}} \dots T_1^{-k_{i,j}^{(1)}} (\alpha_{i,j} B_i) \cap B_j$$

is nonempty open in \mathcal{M} . Suppose that

$$A_{i} = \bigcup_{j \in \mathbb{N}} \left(T_{n}^{-k_{i,j}^{(n)}} T_{n-1}^{-k_{i,j}^{(n-1)}} \dots T_{1}^{-k_{i,j}^{(1)}} (\alpha_{i,j} B_{i}) \cap B_{j} \right),$$

for all $i \in \mathbb{N}$. Then, A_i is nonempty and open in \mathcal{M} since it is a countable union of open sets in \mathcal{M} . Furthermore, each A_i is dense in \mathcal{M} since it intersects each B_j . By the Baire category theorem, we get

$$\bigcap_{i \in \mathbb{N}} A_i = \bigcap_{i \in \mathbb{N}} \bigcup_{j \in \mathbb{N}} \left(T_n^{-k_{i,j}^{(n)}} T_{n-1}^{-k_{i,j}^{(n-1)}} \dots T_1^{-k_{i,j}^{(1)}} (\alpha_{i,j} B_i) \cap B_j \right)$$

is a dense set in \mathcal{M} . Clearly,

$$\bigcap_{i\in\mathbb{N}}\bigcup_{j\in\mathbb{N}}\left(T_n^{-k_{i,j}^{(n)}}T_{n-1}^{-k_{i,j}^{(n-1)}}\dots T_1^{-k_{i,j}^{(1)}}(\alpha_{i,j}B_i)\cap B_j\right)$$
$$\subset \bigcap_{i\in\mathbb{N}}\left(\bigcup_{\alpha\in\mathbb{U}^C}T_n^{-k_n}T_{n-1}^{-k_{n-1}}\dots T_1^{-k_1}(\alpha B_i)\right)\cap \mathcal{M}.$$

It follows that $\bigcap_{i \in \mathbb{N}} \left(\bigcup_{\alpha \in \mathbb{U}^C} T_n^{-k_n} T_{n-1}^{-k_{n-1}} \dots T_1^{-k_1} (\alpha B_i) \right) \cap \mathcal{M}$ is desne in \mathcal{M} . The proof is completed.

Corollary 2.1. If \mathcal{T} is an \mathcal{M} -disk transitive tuple, then \mathcal{T} is \mathcal{M} -diskcyclic.

Proof. The proof follows by Proposition 2.1 and Theorem 2.1.

Theorem 2.2 (\mathcal{M} -Diskcyclic Tuple Criterion). Let M be a subspace of a Banach space X and $\mathcal{T} = (T_1, T_2, \ldots, T_n)$ be a tuple of operators. Suppose that for each $1 \leq i \leq n$, $\langle r_k^{(i)} \rangle_{k \in \mathbb{N}}$ is an increasing sequence of positive integers and $D_1, D_2 \in \mathcal{M}$ are two dense sets in \mathcal{M} such that

- For every y ∈ D₂, there is a sequence ⟨x_k⟩_{k∈ℕ} in M such that ||x_k|| → 0 and T₁^{r_k⁽¹⁾}T₂^{r_k⁽²⁾}...T_n^{r_k⁽ⁿ⁾}x_k → y as k → ∞,
 ||T₁^{r_k⁽¹⁾}T₂<sup>r_k⁽²⁾</sub>...T_n^{r_k⁽ⁿ⁾}x|||x_k|| → 0, for all x ∈ D₁ as k → ∞,
 </sup>
- 2. $||T_1^{r_k} T_2^{r_k} \dots T_n^{r_k} x|| ||x_k|| \to 0$, for all $x \in D_1$ as $k \to \infty$ 3. $T_1^{r_k^{(1)}} T_2^{r_k^{(2)}} \dots T_n^{r_k^{(n)}} \mathcal{M} \subseteq \mathcal{M}$, for all $k \in \mathbb{N}$.

Then, \mathcal{T} is said to be satisfied \mathcal{M} -diskcyclic criterion, and \mathcal{T} is an \mathcal{M} -diskcyclic tuple.

Proof. Let U_1 and U_2 be two relatively open sets in \mathcal{M} . Then, we can find $x \in D_1 \cap U_1$ and $y \in D_2 \cap U_2$ since both D_1 and D_2 are dense in \mathcal{M} . It follows from the condition (2) that there exists a sequence of non-zero scalars $\langle \lambda_k \rangle_{k \in \mathbb{N}}$ such that $\lambda_k T_1^{r_k^{(1)}} T_2^{r_k^{(2)}} \dots T_n^{r_k^{(n)}} x \to 0$ and $\lambda_k^{-1} x_k \to 0$. Suppose that $\|T_1^{r_k^{(1)}} T_2^{r_k^{(2)}} \dots T_n^{r_k^{(n)}} x\|$ and $\|x_k\|$ are not both zero. Then, we have the following cases:

1. if
$$||T_1^{r_k^{(1)}}T_2^{r_k^{(2)}}\dots T_n^{r_k^{(n)}}x|| = 0$$
, set $\lambda_k = 2^k ||x_k||$.

Then, \mathcal{T} turns to be \mathcal{M} -hypercyclic tuple [4, Theorem 2.4.] and thus \mathcal{M} diskcyclic.

2. if
$$||T_1^{r_k^{(1)}}T_2^{r_k^{(2)}}\dots T_n^{r_k^{(n)}}x|| ||x_k|| \neq 0$$
, set $\lambda_k = ||x_k||^{\frac{1}{2}} ||T_1^{r_k^{(1)}}T_2^{r_k^{(2)}}\dots T_n^{r_k^{(n)}}x||^{-\frac{1}{2}}$,
3. if $||x_k|| = 0$, set $\lambda_k = 2^{-k} ||T_1^{r_k^{(1)}}T_2^{r_k^{(2)}}\dots T_n^{r_k^{(n)}}x||^{-1}$.

For these two cases if $||T_1^{r_k^{(1)}}T_2^{r_k^{(2)}}\dots T_n^{r_k^{(n)}}x|| \to 0$, then \mathcal{T} is \mathcal{M} -hypercyclic tuple and so \mathcal{M} -diskcyclic. Otherwise, it follows easily that $|\lambda_k| \leq 1$, for all $k \in \mathbb{N}$. Set $z = x + \lambda_k^{-1} x_k$ for a large enough k. Since $x \in U_1 \subset \mathcal{M}$ and $\lambda_k^{-1} x_k \in \mathcal{M}$, then $z \in \mathcal{M}$. Since

$$||z - x|| \to 0,$$

it follows that $z \in U_1$.

Now, since

$$\lambda_k T_1^{r_k^{(1)}} T_2^{r_k^{(2)}} \dots T_n^{r_k^{(n)}} z$$

= $\lambda_k T_1^{r_k^{(1)}} T_2^{r_k^{(2)}} \dots T_n^{r_k^{(n)}} x + T_1^{r_k^{(1)}} T_2^{r_k^{(2)}} \dots T_n^{r_k^{(n)}} x_k$

then, by using the condition (3), we get

$$\lambda_k T_1^{r_k^{(1)}} T_2^{r_k^{(2)}} \dots T_n^{r_k^{(n)}} z$$
 and $T_1^{r_k^{(1)}} T_2^{r_k^{(2)}} \dots T_n^{r_k^{(n)}} x_k$

belong to \mathcal{M} and so $\lambda_k T_1^{r_k^{(1)}} T_2^{r_k^{(2)}} \dots T_n^{r_k^{(n)}} x \in \mathcal{M}$. Moreover, since $T_1^{r_k^{(1)}} T_2^{r_k^{(2)}} \dots T_n^{r_k^{(n)}} x_k \to y$ for a large enough k, then

$$\left\|\lambda_k T_1^{r_k^{(1)}} T_2^{r_k^{(2)}} \dots T_n^{r_k^{(n)}} z - y\right\| \to 0.$$

Thus, $\lambda_k T_1^{r_k^{(1)}} T_2^{r_k^{(2)}} \dots T_n^{r_k^{(n)}} z \in U_2$. It follows that there exists $k \in \mathbb{N}$ such that

$$U_1 \cap T_n^{-r_k^{(n)}} T_{n-1}^{-r_k^{(n-1)}} \dots T_1^{-r_k^{(1)}} \left(\lambda_k^{-1} U_2\right) \neq \phi.$$

By Proposition 2.1 and Corollary 2.1, T is an \mathcal{M} -diskcyclic tuple.

The following theorem gives the relation between the subspace-diskcyclicity of a tuple of operators and the tuple of the direct sum of those operators.

Proposition 2.2. Let \mathcal{M} be a subspace of a Banach space X and $\mathcal{T} = (T_1, T_2, \ldots, T_n)$ be a tuple. Then, \mathcal{T} satisfies subspace-diskcyclic criterion if and only if the tuple $\mathcal{S} = (T_1 \oplus T_1, T_2 \oplus T_2, \ldots, T_n \oplus T_n)$ satisfies subspace-diskcyclic criterion.

With out loss of generality, we suppose that $S = (T_1 \oplus T_1, T_2 \oplus T_2)$ and then the general case follows by the same way.

For the "if" part, let \mathcal{M} be a closed subspace of X such that \mathcal{S} satisfies $\mathcal{M} \oplus \mathcal{M}$ -diskcyclic criterion. Let D_1 and D_2 be dense sets in \mathcal{M} then $W = D_1 \oplus D_2$ is dense in $\mathcal{M} \oplus \mathcal{M}$. Let $x \in D_1$ and $y \in D_2$, then $(x, y) \in W$. By hypothesis, there exist two increasing sequence of positive integers $\left\langle r_k^{(i)} \right\rangle_{k \in \mathbb{N}}$ for i = 1, 2 and a sequence $\langle (x_k, y_k) \rangle_{k \in \mathbb{N}}$ in $\mathcal{M} \oplus \mathcal{M}$ such that $||(x_k y_k)|| \to (0, 0)$ and $(T_1 \oplus T_1)^{r_k^{(1)}} (T_2 \oplus T_2)^{r_k^{(2)}} (x_k, y_k) \to (x, y)$ as $k \to \infty$. which means that $(T_1^{r_k^{(1)}} T_2^{r_k^{(2)}} x_k, T_1^{r_k^{(1)}} T_2^{r_k^{(2)}} y_k) \to (x, y)$. It follows that for each $y \in D_2$ there is a sequence $\langle y_k \rangle_{k \in \mathbb{N}} \to 0$ in \mathcal{M} such that

(3)
$$T_1^{r_k^{(1)}} T_2^{r_k^{(2)}} y_k \to y.$$

By hypothesis, we have $||(T_1 \oplus T_1)^{r_k^{(1)}}(T_2 \oplus T_2)^{r_k^{(2)}}(x,y)|| ||(x_k,y_k)|| \to (0,0).$ Then, for all $x \in D_1$ it easy follows that

(4)
$$\left\|T_1^{r_k^{(1)}}T_2^{r_k^{(2)}}x\right\| \|y_k\| \to 0$$

Also, since $(T_1 \oplus T_1)^{r_k^{(1)}} (T_2 \oplus T_2)^{r_k^{(2)}} (\mathcal{M} \oplus \mathcal{M}) \subseteq (\mathcal{M} \oplus \mathcal{M})$, then

(5)
$$T_1^{r_k^{(1)}}T_2^{r_k^{(2)}}(\mathcal{M}) \subseteq \mathcal{M}.$$

From (3), (4) and (5), the tuple $\mathcal{T} = (T_1, T_2)$ satisfies diskcyclic criterion.

For the "only if" part, since $T_1^{r_k^{(1)}}T_2^{r_k^{(2)}}\mathcal{M} \subseteq \mathcal{M}$, for all $k \in \mathbb{N}$, then,

$$T_1^{r_k^{(1)}} T_2^{r_k^{(2)}} \mathcal{M} \oplus T_1^{r_k^{(1)}} T_2^{r_k^{(2)}} \mathcal{M} \subseteq \mathcal{M} \oplus \mathcal{M}$$

So,

$$(T_1 \oplus T_1)^{r_k^{(1)}} (T_2 \oplus T_2)^{r_k^{(2)}} (\mathcal{M} \oplus \mathcal{M}) \subseteq \mathcal{M} \oplus \mathcal{M}.$$

The remainder of the proof follows easily from [13, Corollary 1].

Proposition 2.3. Let \mathcal{M} be a subspace of a Banach space X and $\mathcal{T} = (T_1, T_2, \ldots, T_n)$ be a tuple of operators. If the semigroup \mathcal{F} contains an \mathcal{M} -diskcyclic operator, then \mathcal{T} is \mathcal{M} -diskcyclic tuple.

Proof. Suppose that T is an \mathcal{M} -diskcyclic operator in \mathcal{F} , then

$$\mathcal{M} = \overline{\mathbb{D}Orb(T, x) \cap \mathcal{M}} \subseteq \overline{\mathbb{D}Orb(\mathcal{T}, x) \cap \mathcal{M}} \subseteq \mathcal{M}.$$

It follows that $\mathbb{D}Orb(\mathcal{T}, x) \cap \mathcal{M} = \mathcal{M}$ and so \mathcal{T} is \mathcal{M} -diskcyclic tuple. \Box

The following example gives a tuple of operators which is \mathcal{M} -diskcyclic, however, not every operator in the tuple is \mathcal{M} -diskcyclic.

Example 2.3. Let $T_1, T_2 \in B(\ell^2(\mathbb{Z}))$ be bilateral forward weighted shifts with the weight sequences w_n, k_n respectively, where

$$w_n = \begin{cases} \frac{1}{3} & \text{if } n \ge 0\\ \frac{1}{2} & \text{if } n < 0 \end{cases} \quad \text{and} \quad k_n = \begin{cases} 4 & \text{if } n \ge 0\\ 5 & \text{if } n < 0 \end{cases}$$

and let \mathcal{M} be the subspace of $\ell^2(\mathbb{Z})$ consisting of all sequences with zeroes on the even entries; that is,

$$\mathcal{M} = \left\{ \{a_n\}_{n=-\infty}^{\infty} \in \ell^2(\mathbb{Z}) : a_{2n} = 0, n \in \mathbb{Z} \right\},\$$

then by [2, Theorem 3.6] T_1 is not \mathcal{M} -diskcyclic but T_2 is \mathcal{M} -diskcyclic. However, the tuple $\mathcal{T} = (T_1, T_2)$ is \mathcal{M} -diskcyclic by Proposition 2.3.

3. Conclusion

We studied both subspace-diskcyclic and subspace-disk transitive tuples. We provided some sufficient conditions for a tuple to be subspace-diskcyclic which is called subspace-diskcyclic tuple criterion. Then, we found a relation between the subspace-diskcyclicity of a tuple of operators and the tuple of the direct sum of those operators. By giving an example, we showed that if a tuple is subspace-diskcyclic, then there may be a non-diskcyclic operator in that tuple.

References

- N. Bamerni, A. Kılıçman, Operators with diskcyclic vectors subspaces, Journal of Taibah University for Science, 9 (2015), 414-419.
- [2] N. Bamerni, A. Kılıçman, On subspace-disk transitivity of bilateral weighted shifts, Malaysian Journal of Science, 34 (2015), 208-213.
- [3] N. Bamerni and A. Kılıçman, M.S.M. Noorani, A review of some works in the theory of diskcyclic operators, Bull. Malays. Math. Sci. Soc., 39 (2016), 723-739.
- [4] E. Fathi and B. Yousefi, Subspace cyclicity and hypercyclicity for tuples of operators, Southeast Asian Bulletin of Mathematics, 42 (2018),183-194.
- [5] N. S. Feldman, Hypercyclic tuples of operators and somewhere dense orbits, Journal of Mathematical Analysis and Applications, 346 (2008), 82-98.
- [6] H. Hilden, L. Wallen, Some cyclic and non-cyclic vectors of certain operators, Indiana Univ. Math. J., 23 (1974), 557-565.
- [7] R.R. Jiménez-Munguía, R. A. Martínez-Avendaño, A. Peris, Some questions about subspace hypercyclic operators, J. Math. Anal. Appl., 408 (2013), 209-212.

- [8] C. Le, On subspace-hypercyclic operators, Proc. Amer. Math. Soc., 139 (2011), 2847-2852.
- [9] B.F. Madore, R.A. Martínez-Avendaño, Subspace hypercyclicity, J. Math. Anal. Appl., 393 (2011), 502-511.
- [10] M. Moosapoor, Subspace-hypercyclic tuples of operators, International Journal of Pure and Applied Mathematics, 107 (2016), 17-22.
- [11] H. Rezaei, Notes on subspace-hypercyclic operators, J. Math. Anal. Appl., 397 (2013), 428-433.
- [12] S. Rolewicz, On orbits of elements, Stud. Math., 32 (1969), 17-22.
- [13] R. Soltani, K. Hedayatian and B. K. Robati, On supercyclicity of tuples of operators, Bulletin of the Malaysian Mathematical Sciences Society, 38 (2015), 1507-1516.
- [14] Z. Xian-Feng, S. Yong-Lu, Z. Yun-Hua, Subspace-supercyclicity and common subspace-supercyclic vectors, Journal of East China Normal University., 1 (2012), 106-112.
- [15] N. Bamerni, A. Kılıçman, On subspaces diskcyclicity, Arab Journal of Mathematical Sciences, 23 (2015), 133-140.
- [16] B. Yousefi and E. Fathi, Subspace supercyclicity of tuples of operators, International Journal of Pure and Applied Mathematics, 101 (2015), 421-424.
- [17] J. Zeana, *Cyclic phenomena of operators on Hilbert space*, Thesis, University of Baghdad, (2002).

Accepted: December 14, 2022