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Abstract. In this paper, we study subspace diskcyclic and subspace-disk transitive
tuples of operators. We give some characterizations of these tuples. Also, we give a set
of sufficient conditions for a tuple to be subspace-diskcyclic. We find a relation between
the subspace-diskcyclicity of a tuple of operators and the tuple of the direct sum of
those operators. Finally, we show that if a tuple of operators is subspace-diskcyclic,
then not every operator in the tuple has to be subspace-diskcyclic.
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1. Introduction

A bounded linear operator T on a separable Banach space X is hypercyclic if
there is a vector x ∈ X such that Orb(T, x) = {Tnx : n ≥ 0} is dense in X,
such a vector x is called hypercyclic for T . The first example of a hypercyclic
operator on a Banach space was constructed by Rolewicz in [12]. He showed
that if B is the backward shift on ℓp(N) then λB is hypercyclic if and only if
|λ| > 1.

In 1974, Hilden and Wallen [6] defined the supercyclicity concept. An ope-
rator T is called supercyclic if there is a vector x such that the scaled orbit
COrb(T, x) is dense in X. The notion of a diskcyclic operator was introduced
by Zeana [17]. An operator T is called diskcyclic if there is a vector x ∈ X such
that the disk orbit DOrb(T, x) = {αTnx : α ∈ C, |α| ≤ 1, n ∈ N} is dense in X,
such a vector x is called diskcyclic for T . For more information about diskcyclic
operators, the reader may refer to [3] [1] [17].

In 2011, Madore and Mart́ınez-Avendaño [9] considered the density of the
orbit in a non-trivial subspace instead of the whole space, this phenomenon
is called the subspace-hypercyclicity. An operator is called M-hypercyclic or
subspace-hypercyclic for a subspace M of X if there exists a vector such that
the intersection of its orbit and M is dense in M. For more information on
subspace-hypercyclicity, one may refer to [7], [8] and [11].

In [14] Xian-Feng et al. defined the subspace-supercyclic operator as follows:
An operator is called M-supercyclic or subspace-supercyclic for a subspace M
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of X if there exists a vector such that the intersection of its scaled orbit and M
is dense in M.

Also, Bamerni and Kılıçman [15] introduced the subspace-diskcyclicity con-
cept in a Banach space X that is the disk orbit of an operator T is dense in a
subspace of X.

Let T = (T1, . . . , Tn) be a commuting n-tuple of continuous linear opera-

tors on a Banach space X and F =
{
T k1
1 T k2

2 . . . T kn
n : ki ≥ 0, 1 ≤ i ≤ n

}
be the

semigroup generated by T , then T is called hypercyclic if there is x ∈ X such
that Orb(T , x) = {Tx : T ∈ F} is dense in X ([5]).

A tuple T is supercyclic if there exists x ∈ X such that COrb(T , x) = {αTx :
T ∈ F , α ∈ C} is dense in X ([13]).

For subspaces, Moosapoor [10] defined subspace-hypercyclic tuples of oper-
ators as follows: A tuple T is subspace-hypercyclic for a subspace M if there
exists a vector x ∈ X such that Orb(T , x) ∩ M is dense in M. By the same
way, a tuple T is subspace-suercyclic for a subspace M if there exists a vector
x ∈ X such that COrb(T , x) ∩M is dense in M ([16]).

Both subspace-hypercyclic and subspace-suercyclic tuples were studied in
details; therefore, in this paper, we study some properties of subspace-diskcyclic
tuples. In particular, we give an equivalent assertion to subspace- diskcyclic
tuple which is called subspace-disk transitive tuple. Also, we give some sufficient
conditions for a tuple to be subspace-diskcyclic which we call subspace-diskcyclic
tuple criterion. We find a relation between the subspace-diskcyclicity of a tuple
of operators and the tuple of the direct sum of those operators. Finally, we show
that if a tuple of operators is subspace-diskcyclic, then not every operator in the
tuple has to be subspace-diskcyclic.

2. Main results

In this section, we characterize the equivalent conditions for a tuple of operators
to be subspace-disk transitive. We provide some sufficient conditions for a tu-
ple to be subspace-diskcyclic which is called subspace-diskcyclic tuple criterion.
Also, we study the diskcyclicity of tuples of direct sum of operators.

In what follows, we let U = {α ∈ C : |α| < 1} and DC(T ,M) be the set of
all M-diskcyclic vectors for the tuple T , that is

DC(T ,M) = {x ∈ X : DOrb(T , x) ∩M is dense in M}.

Definition 2.1. If T = (T1, . . . , Tn) is a tuple on a Banach space X, F =
{T k1

1 T k2
2 . . . T kn

n : ki ≥ 0, 1 ≤ i ≤ n} and M be a closed subspace of X then the
tuple T is called subspace-diskcyclic for M (or M-diskcyclic) if there exists a
vector x ∈ X such that

DOrb(T , x) ∩M = {αTx : T ∈ F , α ∈ D} ∩M

is dense in M.
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It is clear from the above definition, that every subspace-hypercyclic tuple is
subspace-diskcyclic which in turn is subspace-supercyclic.

Definition 2.2. If T = (T1, . . . , Tn) is a tuple on a Banach space X, F =
{T k1

1 T k2
2 . . . T kn

n : ki ≥ 0, 1 ≤ i ≤ n} and M be a closed subspace of X then the
tuple T is called subspace-disk transitive (or M-disk transitive) if for any two
nonempty sets U and V in M, there exists α ∈ U and some positive integers
ki, 1 ≤ i ≤ n such that T−kn

n T
−kn−1

n−1 . . . T−k1
1 (αU)∩V contains a relatively open

nonempty subset G of M.

We give the following example of a subspace-diskcyclic tuple.

Example 2.1. Suppose that T is a diskcyclic operator on a Banach space
X and I is the identity operator. Then, it is easy to show that the tuple
T = (T ⊕ I, I ⊕ T ) is both M-diskcyclic and N -diskcyclic where M = X ⊕ {0}
and N = {0}⊕X since both T ⊕ I and I ⊕ T are subspace-diskcyclic operators
[15, Example 2.2.].

The following example shows that not every subspace-diskcyclic tuples is
diskcyclic.

Example 2.2. Let T = (αB ⊕ I, βB ⊕ I) be a 2-tuple where α, β are complex
numbers with modulus greater than 1, I is the identity operator and B is the
backward shift on the sequence space ℓ2(N). Since αB is diskcyclic [3] then it
has a diskcyclic vector, say x. Therefore, the tuple T has an M-diskcyclic vector
(x, 0) for the subspace M = ℓ2(N)⊕{0}. However, the tuple T is not diskcyclic
since αB ⊕ I is not diskcyclic operator.

The following proposition gives an equivalent assertion to subspace- disk
transitive tuple.

Proposition 2.1. Let M be a subspace of a Banach space X and T = (T1, T2, . . . ,
Tn) be a tuple of operators. Then, the following statements are equivalent.

1. The tuple T is M-disk transitive,

2. For any two relatively open subsets U and V of M there exist α ∈ UC and
some positive integers ki, 1 ≤ i ≤ n such that T−kn

n T
−kn−1

n−1 . . . T−k1
1 (αU)∩

V ̸= ϕ and T k1
1 T k2

2 . . . T kn
n (M) ⊂ M.

3. For any two relatively open subsets U and V of M there exists α ∈ UC and
some positive integers ki, 1 ≤ i ≤ n such that T−kn

n T
−kn−1

n−1 . . . T−k1
1 (αU)∩

V is non-empty open set in M.

Proof. (1) ⇒ (2): Let U and V be two relatively open subsets of M. By the
statement (1), there exist α ∈ UC , some positive integers ki, 1 ≤ i ≤ n and an

open set G in M such that G ⊂ T−kn
n T

−kn−1

n−1 . . . T−k1
1 (αU) ∩ V . It follows that

(1) T−kn
n T

−kn−1

n−1 . . . T−k1
1 (αU) ∩ V ̸= ϕ.
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Since G ⊂ T−kn
n T

−kn−1

n−1 . . . T−k1
1 (αU), it follows that 1

αT
k1
1 T k2

2 . . . T kn
n (G) ⊂ U ⊂

M. Let x ∈ M and x0 ∈ G. Then, there exists r ∈ N such that (x0 + rx) ∈ G.
Then, we get

1

α
T k1
1 T k2

2 . . . T kn
n x0 +

1

α
T k1
1 T k2

2 . . . T kn
n rx =

1

α
T k1
1 T k2

2 . . . T kn
n (x0 + rx)

∈ 1

α
T k1
1 T k2

2 . . . T kn
n (G) ⊂ M.

Since x0 ∈ G then 1
αT

k1
1 T k2

2 . . . T kn
n x0 ∈ 1

αT
k1
1 T k2

2 . . . T kn
n (G) ⊂ M, it follows

that r
αT

k1
1 T k2

2 . . . T kn
n x ∈ M and so T k1

1 T k2
2 . . . T kn

n x ⊂ M, i.e,

(2) T k1
1 T k2

2 . . . T kn
n (M) ⊂ M.

The proof follows by (1) and (2).
(2)⇒ (3): The restriction function T k1

1 T k2
2 . . . T kn

n |M ∈ B(M), then

T−kn
n T

−kn−1

n−1 . . . T−k1
1 (αU) ∩ M is open in M for any open set U of M. Since

V ⊂ M is open, it follows that T−k1
1 T−k2

2 . . . T−kn
n (αU) ∩ V is an open set in

M.
(3)⇒ (1) is trivial. □
The next theorem shows that every subspace-disk transitive tuple is subspace-

diskcyclic for the same subspace. First, we need the following lemma.

Lemma 2.1. Let T = (T1, T2, . . . , Tn) be M-diskcyclic tuple. Then, there exists
kj ∈ N, 1 ≤ j ≤ n such that

DC(T ,M) =
⋂
i∈N

( ⋃
α∈UC

T−kn
n T

−kn−1

n−1 . . . T−k1
1 (αBi)).

where {Bi : i ∈ N} is a countable open basis for the relative topology of a subspace
M.

Proof. We have x ∈ DC(T ,M) if and only if

DOrb(T , x) ∩M = {αTx : T ∈ F , α ∈ D} ∩M

is dense in M if and only if for each i > 0, there exist α ∈ D\ {0} and kj ∈
N, 1 ≤ j ≤ n such that αT k1

1 T k2
2 . . . T knx

n ∈ Bi if and only if

x ∈
⋂
i∈N

( ⋃
α∈UC

T−kn
n T

−kn−1

n−1 . . . T−k1
1 (αBi)).

Theorem 2.1. Let M be a subspace of a Banach space X and T =(T1, T2, . . . , Tn)
be a tuple of operators. Suppose that T is M-disk transitive tuple. Then,⋂

i∈N

( ⋃
α∈UC

T−kn
n T

−kn−1

n−1 . . . T−k1
1 (αBi)).

is dense in M.
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Proof. Since T is M-transitive, then by Proposition 2.1, for each i, j ∈ N, there
exist k

(r)
i,j ∈ N, 1 ≤ r ≤ n and αi,j ∈ UC such that

T
−k

(n)
i,j

n T
−k

(n−1)
i,j

n−1 . . . T
−k

(1)
i,j

1 (αi,jBi) ∩Bj

is nonempty open in M. Suppose that

Ai =
⋃
j∈N

(
T
−k

(n)
i,j

n T
−k

(n−1)
i,j

n−1 . . . T
−k

(1)
i,j

1 (αi,jBi) ∩Bj

)
,

for all i ∈ N. Then, Ai is nonempty and open in M since it is a countable union
of open sets in M. Furthermore, each Ai is dense in M since it intersects each
Bj . By the Baire category theorem, we get⋂

i∈N
Ai =

⋂
i∈N

⋃
j∈N

(
T
−k

(n)
i,j

n T
−k

(n−1)
i,j

n−1 . . . T
−k

(1)
i,j

1 (αi,jBi) ∩Bj

)
is a dense set in M. Clearly,⋂

i∈N

⋃
j∈N

(
T
−k

(n)
i,j

n T
−k

(n−1)
i,j

n−1 . . . T
−k

(1)
i,j

1 (αi,jBi) ∩Bj

)
⊂

⋂
i∈N

( ⋃
α∈UC

T−kn
n T

−kn−1

n−1 . . . T−k1
1 (αBi)) ∩M.

It follows that
⋂

i∈N
(⋃

α∈UC T−kn
n T

−kn−1

n−1 . . . T−k1
1 (αBi)) ∩ M is desne in M.

The proof is completed. □

Corollary 2.1. If T is an M-disk transitive tuple, then T is M-diskcyclic.

Proof. The proof follows by Proposition 2.1 and Theorem 2.1. □

Theorem 2.2 (M-Diskcyclic Tuple Criterion). Let M be a subspace of a Banach
space X and T = (T1, T2, . . . , Tn) be a tuple of operators. Suppose that for

each 1 ≤ i ≤ n,
〈
r
(i)
k

〉
k∈N

is an increasing sequence of positive integers and

D1, D2 ∈ M are two dense sets in M such that

1. For every y ∈ D2, there is a sequence ⟨xk⟩k∈N in M such that ∥xk∥ → 0

and T
r
(1)
k

1 T
r
(2)
k

2 . . . T
r
(n)
k

n xk → y as k → ∞,

2. ∥T r
(1)
k

1 T
r
(2)
k

2 . . . T
r
(n)
k

n x∥∥xk∥ → 0, for all x ∈ D1 as k → ∞,

3. T
r
(1)
k

1 T
r
(2)
k

2 . . . T
r
(n)
k

n M ⊆ M, for all k ∈ N.

Then, T is said to be satisfied M-diskcyclic criterion, and T is an M-diskcyclic
tuple.



164 NAREEN BAMERNI

Proof. Let U1 and U2 be two relatively open sets in M. Then, we can find
x ∈ D1 ∩ U1 and y ∈ D2 ∩ U2 since both D1 and D2 are dense in M. It
follows from the condition (2) that there exists a sequence of non-zero scalars

⟨λk⟩k∈N such that λkT
r
(1)
k

1 T
r
(2)
k

2 . . . T
r
(n)
k

n x → 0 and λ−1
k xk → 0. Suppose that

∥T r
(1)
k

1 T
r
(2)
k

2 . . . T
r
(n)
k

n x∥ and ∥xk∥ are not both zero. Then, we have the following
cases:

1. if ∥T r
(1)
k

1 T
r
(2)
k

2 . . . T
r
(n)
k

n x∥ = 0, set λk = 2k ∥xk∥.

Then, T turns to be M-hypercyclic tuple [4, Theorem 2.4.] and thus M-
diskcyclic.

2. if ∥T r
(1)
k

1 T
r
(2)
k

2 . . . T
r
(n)
k

n x∥∥xk∥ ≠ 0, set λk = ∥xk∥
1
2 ∥T r

(1)
k

1 T
r
(2)
k

2 . . . T
r
(n)
k

n x∥
− 1

2

,

3. if ∥xk∥ = 0, set λk = 2−k∥T r
(1)
k

1 T
r
(2)
k

2 . . . T
r
(n)
k

n x∥−1.

For these two cases if ∥T r
(1)
k

1 T
r
(2)
k

2 . . . T
r
(n)
k

n x∥ → 0, then T is M-hypercyclic tuple
and so M-diskcyclic. Otherwise, it follows easily that |λk| ≤ 1, for all k ∈ N.
Set z = x+ λk

−1xk for a large enough k. Since x ∈ U1 ⊂ M and λk
−1xk ∈ M,

then z ∈ M. Since
∥z − x∥ → 0,

it follows that z ∈ U1.
Now, since

λkT
r
(1)
k

1 T
r
(2)
k

2 . . . T
r
(n)
k

n z

= λkT
r
(1)
k

1 T
r
(2)
k

2 . . . T
r
(n)
k

n x+ T
r
(1)
k

1 T
r
(2)
k

2 . . . T
r
(n)
k

n xk

then, by using the condition (3), we get

λkT
r
(1)
k

1 T
r
(2)
k

2 . . . T
r
(n)
k

n z and T
r
(1)
k

1 T
r
(2)
k

2 . . . T
r
(n)
k

n xk

belong to M and so λkT
r
(1)
k

1 T
r
(2)
k

2 . . . T
r
(n)
k

n x ∈ M.

Moreover, since T
r
(1)
k

1 T
r
(2)
k

2 . . . T
r
(n)
k

n xk → y for a large enough k, then∥∥∥∥λkT
r
(1)
k

1 T
r
(2)
k

2 . . . T
r
(n)
k

n z − y

∥∥∥∥ → 0.

Thus, λkT
r
(1)
k

1 T
r
(2)
k

2 . . . T
r
(n)
k

n z ∈ U2. It follows that there exists k ∈ N such that

U1 ∩ T
−r

(n)
k

n T
−r

(n−1)
k

n−1 . . . T
−r

(1)
k

1

(
λ−1
k U2

)
̸= ϕ.

By Proposition 2.1 and Corollary 2.1, T is an M-diskcyclic tuple. □
The following theorem gives the relation between the subspace-diskcyclicity

of a tuple of operators and the tuple of the direct sum of those operators.
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Proposition 2.2. Let M be a subspace of a Banach space X and T = (T1, T2,
. . . , Tn) be a tuple. Then, T satisfies subspace-diskcyclic criterion if and only if
the tuple S = (T1⊕T1, T2⊕T2, . . . , Tn⊕Tn) satisfies subspace-diskcyclic criterion.

With out loss of generality, we suppose that S = (T1⊕T1, T2⊕T2) and then
the general case follows by the same way.

For the “if” part, let M be a closed subspace of X such that S satisfies
M ⊕ M-diskcyclic criterion. Let D1 and D2 be dense sets in M then W =
D1 ⊕ D2 is dense in M ⊕ M. Let x ∈ D1 and y ∈ D2, then (x, y) ∈ W . By

hypothesis, there exist two increasing sequence of positive integers
〈
r
(i)
k

〉
k∈N

for

i = 1, 2 and a sequence ⟨(xk, yk)⟩k∈N in M ⊕ M such that ∥(xk yk)∥ → (0, 0)

and (T1 ⊕ T1)
r
(1)
k (T2 ⊕ T2)

r
(2)
k (xk, yk) → (x, y) as k → ∞. which means that

(T
r
(1)
k

1 T
r
(2)
k

2 xk, T
r
(1)
k

1 T
r
(2)
k

2 yk) → (x, y). It follows that for each y ∈ D2 there is a
sequence ⟨yk⟩k∈N → 0 in M such that

(3) T
r
(1)
k

1 T
r
(2)
k

2 yk → y.

By hypothesis, we have ∥(T1 ⊕ T1)
r
(1)
k (T2 ⊕ T2)

r
(2)
k (x, y)∥ ∥(xk, yk)∥ → (0, 0).

Then, for all x ∈ D1 it easy follows that

(4)

∥∥∥∥T r
(1)
k

1 T
r
(2)
k

2 x

∥∥∥∥ ∥yk∥ → 0.

Also, since (T1 ⊕ T1)
r
(1)
k (T2 ⊕ T2)

r
(2)
k (M⊕M) ⊆ (M⊕M), then

(5) T
r
(1)
k

1 T
r
(2)
k

2 (M) ⊆ M.

From (3), (4) and (5), the tuple T = (T1, T2) satisfies diskcyclic criterion.

For the “only if” part, since T
r
(1)
k

1 T
r
(2)
k

2 M ⊆ M, for all k ∈ N, then,

T
r
(1)
k

1 T
r
(2)
k

2 M⊕ T
r
(1)
k

1 T
r
(2)
k

2 M ⊆ M⊕M.

So,

(T1 ⊕ T1)
r
(1)
k (T2 ⊕ T2)

r
(2)
k (M⊕M) ⊆ M⊕M.

The remainder of the proof follows easily from [13, Corollary 1]. □

Proposition 2.3. Let M be a subspace of a Banach space X and T = (T1, T2,
. . . , Tn) be a tuple of operators. If the semigroup F contains an M-diskcyclic
operator, then T is M-diskcyclic tuple.

Proof. Suppose that T is an M-diskcyclic operator in F , then

M = DOrb(T, x) ∩M ⊆ DOrb(T , x) ∩M ⊆ M.

It follows that DOrb(T , x) ∩M = M and so T is M-diskcyclic tuple. □
The following example gives a tuple of operators which is M-diskcyclic,

however, not every operator in the tuple is M-diskcyclic.
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Example 2.3. Let T1, T2 ∈ B(ℓ2(Z)) be bilateral forward weighted shifts with
the weight sequences wn, kn respectively, where

wn =

{
1
3 if n ≥ 0
1
2 if n < 0

and kn =

{
4 if n ≥ 0

5 if n < 0

and let M be the subspace of ℓ2(Z) consisting of all sequences with zeroes on
the even entries; that is,

M =
{
{an}∞n=−∞ ∈ ℓ2(Z) : a2n = 0, n ∈ Z

}
,

then by [2, Theorem 3.6] T1 is notM-diskcyclic but T2 isM-diskcyclic. However,
the tuple T = (T1, T2) is M-diskcyclic by Proposition 2.3.

3. Conclusion

We studied both subspace-diskcyclic and subspace-disk transitive tuples. We
provided some sufficient conditions for a tuple to be subspace-diskcyclic which
is called subspace-diskcyclic tuple criterion. Then, we found a relation between
the subspace-diskcyclicity of a tuple of operators and the tuple of the direct
sum of those operators. By giving an example, we showed that if a tuple is
subspace-diskcyclic, then there may be a non-diskcyclic operator in that tuple.
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