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Abstract. Let N be a near ring and n be a fixed positive integer. An n-additive (addi-
tive in each argument) mapping F : N×N× . . .×N︸ ︷︷ ︸

n−times

→ N is said to be a permu-

ting generalized n-semiderivation on a near ring N if there exists an n-semiderivation
d : N ×N × ...×N︸ ︷︷ ︸

n−times

→ N associated with a map g : N → N such that the relation

F (x1x
′
1, x2, . . . , xn)=F (x1, x2, . . . , xn)x

′
1+g(x1)d(x

′
1, x2, . . . , xn)=d(x1, x2, . . . , xn)g(x

′
1)

+x1F (x′
1, x2, . . . , xn) and g(F (x1, x2, . . . , xn)) = F (g(x1), g(x2), . . . , g(xn)) hold, for all

x1, x
′
1, x2, ....., xn ∈ N . The purpose of the present paper is to prove some commutativ-

ity theorems in case of a semigroup ideal of a 3-prime near ring admitting a generalized
n-semiderivation, thereby extending some known results of derivations, semiderivations
and generalized derivations.

Keywords: 3-prime near-rings, n-semiderivations, generalized n-semiderivations,
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1. Introduction

A left near ring N is a triplet (N,+, ·), where + and · are two binary operations
such that (i) (N,+) is a group (not necessarily abelian), (ii) (N, ·) is a semigroup,
and (iii) x · (y + z) = x · y + x · z, for all x, y, z ∈ N . Analogously, if instead
of (iii), N satisfies the right distributive law, then N is said to be a right near
ring. The most natural example of a non-commutative left near ring is the
set of all identity preserving mappings acting from right of an additive group
G (not necessarily abelian) into itself with pointwise addition and composition
of mappings as multiplication. If these mappings act from left on G, then we
get a non-commutative right near ring (For more examples, we can refer Pilz
[2]). Throughout the paper, N represents a zero-symmetric left near ring with
multiplicative centre Z(N) and for any pair of elements x, y ∈ N , the symbols
[x, y] and (x ◦ y) denote the Lie Product xy − yx and Jordan product xy + yx.
A near ring N is called zero-symmetric if 0x = 0, for all x ∈ N (recall that
left distributivity yields that x0 = 0). A near ring N is said to be 3-prime
if xNy = {0} for x, y ∈ N implies that x = 0 or y = 0. A near ring N is
called 2-torsion free if (N,+) has no element of order 2. A nonempty subset U
of N is called a semigroup right (resp. semigroup left) ideal of N if UN ⊆ U
(resp. NU ⊆ U) and if U is both a semigroup right ideal and a semigroup left
ideal, it is called a semigroup ideal. Let n ≥ 2 be a fixed positive integer and
Nn = N ×N × . . .×N︸ ︷︷ ︸

n−times

. A map ∆ : Nn → N is said to be permuting on a

near ring N if the relation ∆(x1, x2, . . . , xn) = ∆(xπ(1), xπ(2), . . . , xπ(n)) holds,
for all xi ∈ N , i = 1, 2, . . . , n and for every permutation π ∈ Sn, where Sn is the
permutation group on {1, 2, . . . , n}. An additive mapping F : N → N is said
to be a right (resp. left) generalized derivation with associated derivation d if
F (xy) = F (x)y + xd(y) (resp. F (xy) = d(x)y + xF (y)), for all x, y ∈ N and F
is said to be a generalized derivation with associated derivation d on N if it is
both a right generalized derivation and a left generalized derivation on N with
associated derivation d.

Ozturk et. al. [6] and Park et. al. [5] studied bi-derivations and tri-
derivations in near rings. A symmetric bi-additive mapping d : N × N → N
(i.e., additive in both arguments) is said to be a symmetric bi-derivation on N if
d(xy, z) = d(x, z)y+xd(y, z) holds, for all x, y, z ∈ N . A permuting tri-additive
mapping d : N ×N ×N → N is said to be a permuting tri-derivation on N if

d(xw, y, z) = d(x, y, z)w + xd(w, y, z)

is fulfilled, for all w, x, y, z ∈ N. Muthana [7] defined bimultipliers in rings as
follows: A biadditive (additive in both arguments) mapping B : R × R → R is
called a left (resp. right) bimultiplier on a ring R if B(xy, z) = B(x, z)y (resp.
B(xy, z) = xB(y, z)) holds, for all x, y, z ∈ R. Motivated by this definition we
define an n-additive mapping F : N ×N × ...×N︸ ︷︷ ︸

n−times

→ N is called a left (resp.
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right) n-multiplier on a near ring N if F (x1x
′
1, x2, . . . , xn) = F (x1, x2, . . . , xn)x

′
1

(resp. F (x1x
′
1, x2, . . . , xn) = x1F (x′1, x2, . . . , xn)), for all x1, x

′
1, x2, . . . , xn ∈ N.

Very recently Asma et. al. [1] defined semiderivations in near rings. An additive
mapping d : N → N is said to be a semiderivation on a near ringN if there exists
a mapping g : N → N such that d(xy) = d(x)g(y) + xd(y) = d(x)y + g(x)d(y)
and d(g(x)) = g(d(x)), for all x, y ∈ N. Let n be a fixed positive integer. An
n-additive (i.e., additive in each argument) mapping d : N ×N × ...×N︸ ︷︷ ︸

n−times

→ N

is said to be an n-semiderivation on a near ring N if there exists a mapping
g : N → N such that the relations

d(x1x
′
1, x2, . . . , xn) = d(x1, x2, . . . , xn)g(x

′
1) + x1d(x

′
1, x2, . . . , xn)

= d(x1, x2, . . . , xn)x
′
1 + g(x1)d(x

′
1, x2, . . . , xn)

d(x1, x2x
′
2, . . . , xn) = d(x1, x2, . . . , xn)g(x

′
2) + x2d(x1, x

′
2, . . . , xn)

= d(x1, x2, . . . , xn)x
′
2 + g(x2)d(x1, x

′
2, . . . , xn)

...

d(x1, x2, . . . , xnx
′
n) = d(x1, x2, . . . , xn)g(x

′
n) + xnd(x1, x2, . . . , x

′
n)

= d(x1, x2, . . . , xn)x
′
n + g(xn)d(x1, x2, . . . , x

′
n)

and g(d(x1, x2, . . . , xn)) = d(g(x1), g(x2), . . . , g(xn)) hold, for all xi, x
′
i ∈ N

for i = 1, 2, . . . , n. An n-additive (i.e., additive in each argument) mapping
F : N ×N × ...×N︸ ︷︷ ︸

n−times

→ N is said to be a generalized n-semiderivation on N

if there exists an n-semiderivation d : N ×N × ...×N︸ ︷︷ ︸
n−times

→ N associated with a

map g : N → N such that the relations

F (x1x
′
1, x2, . . . , xn) = F (x1, x2, . . . , xn)x

′
1 + g(x1)d(x

′
1, x2, . . . , xn)

= d(x1, x2, . . . , xn)g(x
′
1) + x1F (x′1, x2, . . . , xn)

F (x1, x2x
′
2, . . . , xn) = F (x1, x2, . . . , xn)x

′
2 + g(x2)d(x1, x

′
2, . . . , xn)

= d(x1, x2, . . . , xn)g(x
′
2) + x2F (x1, x

′
2, . . . , xn)

...

F (x1, x2, . . . , xnx
′
n) = F (x1, x2, . . . , xn)x

′
n + g(xn)d(x1, x2, . . . , x

′
n)

= d(x1, x2, . . . , xn)g(x
′
n) + xnF (x1, x2, . . . , x

′
n)

and g(F (x1, x2, . . . , xn)) = F (g(x1), g(x2), . . . , g(xn)) hold, for all xi, x
′
i ∈ N for

i = 1, 2, . . . , n. All n-semiderivations are generalized n-semiderivations. More-
over, if g is the identity map on N , then all generalized n-semiderivations are
merely generalized n-derivations, the notion of generalized n-semiderivation gen-
eralizes that of generalized n-derivation. Moreover, generalization is not trivial,
as the following example shows:
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Example 1. Let S be a commutative near ring. Consider

N =

{ 0 x y
0 0 z
0 0 0

 | 0, x, y, z ∈ S

}
.

Then N is a zero-symmetric left near ring with respect to matrix addition and
matrix multiplication. Define mappings F, d : N ×N × ...×N︸ ︷︷ ︸

n−times

→ N by

F

(0 x1 y1
0 0 z1
0 0 0

 ,

0 x2 y2
0 0 z2
0 0 0

 , . . . ,

0 xn yn
0 0 zn
0 0 0

) =

0 0 z1z2...zn
0 0 0
0 0 0

 ,

d

(0 x1 y1
0 0 z1
0 0 0

 ,

0 x2 y2
0 0 z2
0 0 0

 , . . . ,

0 xn yn
0 0 zn
0 0 0

) =

0 0 x1x2...xn
0 0 0
0 0 0


and a map g : N → N by

g

0 x y
0 0 z
0 0 0

 =

0 0 z
0 0 0
0 0 0

 .

It can be easily verified that F is a generalized n-semiderivation associated with
an n-semiderivation d and a map g associated with d on N .

Example 2. Let S be a commutative near ring. Consider

N =

{ 0 x y
0 0 0
0 0 z

 | 0, x, y, z ∈ S

}
.

Then N is a zero-symmetric left near ring with respect to matrix addition and
matrix multiplication. Define mappings F, d : N ×N × ...×N︸ ︷︷ ︸

n−times

→ N by

F

(0 x1 y1
0 0 0
0 0 z1

 ,

0 x2 y2
0 0 0
0 0 z2

 , . . . ,

0 xn yn
0 0 0
0 0 zn

) =

0 x1x2...xn 0
0 0 0
0 0 0

 ,

d

(0 x1 y1
0 0 0
0 0 z1

 ,

0 x2 y2
0 0 0
0 0 z2

 , . . . ,

0 xn yn
0 0 0
0 0 zn

) =

0 0 y1z2...zn
0 0 0
0 0 z1z2...zn
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and a map g : N → N by

g

0 x y
0 0 0
0 0 z

 =

0 x 0
0 0 0
0 0 0

 .

It is easy to see that F is a generalized n-semiderivation associated with an
n-semiderivation d and a map g associated with d on N . However, F is not a
generalized n-derivation on N .

2. Preliminary results

We begin with several Lemmas, most of which have been proved elsewhere.

Lemma 2.1 ([3, Lemma 1.2 and Lemma 1.3]). Let N be 3-prime near ring.

(i) If z ∈ Z(N)\{0}, then z is not a zero divisor.

(ii) If Z(N)\{0} contains an element z for which z + z ∈ Z(N), then (N,+)
is abelian.

(iii) If Z(N)\{0} and x is an element of N for which xz ∈ Z(N), then x ∈
Z(N).

Lemma 2.2 ([3, Lemma 1.3 and Lemma 1.4]). Let N be 3-prime near ring and
U be a nonzero semigroup ideal of N .

(i) If x ∈ N and xU = {0} or Ux = {0}, then x = 0.

(ii) If x, y ∈ N and xUy = {0}, then x = 0 or y = 0.

(iii) If x ∈ N centralizes U , then x ∈ Z(N).

Lemma 2.3 ([3, Lemma 1.5]). If N is a 3-prime near ring and Z(N) contains
a nonzero semigroup left ideal or a nonzero semigroup right ideal, then N is a
commutative ring.

Lemma 2.4. Let N be a 3-prime near ring and d be a nonzero n-semiderivation
of N associated with a map g. If U1, U2, . . . , Un are nonzero semigroup ideals of
N , then d(U1, U2, . . . , Un) ̸= {0}.

Proof. Suppose that d(U1, U2, . . . , Un) = {0}. Then

d(x1, x2, . . . , xn) = 0, for all x1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un(1)

Replacing x1 by x1r1 for r1 ∈ N in (1) and using it, we have

x1d(r1, x2, . . . , xn) = 0.
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By Lemma 2.2(i), we obtain

d(r1, x2, . . . , xn) = 0.(2)

Now, substituting x2r2 for x2, where r2 ∈ N in (2), we get d(r1, r2, . . . , xn) = 0.
Proceeding inductively as above, we conclude that d(r1, r2, . . . , rn) = 0, for all
r1, r2, . . . , rn ∈ N. This shows that d(N,N, . . . , N) = {0}, leading to a contradic-
tion as d is a nonzero n-semiderivation. Therefore, d(U1, U2, . . . , Un) ̸= {0}.

Lemma 2.5. Let N be a 3-prime near ring. Then F is a generalized n-
semiderivation associated with an n-semiderivation d and a map g associated
with d of N if and only if

F (x1x
′
1, x2, . . . , xn) = g(x1)d(x

′
1, x2, . . . , xn) + F (x1, x2, . . . , xn)x

′
1,

for all x1, x
′
1, x2, . . . , xn ∈ N .

Proof. We have

F (x1(x
′
1 + x′1), x2, . . . , xn)

= F (x1, x2, . . . , xn)(x
′
1 + x′1) + g(x1)d(x

′
1 + x′1, x2, . . . , xn)

= F (x1, x2, . . . , xn)x
′
1 + F (x1, x2, . . . , xn)x

′
1(3)

+ g(x1)d(x
′
1, x2, . . . , xn) + g(x1)d(x

′
1, x2, . . . , xn)

and

F (x1x
′
1 + x1x

′
1, x2, . . . , xn) = F (x1x

′
1, x2, . . . , xn) + F (x1x

′
1, x2, . . . , xn)

= F (x1, x2, . . . , xn)x
′
1 + g(x1)d(x

′
1, x2, . . . , xn)

+ F (x1, x2, . . . , xn)x
′
1 + g(x1)d(x

′
1, x2, . . . , xn).(4)

Comparing (3) and (4), we get

F (x1, x2, . . . , xn)x
′
1 + g(x1)d(x

′
1, x2, . . . , xn)

= g(x1)d(x
′
1, x2, . . . , xn) + F (x1, x2, . . . , xn)x

′
1.

This implies that

F (x1x
′
1, x2, . . . , xn) = g(x1)d(x

′
1, x2, . . . , xn) + F (x1, x2, . . . , xn)x

′
1.

Converse can be proved in a similar way.

Lemma 2.6. Let N be a 3-prime near ring and U1, U2, . . . , Un be nonzero semi-
group ideals of N. If N admits a generalized n-semiderivation F associated with
an n-semiderivation d and a map g associated with d such that g(U1) = U1 and
U1 ∩ Z(N) ̸= {0}, then F (Z(N), U2, U3, . . . , Un) ⊆ Z(N).
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Proof. If z ∈ U1 ∩ Z(N), then

F (zx1, x2, . . . , xn) = F (x1z, x2, . . . , xn), for all xi ∈ Ui for i = 1, 2, . . . , n.

Using Lemma 2.5, we have

g(z)d(x1, x2, . . . , xn) + F (z, x2, . . . , xn)x1 = d(x1, x2, . . . , xn)g(z)

+ x1F (z, x2, . . . , xn).

Since g(U1) = U1, so replacing g(z) by arbitrary element z′ ∈ U1∩Z(N), we get

z′d(x1, x2, . . . , xn)+F (z, x2, . . . , xn)x1=d(x1, x2, . . . , xn)z
′+x1F (z, x2, . . . , xn).

This implies that F (z, x2, . . . , xn)x1 = x1F (z, x2, . . . , xn), for all z ∈ U1 ∩
Z(N), xi ∈ Ui for i = 1, 2, . . . , n. Now, replacing x1 by x1r, where r ∈ N in
the last expression and using it again, we obtain x1[F (z, x2, . . . , xn), r] = 0,
for all xi ∈ Ui, r ∈ N for i = 1, 2, . . . , n. By Lemma 2.2(i), we find that
[F (z, x2, . . . , xn), r] = 0. Hence, F (Z(N), U2, U3, . . . , Un) ⊆ Z(N).

Lemma 2.7. Let N be a 3-prime near ring admitting an n-semiderivation d
associated with a map g such that g(x1x

′
1) = g(x1)g(x

′
1), for all x1, x

′
1 ∈ N , then

N satisfies the following partial distributive law:

{d(x1, x2, . . . , xn)x′1 + g(x1)d(x
′
1, x2, . . . , xn)}y

= d(x1, x2, . . . , xn)x
′
1y + g(x1)d(x

′
1, x2, . . . , xn)y,

for all x1, x
′
1, x2, . . . , xn, y ∈ N .

Proof. For all x1, x
′
1, x2, . . . , xn, y ∈ N , we have

d((x1x
′
1)y, x2, . . . , xn) = d(x1x

′
1, x2, . . . , xn)y + g(x1x

′
1)d(y, x2, . . . , xn)

= {d(x1, x2, . . . , xn)x′1 + g(x1)d(x
′
1, x2, . . . , xn)}y

+ g(x1)g(x
′
1)d(y, x2, . . . , xn).(5)

On the other hand

d(x1(x
′
1y), x2, . . . , xn) = d(x1, x2, . . . , xn)x

′
1y + g(x1)d(x

′
1y, x2, . . . , xn)

= d(x1, x2, . . . , xn)x
′
1y + g(x1){d(x′1, x2, . . . , xn)y

+ g(x′1)d(y, x2, . . . , xn)},
d(x1(x

′
1y), x2, . . . , xn) = d(x1, x2, . . . , xn)x

′
1y + g(x1)d(x

′
1, x2, . . . , xn)y

+ g(x1)g(x
′
1)d(y, x2, . . . , xn).(6)

From (5) and (6), we get

{d(x1, x2, . . . , xn)x′1 + g(x1)d(x
′
1, x2, . . . , xn)}y

= d(x1, x2, . . . , xn)x
′
1y + g(x1)d(x

′
1, x2, . . . , xn)y.
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Lemma 2.8. Let N be a 3-prime near ring and U1, U2, . . . , Un be nonzero semi-
group ideals of N. Let d be a nonzero n-semiderivation of N associated with a
map g such that g(x1x

′
1) = g(x1)g(x

′
1), for all x1, x

′
1 ∈ U1. If x ∈ N and

d(U1, U2, . . . , Un)x = {0}(or xd(U1, U2, . . . , Un) = {0}), then x = 0.

Proof. By hypothesis,

d(x1, x2, . . . , xn)x = 0, for all xi ∈ Ui; 1 ≤ i ≤ n, x ∈ N.(7)

Replacing x1 by r1x1 for r1 ∈ N in (7), we get

{d(r1, x2, . . . , xn)x1 + g(r1)d(x1, x2, . . . , xn)}x = 0.

Using Lemma 2.7 and (7), we get d(r1, x2, . . . , xn)U1x = {0}. By Lemma 2.2(ii),
we have either d(r1, x2, . . . , xn) = 0 or x = 0. If d(r1, x2, . . . , xn) = 0, for all
r1 ∈ N , x2 ∈ U2,. . . , xn ∈ Un, then proceeding as in the proof of Lemma 2.4,
we can show that d(N,N, . . . , N) = {0}, leading to a contradiction. Therefore,
x = 0.

A similar argument using above, handles the case xd(x1, x2, . . . , xn)={0}.

Lemma 2.9. Let N be a 3-prime near ring admitting a generalized n-semi-
derivation F associated with an n-semiderivation d and an onto map g associated
with d such that g(x1x

′
1) = g(x1)g(x

′
1), for all x1, x

′
1 ∈ N. Then N satisfies the

following partial distributive laws:

(i){F (x1, x2, . . . , xn)x
′
1 + g(x1)d(x

′
1, x2, . . . , xn)}y

= F (x1, x2, . . . , xn)x
′
1y + g(x1)d(x

′
1, x2, . . . , xn)y.

(ii){d(x1, x2, . . . , xn)g(x′1) + x1F (x′1, x2, . . . , xn)}y
= d(x1, x2, . . . , xn)g(x

′
1)y + x1F (x′1, x2, . . . , xn)y,

for all x1, x
′
1, x2, . . . , xn, y ∈ N .

Proof. For all x1, x
′
1, x2, . . . , xn, y ∈ N , we have

F ((x1x
′
1)y, x2, . . . , xn) = F (x1x

′
1, x2, . . . , xn)y + g(x1x

′
1)d(y, x2, . . . , xn)

= {F (x1, x2, . . . , xn)x
′
1 + g(x1)d(x

′
1, x2, . . . , xn)}y

+ g(x1)g(x
′
1)d(y, x2, . . . , xn).(8)

On the other hand

F (x1(x
′
1y), x2, . . . , xn) = F (x1, x2, . . . , xn)x

′
1y + g(x1)d(x

′
1y, x2, . . . , xn)

= F (x1, x2, . . . , xn)x
′
1y + g(x1){d(x′1, x2, . . . , xn)y

+ g(x′1)d(y, x2, . . . , xn)},
F (x1(x

′
1y), x2, . . . , xn) = F (x1, x2, . . . , xn)x

′
1y + g(x1)d(x

′
1, x2, . . . , xn)y

+ g(x1)g(x
′
1)d(y, x2, . . . , xn).(9)



144 ASMA ALI, A. MAMOUNI and INZAMAM UL HUQUE

From (8) and (9), we get

{F (x1, x2, . . . , xn)x
′
1 + g(x1)d(x

′
1, x2, . . . , xn)}y

= F (x1, x2, . . . , xn)x
′
1y + g(x1)d(x

′
1, x2, . . . , xn)y,

for all x1, x
′
1, x2, . . . , xn, y ∈ N .

Arguing in the similar manner, we can prove the result for case (ii).

Lemma 2.10. Let N be a 3-prime near ring and U1, U2, . . . , Un be nonzero
semigroup ideals of N. If F is a nonzero generalized n-semiderivation on N
associated with an n-semiderivation d and a map g associated with d such that
g(U1) = U1, then F (U1, U2, . . . , Un) ̸= {0}.

Proof. Suppose that

F (x1, x2, . . . , xn) = 0, for all x1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un.(10)

Substituting x1r1 in place of x1, where r1 ∈ N in (10), we have

F (x1, x2, . . . , xn)r1 + g(x1)d(r1, x2, . . . , xn) = 0.

Using (10) and since g(U1) = U1, so replacing g(x1) by an arbitrary element x′1,
we get

x′1d(r1, x2, . . . , xn) = 0, for all x′1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un, r1 ∈ N.

It follows by Lemma 2.2(i) that d(r1, x2, . . . , xn) = 0, for all x2 ∈ U2, . . . , xn ∈
Un, r1 ∈ N . Arguing in the similar manner as in Lemma 2.4, we obtain d = 0.
Therefore, we have F (r1x1, x2, . . . , xn) = F (r1, x2, . . . , xn)x1 = 0, for all x1 ∈
U1, x2 ∈ U2, . . . , xn ∈ Un, r1 ∈ N, and another appeal to Lemma 2.2(i) gives
F = 0, which is a contradiction.

Lemma 2.11. Let N be a 3-prime near ring and U1, U2, . . . , Un be nonzero
semigroup ideals of N . If N admits a nonzero generalized n-semiderivation
F associated with an n-semiderivation d and a map g associated with d such
that g(U1) = U1 and g(x1x

′
1) = g(x1)g(x

′
1), for all x1, x

′
1 ∈ U1. If a ∈ N and

aF (U1, U2, . . . , Un) = {0} (or F (U1, U2, . . . , Un)a = {0}), then a = 0.

Proof. Suppose that

aF (x1, x2, . . . , xn) = 0, for all x1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un, a ∈ N.(11)

Replacing x1 by x1x
′
1 in (11) for x′1 ∈ U1, we get

aF (x1, x2, . . . , xn)x
′
1 + ag(x1)d(x

′
1, x2, . . . , xn) = 0.

This implies that aU1d(x1, x2, . . . , xn) = {0}. In view of Lemma 2.2(ii), we
obtain either d(U1, U2, . . . , Un) = {0} or a = 0, for all a ∈ N .
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If d(U1, U2, . . . , Un) = {0}, then aF (x1x
′
1, x2, . . . , xn) = ax1F (x′1, x2, . . . , xn)

= 0, for all x1, x
′
1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un, a ∈ N . Therefore, it follows by

Lemma 2.2(ii) and Lemma 2.10 that a = 0.

Suppose that F (U1, U2, ...Un)a = {0}. Then,

F (x1, x2, . . . , xn)a = 0, for all x1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un, a ∈ N.(12)

Replacing x1 by x1x
′
1 in (12), where x′1 ∈ U1, we get

(d(x1, x2, . . . , xn)g(x
′
1) + x1F (x′1, x2, . . . , xn))a = 0.

Using Lemma 2.9(i), we get

d(x1, x2, . . . , xn)g(x
′
1)a+ x1F (x′1, x2, . . . , xn)a = 0.

This implies that d(x1, x2, . . . , xn)g(x
′
1)a = 0, for all x1 ∈ U1, x2 ∈ U2, . . . , xn ∈

Un, a ∈ N . Replacing g(x′1) by an arbitrary element x′′1 ∈ U1 in the last expres-
sion and applying Lemma 2.2(ii), we find that d(U1, U2, ...Un) = {0} or a = 0,
for all a ∈ N .

If d(U1, U2, ...Un) = {0}, then F (x1x
′
1, x2, . . . , xn)a = F (x1, x2, . . . , xn)x

′
1a =

0, for all x1, x
′
1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un, a ∈ N . Therefore, it follows by

Lemma 2.2(ii) and Lemma 2.10 that a = 0.

3. Main results

Theorem 3.1. Let N be a 3-prime near ring and U1, U2, . . . , Un are nonzero
semigroup ideals of N. Let F1 and F2 be any two generalized n-semiderivations
associated with n-semiderivations d1 and d2 respectively and a map g associated
with d1 and d2 such that g(U1) = U1. If [F1(U1, U2, . . . , Un), F2(U1, U2, . . . , Un)] =
{0}, then at least one of F1 and F2 is trivial or (N,+) is an abelian group.

Proof. Suppose that x ∈ N is such that

[x, F2(U1, U2, . . . , Un)] = [x+ x, F2(U1, U2, . . . , Un)] = 0.

For all x1, x
′
1 ∈ U1 such that x1 + x′1 ∈ U1,

[x+ x, F2(x1 + x′1, x2, . . . , xn)] = 0.

This implies that

(x+ x)F2(x1 + x′1, x2, . . . , xn) = F2(x1 + x′1, x2, . . . , xn)(x+ x),

(x+ x)F2(x1, x2, . . . , xn) + (x+ x)F2(x
′
1, x2, . . . , xn)

= F2(x1 + x′1, x2, . . . , xn)x+ F2(x1 + x′1, x2, . . . , xn)x,

F2(x1, x2, . . . , xn)(x+ x) + F2(x
′
1, x2, . . . , xn)(x+ x)

= xF2(x1 + x′1, x2, . . . , xn) + xF2(x1 + x′1, x2, . . . , xn),

F2(x1, x2, . . . , xn)x+ F2(x1, x2, . . . , xn)x+F2(x
′
1, x2, . . . , xn)x+F2(x

′
1, x2, . . . , xn)x

= xF2(x1, x2, . . . , xn) + xF2(x
′
1, x2, . . . , xn) + xF2(x1, x2, . . . , xn)

+ xF2(x
′
1, x2, . . . , xn),
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which reduces to xF2((x1, x
′
1), x2, . . . , xn) = 0, for all x2 ∈ U2, . . . , xn ∈ Un, x ∈

N , where (x1, x
′
1) is the additive commutator (x1 + x′1 − x1 − x′1).

If r, s ∈ U1, we have rs ∈ U1 and rs + rs = r(s + s) ∈ U1 and since
[F1(U1, U2, . . . , Un), F2(U1, U2, . . . , Un)] = {0}, taking x = F1(rs, x

′
2, . . . , x

′
n),

where r, s ∈ U1, x
′
2 ∈ U2, . . . , x

′
n ∈ Un gives

[F1(rs, x
′
2, . . . , x

′
n), F2(U1, U2, . . . , Un)] = {0}

= [F1(rs, x
′
2, . . . , x

′
n) + F1(rs, x

′
2, . . . , x

′
n), F2(U1, U2, . . . , Un)].

Arguing in the similar manner as above, we get

F1(U
2
1 , U2, . . . , Un)F2(x1 + x′1 − x1 − x′1, x2, . . . , xn) = {0}.

Since U2
1 is a semigroup ideal, Lemma 2.11 gives

F2(x1 + x′1 − x1 − x′1, x2, . . . , xn) = 0,(13)

for all x1, x
′
1 ∈ U1 such that x1 + x′1 ∈ U1. Now, take x1 = rx′ and x′1 = ry′ for

r ∈ U1 and x′, y′ ∈ N , so that x1, x
′
1 and x1 + x′1 = rx′ + ry′ = r(x′ + y′) ∈ U1.

It follows from relation (13) that

F2(rx
′ + ry′ − rx′ − ry′, x2, . . . , xn) = 0, for all r ∈ U1, x

′, y′ ∈ N.

Replacing r by rw, w ∈ U1 we get F2(U1, U2, . . . , Un)U1(x
′+ y′−x′− y′) = {0},

for all x′, y′ ∈ N and by Lemma 2.2(ii) either F2(U1, U2, . . . , Un) = {0} or
x′ + y′ − x′ − y′ = 0, for all x′, y′ ∈ N . If F2(U1, U2, . . . , Un) = {0}, then
proceeding as in Lemma 2.10, we find F2 = 0 and the second case implies that
(N,+) is an abelian group. Similarly if we consider

[F1(U1, U2, . . . , Un), x] = [F1(U1, U2, . . . , Un), x+ x] = 0

and proceeding as above, we can find either F1 = 0 or (N,+) is an abelian
group.

Theorem 3.2. Let N be a 3-prime near ring and U1, U2, . . . , Un are nonzero
semigroup ideals of N. Let F be a generalized n-semiderivation associated with
an n-semiderivation d and a map g associated with d such that g(U1) = U1 and
g(x1x

′
1) = g(x1)g(x

′
1), for all x1, x

′
1 ∈ U1. If F (U1, U2, . . . , Un) ⊆ Z(N), then

F = 0 or N is a commutative ring.

Proof. For all x1, x
′
1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un, we get

F (x1x
′
1, x2, . . . , xn)=d(x1, x2, . . . , xn)g(x

′
1)+x1F (x′1, x2, . . . , xn)∈Z(N).(14)

Now, commuting (14) with the element x1, we get

(d(x1, x2, . . . , xn)g(x
′
1) + x1F (x′1, x2, . . . , xn))x1

= x1(d(x1, x2, . . . , xn)g(x
′
1) + x1F (x′1, x2, . . . , xn)).
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Using the hypothesis and Lemma 2.9(ii), we have

d(x1, x2, . . . , xn)g(x
′
1)x1 + x1x1F (x′1, x2, . . . , xn)

= x1d(x1, x2, . . . , xn)g(x
′
1) + x1x1F (x′1, x2, . . . , xn).

This implies that,

d(x1, x2, . . . , xn)x
′
1x1 = x1d(x1, x2, . . . , xn)x

′
1.(15)

Replacing x′1 by x′1r for r ∈ N in (22) and using it again, we get

d(x1, x2, . . . , xn)x
′
1[x1, r] = 0, for all x1, x

′
1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un, r ∈ N.

By Lemma 2.2(ii), either d(x1, x2, . . . , xn) = 0, for all x1 ∈ U1, x2 ∈ U2, . . . , xn ∈
Un or U1 ⊆ Z(N). If d(x1, x2, . . . , xn) = 0, for all x1,∈ U1, x2 ∈ U2, . . . , xn ∈ Un,
then

F (x1x
′
1, x2, . . . , xn) = F (x1, x2, . . . , xn)x

′
1 ∈ Z(N).

This implies that F (x1, x2, . . . , xn)x
′
1s = sF (x1, x2, . . . , xn)x

′
1, for all x1, x

′
1 ∈

U1, x2 ∈ U2, . . . , xn ∈ Un, and s ∈ N . Replacing x′1 by x′1x
′′
1, for all x

′′
1 ∈ U1 in

above expression and using it again, we find that

F (x1, x2, . . . , xn)U1[x
′′
1, s] = {0}.

By Lemma 2.2(ii), we have F (x1, x2, . . . , xn) = 0, for all x1 ∈ U1, x2 ∈ U2, . . . , xn
∈ Un or U1 ⊆ Z(N). If F (x1, x2, . . . , xn) = 0, for all x1 ∈ U1, x2 ∈ U2, . . . , xn ∈
Un, then proceeding as in Lemma 2.10, we can get F = 0 on N . In later case
U1 ⊆ Z(N) implies that N is a commutative ring by Lemma 2.3.

Theorem 3.3. Let N be a 2-torsion free 3-prime near ring and U1, U2, . . . , Un

are nonzero semigroup ideals of N . Suppose that N admits a nonzero generalized
n-semiderivation F associated with an n-semiderivations d and a map g associ-
ated with d such that g(U1) = U1 and g(x1x

′
1) = g(x1)g(x

′
1), for all x1, x

′
1 ∈ U1.

If [F (U1, U2, . . . , Un), F (U1, U2, . . . , Un)] = {0}, then F maps Un into Z(N) or
F is an n-multiplier on N .

Proof. By hypothesis, for all x1, y1 ∈ U1, x2, y2 ∈ U2, . . . , xn, yn ∈ Un,

F (x1, x2, . . . , xn)F (y1, y2, . . . , yn) = F (y1, y2, . . . , yn)F (x1, x2, . . . , xn).(16)

Replacing y1 by F (z1, z2, . . . , zn)y1 in (16), where z1 ∈ U1, z2 ∈ U2, . . . , zn ∈ Un,
we get

F (x1, x2, . . . , xn)F (F (z1, z2, . . . , zn)y1, y2, . . . , yn)

= F (F (z1, z2, . . . , zn)y1, y2, . . . , yn)F (x1, x2, . . . , xn),
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F (x1, x2, . . . , xn){d(F (z1, z2, . . . , zn), y2, . . . , yn)g(y1)

+ F (z1, z2, . . . , zn)F (y1, y2, . . . , yn)}
= {d(F (z1, z2, . . . , zn), y2, . . . , yn)g(y1)

+ F (z1, z2, . . . , zn)F (y1, y2, . . . , yn)}F (x1, x2, . . . , xn).

By Lemma 2.9(ii), we have

F (x1, x2, . . . , xn)d(F (z1, z2, . . . , zn), y2, . . . , yn)g(y1)

+ F (x1, x2, . . . , xn)F (z1, z2, . . . , zn)F (y1, y2, . . . , yn)

= d(F (z1, z2, . . . , zn), y2, . . . , yn)g(y1)F (x1, x2, . . . , xn)

+ F (z1, z2, . . . , zn)F (y1, y2, . . . , yn)F (x1, x2, . . . , xn).

This implies that

F (x1, x2, . . . , xn)d(F (z1, z2, . . . , zn), y2, . . . , yn)y1

= d(F (z1, z2, . . . , zn), y2, . . . , yn)y1F (x1, x2, . . . , xn).(17)

Replacing y1 by y1t, for all t ∈ N and using (17), we obtain

F (x1, x2, . . . , xn)d(F (z1, z2, . . . , zn), y2, . . . , yn)y1t

= F (x1, x2, . . . , xn)y1td(F (z1, z2, . . . , zn), y2, . . . , yn),

which reduces to,

d(F (z1, z2, . . . , zn), y2, . . . , yn)U1[F (x1, x2, . . . , xn), t] = {0}.

By Lemma 2.2(ii), we get[F (x1, x2, . . . , xn), t] = 0, for all x1 ∈ U1, x2 ∈ U2, . . . , xn
∈ Un, t ∈ N or d(F (z1, z2, . . . , zn), y2, . . . , yn) = 0, for all z1 ∈ U1, y2, z2 ∈
U2, . . . , yn, zn ∈ Un. In the first case F (U1, U2, . . . , Un) ⊆ Z(N) shows that F
maps Un into Z(N), the centre of N. Let us assume that d(F (U1, U2, . . . , Un),
U2, . . . , Un) = {0}, then

0 = d(F (y1y
′
1, y2, . . . , yn), y2, . . . , yn)

= d{(F (y1, y2, . . . , yn)y
′
1 + g(y1)d(y

′
1, y2, . . . , yn)), y2, . . . , yn}

= d((F (y1, y2, . . . , yn)y
′
1, y2, . . . , yn) + d(y1d(y

′
1, y2, . . . , yn), y2, . . . , yn)

= F (y1, y2, . . . , yn)d(y
′
1, y2, . . . , yn) + d(y1, y2, . . . , yn)d(y

′
1, y2, . . . , yn)

+ y1d(d(y
′
1, y2, . . . , yn), y2, . . . , yn) for all y1, y

′
1 ∈ U1, y2 ∈ U2, . . . , yn ∈ Un.

Now, replacing y1 by y1z1, for all z1 ∈ U1, we have

{d(y1, y2, . . . , yn)z1 + y1F (z1, y2, . . . , yn)}d(y′1, y2, . . . , yn)
+ {d(y1, y2, . . . , yn)z1 + y1d(z1, y2, . . . , yn)}d(y′1, y2, . . . , yn)
+ y1z1d(d(y

′
1, y2, . . . , yn), y2, . . . , yn)} = 0,
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2d(y1,y2, . . . , yn)z1d(y
′
1, y2, . . . , yn) + y1{F (z1, y2, . . . , yn)d(y

′
1, y2, . . . , yn)

+ d(z1, y2, . . . , yn)d(y
′
1, y2, . . . , yn) + z1d(d(y

′
1, y2, . . . , yn), y2, . . . , yn)} = 0,

which implies that

2d(y1, y2, . . . , yn)z1d(y
′
1, y2, . . . , yn)=0 for all y1, y

′
1, z1∈U1, y2∈U2, . . . , yn∈Un.

Since N is 2-torsion free, we get

d(y1, y2, . . . , yn)U1d(y
′
1, y2, . . . , yn) = {0} for all y1, y

′
1 ∈ U1, y2 ∈ U2, . . . , yn ∈ Un.

Thus, we obtain d(U1, U2, . . . , Un) = {0}. Arguing as above, we conclude that
F is an n-multiplier on N .

Theorem 3.4. Let N be a 3-prime near ring and U1, U2, . . . , Un be nonzero
semigroup ideals of N . Suppose that N admits a generalized n-semiderivation
F associated with an n-semiderivation d and an additive map g associated with
d such that g(U1) = U1 and g(x1x

′
1) = g(x1)g(x

′
1), for all x1, x

′
1 ∈ U1. If

F ([x, y], x2, . . . , xn) = ±[x, y], for all x, y ∈ U1, x2 ∈ U2, . . . , xn ∈ Un, then F is
an n-multiplier or N is a commutative ring.

Proof. By hypothesis

F ([x, y], x2, . . . , xn) = ±[x, y], for all x, y ∈ U1, x2 ∈ U2, . . . , xn ∈ Un.(18)

Replacing y by xy in (18) and using [x, xy] = x[x, y], we get

F (x[x, y], x2, . . . , xn) = ±x[x, y],

d(x, x2, . . . , xn)g([x, y]) + xF ([x, y], x2, . . . , xn) = ±x[x, y].

Using (18), we get

d(x, x2, . . . , xn)g([x, y]) = 0, for all x, y ∈ U1, x2 ∈ U2, . . . , xn ∈ Un.(19)

This implies that

d(x, x2, . . . , xn)g(x)g(y) = d(x, x2, . . . , xn)g(y)g(x).

Replacing y by yz in the above expression and using it again, we arrive at

d(x, x2, . . . , xn)g(y)[g(x), g(z)] = 0.

Since g(U1) = U1, substituting arbitrary elements x′, y′ and z′ of U1 in place of
g(x), g(y) and g(z) respectively, we obtain

d(x, x2, . . . , un)U1[x
′, z′] = {0}, for all x, x′, z′ ∈ U1, x2 ∈ U2, . . . , xn ∈ Un.
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By Lemma 2.2(ii), we have either d(x, x2, . . . , xn) = 0 or [x′, z′] = 0, for all
x, x′, z′ ∈ U1, x2 ∈ U2, . . . , xn ∈ Un. If d(x, x2, . . . , xn) = 0, then proceeding as
in Lemma 2.4, we can find d = 0 on N . Therefore,

F (x1x
′
1, x2, . . . , xn) = x1F (x′1, x2, . . . , xn) = F (x1, x2, . . . , xn)x

′
1,

for all x1, x
′
1, x2, . . . , xn ∈ N and hence F is an n-multiplier on N . In later case,

we have [x′, z′] = 0, i.e., x′z′ = z′x′. Replacing z′ by z′r and using it again,
we find that z′[x′, r] = 0, i.e., U1[x

′, r] = {0}, for all x′ ∈ U1, r ∈ N . By an
application of Lemma 2.2(i) and Lemma 2.3, N is a commutative ring.

Theorem 3.5. Let N be a 2-torsion free 3-prime near ring and U1, U2, . . . , Un

be nonzero semigroup ideals of N . Suppose that N admits a generalized n-
semiderivation F associated with an n-semiderivation d and an additive map
g associated with d such that g(U1) = U1 and g(x1x

′
1) = g(x1)g(x

′
1), for all

x1, x
′
1 ∈ U1. If F (x ◦ y, x2, . . . , xn) = 0, for all x, y ∈ U1, x2 ∈ U2, . . . , xn ∈ Un,

then F = 0.

Proof. By hypothesis

F (x ◦ y, x2, . . . , xn) = 0, for all x, y ∈ U1, x2 ∈ U2, . . . , xn ∈ Un.(20)

Replacing y by xy in (20), we get

d(x, x2, . . . , xn)g(x ◦ y) + xF (x ◦ y, x2, . . . , xn) = 0.

Using (20), we get

d(x, x2, . . . , xn)g(x ◦ y) = 0, for all x, y ∈ U1, x2 ∈ U2, . . . , xn ∈ Un.(21)

Since g is additive and g(x1x
′
1) = g(x1)g(x

′
1), for all x1, x

′
1 ∈ U1, then (21) can

be written as

d(x, x2, . . . , xn)g(x)g(y) = −d(x, x2, . . . , xn)g(y)g(x).

Replacing y by yz in the above expression and using it again, we arrive at

d(x, x2, . . . , xn)g(y)g(−x)g(z) = d(x, x2, . . . , xn)g(y)g(z)g(−x),

which implies that

d(x, x2, . . . , xn)g(y)[g(−x), g(z)] = 0, for all x, y, z ∈ U1, x2 ∈ U2, . . . , xn ∈ Un.

Putting −x in place of x in the last expression, we obtain

d(−x, x2, . . . , xn)g(y)[g(x), g(z)] = 0, for all x, y, z ∈ U1, x2 ∈ U2, . . . , xn ∈ Un.

Now, replacing g(x), g(y) and g(z) by arbitrary elements x′, y′ and z′ of U1

and applying Lemma 2.2(ii), we get either d(−x, x2, . . . , xn) = 0 or [x′, z′] =



CHARACTERIZATION OF GENERALIZED n-SEMIDERIVATIONS OF 3-PRIME ... 151

0, for all x, y, z ∈ U1, x2 ∈ U2, . . . , xn ∈ Un. Since d is n-additive, then
d(−x, x2, . . . , xn) = 0 implies that d(x, x2, . . . , xn) = 0. Hence, we have ei-
ther d(x, x2, . . . , xn) = 0 or [x′, z′] = 0, for all x, y, z ∈ U1, x2 ∈ U2, . . . , xn ∈ Un.
Arguing in the similar manner as in Theorem 3.4, we get F is an n-multiplier
or N is commutative.

If N is commutative, then the hypothesis becomes

0 = F (x ◦ y, x2, . . . , xn) = 2F (xy, x2, . . . , xn).

Since N is 2-torsion free, we get

F (xy, x2, . . . , xn) = 0.(22)

Replacing y by yz in (22), we obtain

F (xy, x2, . . . , xn)z + g(xy)d(z, x2, . . . , xn) = 0,

g(x)g(y)d(z, x2, . . . , xn) = 0.

Since g(U1) = U1, then by Lemma 2.2(ii), we have d(z, x2, . . . , xn) = 0, so
Lemma 2.4 forces that d = 0, thus F is an n-multiplier and (22) becomes
F (x, x2, . . . , xn)y = 0 and Lemma 2.10 forces that F = 0.

If F is an n-multiplier, then replacing y by xy in (20), we obtain

F (x, x2, . . . , xn)(x ◦ y) = 0.

By using same argument as above, we get

F (x, x2, . . . , xn)U1[x, z] = 0.

By Lemma 2.2(ii), we get x ∈ Z(N) or F (x, x2, . . . , xn) = 0. If x ∈ Z(N),
then the hypothesis becomes 2F (xy, u2, u3, . . . , un) = 0. By 2-torsion free-
ness of N , we find that F (x, x2, ...un)y = 0, thus in all the cases we arrive
at F (x, x2, . . . , xn) = 0 and Lemma 2.10 forces that F = 0.

Theorem 3.6. Let N be a 2-torsion free 3-prime near ring; U1, U2, . . . , Un are
nonzero semigroup ideals of N and an additive map g such that g(U1) = U1

and g(x1x
′
1) = g(x1)g(x

′
1), for all x1, x

′
1 ∈ U1. There is no generalized n-

semiderivation F associated with an n-semiderivation d and g such that F (x ◦
y, x2, . . . , xn) = ±(x ◦ y), for all x, y ∈ U1, x2 ∈ U2, . . . , xn ∈ Un.

Proof. Suppose that there exists F such that

F (x ◦ y, x2, . . . , xn) = ±(x ◦ y) for all x, y ∈ U1, x2 ∈ U2, . . . , xn ∈ Un.(23)

Substituting xy for y in (23), we get

F (x(x ◦ y), x2, . . . , xn) = ±x(x ◦ y).
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This implies that

d(x, x2, . . . , xn)g(x ◦ y) + xF ((x ◦ y), x2, . . . , xn) = ±x(x ◦ y).

Using (23), we get d(x, x2, . . . , xn)g(x ◦ y) = 0. Arguing in the similar manner
as in Theorem 3.4 and Theorem 3.5, we get N is commutative or F is an n-
multiplier.

If N is commutative, then the hypothesis becomes 2F (xy, x2, . . . , xn) = 2xy
that is F (xy, x2, . . . , xn) = xy this yields that d = 0 and replacing x2 by x2x

′
2

and x2x
′′
2, where x′2 ̸= x′′2 and comparing the result, we arrive at

(x′2 − x′′2)(x ◦ y) = 0

This leads to N = (0), a contradiction.
If F is an n-multiplier, then reasoning as above we arrive at N = (0), a

contradiction, so we obtain the required result.

Theorem 3.7. Let N be a prime near ring and U1, U2, . . . , Un be nonzero semi-
group ideals of N . Suppose that N admits a generalized n-semiderivation F as-
sociated with a map d : N ×N × ...×N︸ ︷︷ ︸

n−times

→ N and a map g such that g(U1) = U1

and U1 ∩ Z(N) ̸= {0}. If F ([x1, y1], x2, . . . , xn) = ±[F (x1, x2, . . . , xn), y1], for
all x1, y1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un, then F is commuting on U1.

Proof. By hypothesis

F ([x1, y1], x2, . . . , xn) = [F (x1, x2, . . . , xn), y1](24)

Replacing y1 by x1y1 in (24), we have

d(x1, x2, ...xn)g([x1, y1]) + x1F ([x1, y1], x2, . . . , xn) = [F (x1, x2, . . . , xn), x1y1],

d(x1, x2, ...xn)g([x1, y1]) + x1[F (x1, x2, . . . , xn), y1] = [F (x1, x2, . . . , xn), x1y1],

d(x1, x2, ...xn)g([x1, y1]) + x1F (x1, x2, . . . , xn)y1 − x1y1F (x1, x2, . . . , xn)

= F (x1, x2, . . . , xn)x1y1 − x1y1F (x1, x2, . . . , xn).

If we choose y1 ∈ U1∩Z(N), then above relation yields that x1F (x1, x2, . . . , xn)y1
= F (x1, x2, . . . , xn)x1y1. This implies that y1[F (x1, x2, . . . , xn), x1] = 0 and by
Lemma 2.2(i), we find [F (x1, x2, . . . , xn), x1] = 0. Hence, F is commuting on
U1. In the similar manner we can prove the result for F ([x1, y1], x2, . . . , xn) =
−[F (x1, x2, . . . , xn), y1], for all x1, y1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un.

Theorem 3.8. Let N be a 3-prime near ring and U1, U2, . . . , Un are nonzero
semigroup ideals of N . Suppose that N admits a generalized n-semiderivation F
associated with a map d : N ×N × ...×N︸ ︷︷ ︸

n−times

→ N and a map g such that g(U1) =

U1 and U1 ∩ Z(N) ̸= {0}. If F ([x1, y1], x2, . . . , xn) = ±[x1, F (y1, x2, . . . , xn)],
for all x1, y1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un, then F is commuting on U1.
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Proof. By hypothesis

F ([x1, y1], x2, . . . , xn) = [x1, F (y1, x2, . . . , xn)](25)

Replacing x1 by y1x1 in (25), we get

d(y1, x2, ...xn)g([x1, y1]) + y1F ([x1, y1], x2, . . . , xn) = [y1x1, F (x1, x2, . . . , xn)],

d(y1, x2, ...xn)g([x1, y1]) + y1[x1, F (y1, x2, . . . , xn)] = [y1x1, F (x1, x2, . . . , xn)],

d(y1, x2, ...xn)g([x1, y1]) + y1x1F (y1, x2, . . . , xn)− y1F (y1, x2, . . . , xn)x1

= y1x1F (x1, x2, . . . , xn)− F (x1, x2, . . . , xn)y1x1

If we choose x1 ∈ U1∩Z(N), then above relation yields that y1F (y1, x2, . . . , xn)x1
= F (x1, x2, . . . , xn)y1x1. This implies that x1[F (y1, x2, . . . , xn), y1] = 0 and by
Lemma 2.2(i), we find [F (y1, x2, . . . , xn), y1] = 0. Hence F is commuting on
U1. In the similar manner we can prove the result for F ([x1, y1], x2, . . . , xn) =
−[x1, F (y1, x2, . . . , xn)], for all x1, y1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un, then F is
commuting on U1.

Theorem 3.9. Let N be a 3-prime near ring and U1, U2, . . . , Un be nonzero
semigroup ideals of N . Suppose that N admits a nonzero generalized n-semi-
derivation F associated with an n-semiderivation d on N and a map g such that
g(U1) = U1 and d(Z(N), U2, . . . , Un) ̸={0}. If [F (x1, x2, . . . , xn), F (y1, y2, . . . , yn)]
= 0, for all x1, y1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un, then N is a commutative ring.

Proof. Let z ∈ Z(N) and d(z, y2, . . . , yn) ̸= 0. Then by hypothesis

F (x1, x2, . . . , xn)F (y1z, y2, . . . , yn) = F (y1z, y2, . . . , yn)F (x1, x2, . . . , xn),

F (x1, x2, . . . , xn)F (y1, y2, . . . , yn)z + F (x1, x2, . . . , xn)g(y1)d(z, y2, . . . , yn)

= F (y1, y2, . . . , yn)zF (x1, x2, . . . , xn)

+ g(y1)d(z, y2, . . . , yn)F (x1, x2, . . . , xn).

This implies that,

F (x1, x2, . . . , xn)g(y1)d(z, y2, . . . , yn) = g(y1)d(z, y2, . . . , yn)F (x1, x2, . . . , xn).

By hypothesis, we find d(z, y2, . . . , yn)[F (x1, x2, . . . , xn), g(y1)] = 0. By Lemma
2.1(i), we get [F (x1, x2, . . . , xn), y1] = 0. Replacing y1 by y1r for r ∈ N , we have

y1[F (x1, x2, . . . , xn), r] = 0.

By Lemma 2.2(ii), we obtain

[F (x1, x2, . . . , xn), r] = 0, for all x1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un, r ∈ N.

Therefore, F (U1, U2, . . . , Un) ⊆ Z(N) and hence N is a commutative ring by
Theorem 3.2.
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Theorem 3.10. Suppose that N is a prime near ring; U1, U2, . . . , Un are nonzero
semigroup ideals of N and V1, V2, . . . , Vn are nonempty subsets of N .

If F is a generalized n-semiderivation acts as a left multiplier such that
F (x1y1, x2, . . . , xn) = F (y1x1, x2, . . . , xn), for all y1 ∈ V1, x1 ∈ U1, x2 ∈ U2..., xn
∈ Un, then F (V1, V2, . . . , Vn) = {0} or V1 ⊆ Z(N).

Proof. By hypothesis, for all y1 ∈ V1, x1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un,

F (x1y1, x2, . . . , xn) = F (y1x1, x2, . . . , xn).(26)

Replacing x1 by y1x1 in (26), we get

F (y1, x2, . . . , xn)x1y1 = F (y1, x2, . . . , xn)y1x1.(27)

Replacing x1 by x1x
′
1, for all x

′
1 ∈ U1 in (27), we have

F (y1, x2, . . . , xn)x1x
′
1y1 = F (y1, x2, . . . , xn)x1y1x

′
1,

which implies that,

F (y1, x2, . . . , xn)U1[x
′
1, y1] = {0}.

By Lemma 2.2(ii), we have F (y1, x2, . . . , xn)=0, for all y1 ∈ V1, x2 ∈ U2, . . . , xn ∈
Un or y1 centralizes U1. In first case, replacing x2 by y2x2, for all y2 ∈
V2, we find that F (y1, y2, . . . , xn)x2 = 0 and again by Lemma 2.2(i), we get
F (y1, y2, . . . , xn) = 0. Proceeding inductively, we obtain F (y1, y2, . . . , yn) = 0,
for all y1 ∈ V1, y2 ∈ V2, . . . , yn ∈ Vn, which completes the proof.

Theorem 3.11. Let N be a 3-prime near ring and U1, U2, . . . , Un are nonempty
subsets of N and V1, V2, . . . , Vn are nonzero semigroup ideals of N . Suppose that
N admits a generalized n-semiderivation F associated with an n- semideriva-
tion d and an additive map g such that g(V1) = V1. If F (x1y1, y2, . . . , yn) =
F (y1x1, y2, . . . , yn), for all x1 ∈ U1, y1 ∈ V1, y2 ∈ V2, . . . , yn ∈ Vn, then
D(U1, U2, . . . , Un) = {0} or U1 ⊆ Z(N).

Proof. By hypothesis, for all x1 ∈ U1, y1 ∈ V1, y2 ∈ V2, . . . , yn ∈ Vn,

F (x1y1, y2, . . . , yn) = F (y1x1, y2, . . . , yn).(28)

Replacing y1 by x1y1 in (28), we have

d(x1, y2, . . . , yn)g(x1y1) + x1F (x1y1, y2, . . . , yn)

= d(x1, y2, . . . , yn)g(y1x1) + x1F (y1x1, y2, . . . , yn),

d(x1, y2, . . . , yn)g(x1y1) + x1F (x1y1, y2, . . . , yn)

= d(x1, y2, . . . , yn)g(y1x1) + x1F (x1y1, y2, . . . , yn).

This implies that,

d(x1, y2, . . . , yn)g(x1y1 − y1x1) = 0.
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Since g is additive and g(V1) = V1, we have

d(x1, y2, . . . , yn)[x1, y1]=0, for all x1∈U1, y1∈V1, y2∈V2, . . . , yn ∈ Vn.(29)

Replacing y1 by y1r, for all r ∈ N in (29) and using (29), we find

d(x1, y2, . . . , yn)y1[x1, r] = 0.

By Lemma 2.2(ii), we get d(x1, y2, . . . , yn) = 0, for all x1 ∈ U1, y2 ∈ V2, . . . , yn ∈
Vn or U1 ⊆ Z(N). In first case, replacing y2 by x2y2, for all x2 ∈ U2, we conclude
that

d(x1, x2, . . . , yn)y2 + g(x2)d(x1, y2, . . . , yn) = 0.

The last expression yields that d(x1, x2, . . . , yn) = 0, for all x1 ∈ U1, x2 ∈
U2, . . . , yn ∈ Vn. Proceeding inductively, we obtain d(x1, x2, . . . , xn) = 0, for
all x1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un. Hence, d(U1, U2, . . . , Un) = {0} or U1 ⊆
Z(N).

The following example demonstrates that the primeness hypothesis in The-
orems 3.2, 3.4 to 3.11 is not superfluous.

Example 3. Let S be a commutative near ring. Consider

N =

{0 x y
0 0 0
0 z 0

 | 0, x, y, z ∈ S

}
and U =

{0 x y
0 0 0
0 0 0

 | 0, x, y ∈ S

}
.

It can be easily seen that N is a non prime zero-symmetric left near ring with
respect to matrix addition and matrix multiplication and U is a nonzero semi-
group ideal of N . Define mappings F, d : N ×N × ...×N︸ ︷︷ ︸

n−times

→ N by

F

(0 x1 y1
0 0 0
0 z1 0

 ,

0 x2 y2
0 0 0
0 z2 0

 , . . . ,

0 xn yn
0 0 0
0 zn 0

) =

0 z1z2...zn 0
0 0 0
0 0 0

 ,

d

(0 x1 y1
0 0 0
0 z1 0

 ,

0 x2 y2
0 0 0
0 z2 0

 , . . . ,

0 xn yn
0 0 0
0 zn 0

) =

0 y1y2...yn 0
0 0 0
0 0 0

 .

Define a map g : N → N by

g

ccc0 x y
0 0 0
0 z 0

 =

0 z 0
0 0 0
0 0 0

 .

If we choose U1 = U2 = · · · = Un = U , then it is easy to check that F is a nonzero
generalized n-semiderivation associated with a nonzero n-semiderivation d and
a map g associated with d on N satisfying the following conditions:
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(i) F (U1, U2, . . . , Un) ⊆ Z(N), (ii) F ([x1, y1], x2, . . . , xn) = ±[x1, y1],

(iii) F (x1 ◦ y1, x2, . . . , xn) = 0, (iv) F (x1 ◦ y1, x2, . . . , xn) = ±(x1 ◦ y1),

(v) F ([x1, y1], x2, . . . , xn) = ±[F (x1, x2, . . . , xn), y1],

(vi) F ([x1, y1], x2, . . . , xn) = ±[x1, F (y1, x2, . . . , xn)],

(vii) [F (x1, x2, . . . , xn), F (y1, y2, . . . , yn)] = 0,

for all x1, y1 ∈ U1, x2, y2 ∈ U2, . . . , xn, yn ∈ Un. However, N is not commutative.

Example 4. Let N1 = (C,+, ·) be the ring of complex numbers with respect to
the usual addition and multiplication of complex numbers and N2 = (C,+, ⋆),
where C is the set of complex numbers, + is the usual addition of complex
numbers and ⋆ is defined by x ⋆ y =| x | ·y, for all x, y ∈ C. Then it is
easy to see that N2 is a zero-symmetric left near ring. Now, consider the set
S = N1 × N2, which is a non-commutative zero-symmetric left near ring with
respect to the componentwise addition and multiplication. Suppose that

N =

{(0, 0) (x, x′) (y, y′)
(0, 0) (0, 0) (0, 0)
(0, 0) (z, z′) (0, 0)

 | (x, x′), (y, y′), (z, z′), (0, 0) ∈ S

}
.

Then N is a zero-symmetric left near ring with respect to matrix addition and
matrix multiplication but N is not 3-prime. Let

U =

{(0, 0) (x, x′) (y, y′)
(0, 0) (0, 0) (0, 0)
(0, 0) (0, 0) (0, 0)

 | (x, x′), (y, y′), (0, 0) ∈ S

}
,

which is a nonzero semigroup ideal of N .

Define mappings F, d : N ×N × ...×N︸ ︷︷ ︸
n−times

→ N by

F

((0, 0) (x1, x
′
1) (y1, y

′
1)

(0, 0) (0, 0) (0, 0)
(0, 0) (z1, z

′
1) (0, 0)

 ,

(0, 0) (x2, x
′
2) (y2, y

′
2)

(0, 0) (0, 0) (0, 0)
(0, 0) (z2, z

′
2) (0, 0)

 , . . . ,

(0, 0) (xn, x
′
n) (yn, y

′
n)

(0, 0) (0, 0) (0, 0)
(0, 0) (zn, z

′
n) (0, 0)

) =

(0, 0) (ȳ1ȳ2...ȳn, 0) (0, 0)
(0, 0) (0, 0) (0, 0)
(0, 0) (0, 0) (0, 0)

 ,

d

((0, 0) (x1, x
′
1) (y1, y

′
1)

(0, 0) (0, 0) (0, 0)
(0, 0) (z1, z

′
1) (0, 0)

 ,

(0, 0) (x2, x
′
2) (y2, y

′
2)

(0, 0) (0, 0) (0, 0)
(0, 0) (z2, z

′
2) (0, 0)

 , . . . ,
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(0, 0) (xn, x
′
n) (yn, y

′
n)

(0, 0) (0, 0) (0, 0)
(0, 0) (zn, z

′
n) (0, 0)

) =

(0, 0) (y1y2...yn, 0) (0, 0)
(0, 0) (0, 0) (0, 0)
(0, 0) (0, 0) (0, 0)


and a map g : N → N by

g

(0, 0) (x, x′) (y, y′)
(0, 0) (0, 0) (0, 0)
(0, 0) (z, z′) (0, 0)

 =

(0, 0) (x, x′) (y, y′)
(0, 0) (0, 0) (0, 0)
(0, 0) (0, 0′) (0, 0)

 ,

where ȳ1, ȳ2, . . . , ȳn are the complex conjugates of y1, y2, . . . , yn respectively. If
we choose U1 = U2 = · · · = Un = U , then it is verified that F is a generalized
n-semiderivation associated with an n-semiderivation d and a map g associated
with d on N satisfying the following conditions:

(i) F (U1, U2, . . . , Un) ⊆ Z(N), (ii) F ([x1, y1], x2, . . . , xn) = ±[x1, y1],

(iii) F (x1 ◦ y1, x2, . . . , xn) = 0, (iv) F (x1 ◦ y1, x2, . . . , xn) = ±(x1 ◦ y1),

(v) F ([x1, y1], x2, . . . , xn) = ±[F (x1, x2, . . . , xn), y1],

(vi) F ([x1, y1], x2, . . . , xn) = ±[x1, F (y1, x2, . . . , xn)],

(vii) [F (x1, x2, . . . , xn), F (y1, y2, . . . , yn)] = 0,

for all x1, y1 ∈ U1, x2, y2 ∈ U2, . . . , xn, yn ∈ Un.
But, N is not commutative.

Open problem

(i) However, one can construct a natural example of a non-commutative near
ring satisfying the hypothesis of the above theorems. (ii) Our hypothesis are
dealt with the prime near rings. For further research, one can discuss the com-
mutativity of semiprime near rings which is an interesting work in future.
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