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Abstract. Let N be a near ring and n be a fixed positive integer. An n-additive (addi-
tive in each argument) mapping F' : NXxNx...xN — N is said to be a permu-
—_——

n—times
ting generalized n-semiderivation on a near ring N if there exists an n-semiderivation
d: NxN x..x N — N associated with a map g : N — N such that the relation
—_————

n—times

F(xixl, xay ... xn)=F (21,22, ..., 25)x)+g(z1)d(2], 22, . .., xp)=d(z1, 22, . .., 2pn)g(2])
+a1 F (2, 2, ..., 2n) and g(F (21,22, ..., 2n)) = F(g9(x1),9(z2),...,g(x,)) hold, for all
Z1,&y, @2, ..., &y, € N. The purpose of the present paper is to prove some commutativ-

ity theorems in case of a semigroup ideal of a 3-prime near ring admitting a generalized
n-semiderivation, thereby extending some known results of derivations, semiderivations
and generalized derivations.
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1. Introduction

A left near ring N is a triplet (N, +, ), where + and - are two binary operations
such that (i) (IV, +) is a group (not necessarily abelian), (ii) (V, -) is a semigroup,
and (iii) x - (y+2) =x-y+x -z, for all z,y,z € N. Analogously, if instead
of (iii), N satisfies the right distributive law, then N is said to be a right near
ring. The most natural example of a non-commutative left near ring is the
set of all identity preserving mappings acting from right of an additive group
G (not necessarily abelian) into itself with pointwise addition and composition
of mappings as multiplication. If these mappings act from left on G, then we
get a non-commutative right near ring (For more examples, we can refer Pilz
[2]). Throughout the paper, N represents a zero-symmetric left near ring with
multiplicative centre Z(N) and for any pair of elements x,y € N, the symbols
[z,y] and (x o y) denote the Lie Product xy — yx and Jordan product zy + yx.
A near ring N is called zero-symmetric if Oz = 0, for all x € N (recall that
left distributivity yields that z0 = 0). A near ring N is said to be 3-prime
if tNy = {0} for z,y € N implies that z = 0 or y = 0. A near ring N is
called 2-torsion free if (IV,+) has no element of order 2. A nonempty subset U
of N is called a semigroup right (resp. semigroup left) ideal of N if UN C U
(resp. NU C U) and if U is both a semigroup right ideal and a semigroup left
ideal, it is called a semigroup ideal. Let n > 2 be a fixed positive integer and
N*"=NXNx...xN. Amap A : N* — N is said to be permuting on a

n—times

near ring N if the relation A(x1,22,...,%n) = A(Tr1), Tr(2), - - - Tr(n)) holds,
forall z; € N,i=1,2,...,n and for every permutation m € S,,, where .S,, is the
permutation group on {1,2,...,n}. An additive mapping F' : N — N is said
to be a right (resp. left) generalized derivation with associated derivation d if
F(zy) = F(x)y + zd(y) (resp. F(zy) =d(z)y + zF(y)), for all z,y € N and F
is said to be a generalized derivation with associated derivation d on N if it is
both a right generalized derivation and a left generalized derivation on N with
associated derivation d.

Ozturk et. al. [6] and Park et. al. [5] studied bi-derivations and tri-
derivations in near rings. A symmetric bi-additive mapping d : N x N — N
(i.e., additive in both arguments) is said to be a symmetric bi-derivation on N if
d(zy,z) = d(z, z)y + xd(y, z) holds, for all z,y,z € N. A permuting tri-additive
mapping d : N x N x N — N is said to be a permuting tri-derivation on N if

d(zw,y, z) = d(z,y, z)w + zd(w, y, 2)

is fulfilled, for all w,z,y,z € N. Muthana [7] defined bimultipliers in rings as
follows: A biadditive (additive in both arguments) mapping B : R X R — R is
called a left (resp. right) bimultiplier on a ring R if B(zy, z) = B(z, 2)y (resp.
B(zy, z) = zB(y, z)) holds, for all z,y,z € R. Motivated by this definition we
define an n-additive mapping F' : N X N x ... x N — N is called a left (resp.

n—times
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right) n-multiplier on a near ring N if F(x12], 29, ..., 2,) = F(x1,22,...,2,)x]
(resp. F(x12),29,...,2yn) = z1 F (2, z2,...,2y)), for all z1,2),2x9,...,2, € N.
Very recently Asma et. al. [1] defined semiderivations in near rings. An additive
mapping d : N — N is said to be a semiderivation on a near ring N if there exists
a mapping ¢g : N — N such that d(zy) = d(x)g(y) + zd(y) = d(z)y + g(x)d(y)
and d(g(z)) = g(d(z)), for all z,y € N. Let n be a fixed positive integer. An
n-additive (i.e., additive in each argument) mapping d: N x N x ... x N — N

n—times
is said to be an n-semiderivation on a near ring N if there exists a mapping

g : N — N such that the relations

d(z12, z2, .. xn) = d(x1, 29, ..., 10)g(2)) + 21d(2], 22, . . ., Tp)
= d(x1, 22, ..., )7 + g(x1)d(2), 22, 2p)
d(z1, 207h, ... 1n) = d(T1, T2, ..., 20)g9(xh) + xod(T1, 25, . . ., TH)
=d(x1, 32, ..., 2n)7h + g(z2)d(21, 25, ..., 2p)
d(z1,22,. .., x01)) = d(x1, 22, ..., 2n)g(z)) + Tpd(z1, T2, ..., 2))
=d(z1,79,...,20)7, + g(xy)d(z1, 22, . .., 7))

and g(d($1,$2,...,xn)) = d(g($1),g($2),,g($n)) h01d7 for all xi’x; €N
for i = 1,2,...,n. An n-additive (i.e., additive in each argument) mapping
F:NxNx..xN — N is said to be a generalized n-semiderivation on N

n—times
if there exists an n-semiderivation d : N x N X ... x N — N associated with a

n—times

map g : N — N such that the relations

F(oa,zo, ... 20) = F(x1, 22, ..., 20)7) + g(x1)d(2), 22, . . ., 1)
=d(z1,29,...,2,)9(x) + 21 F (2, 22, . .., 2)
F(xy,m0xh, ... zn) = F(x1, 22, ..., 20)2h + g(x2)d(21, 25, . ., 1)
:d(l'l,xQ,...,xn)g(x,z)+$2F($1,$2, 73771)
F(xy,m9,...,002)) = F(21,29,...,2,)2), + g(xn)d(x1, 29, . .., 7))
=d(z1,22,...,20)9(x)) + 2 F (21, 22,...,2))
and g(F(z1,22,...,2,)) = F(g(z1), 9(x2), ..., 9(xy)) hold, for all z;, 2, € N for
i =1,2,...,n. All n-semiderivations are generalized n-semiderivations. More-

over, if ¢ is the identity map on N, then all generalized n-semiderivations are
merely generalized n-derivations, the notion of generalized n-semiderivation gen-
eralizes that of generalized n-derivation. Moreover, generalization is not trivial,
as the following example shows:
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Example 1. Let S be a commutative near ring. Consider
0 = y
N = 0 0 z ||0,z,y,2€ 8.
0 00

Then N is a zero-symmetric left near ring with respect to matrix addition and
matrix multiplication. Define mappings F,d: N X N X ... x N = N by

n—times
0 z1 0 z2 yo 0 zn yn 0 0 z122...2
F 0 0 2,10 0 21],...,10 0 =z, =0 0 0 ,
0 0 O 0 0 O 0 0 0 0 0 0
0 1 w1 0 zo yo 0 Zn Yn 0 0 zixa...xp
d 0 0 2,10 0 2z1],...,10 0 =z, =0 0 0
0 0 O 0 0 O 0 0 O 0 0 0
and a map g: N — N by
0 =z vy 0 0 =z
glO0O 0 z] =10 0 O
0 0 0 0 0 0

It can be easily verified that F' is a generalized n-semiderivation associated with
an n-semiderivation d and a map g associated with d on V.

Example 2. Let S be a commutative near ring. Consider
0 =z y
N:{ 0 00 ]O,x,y,zES}.
0 0 =z

Then N is a zero-symmetric left near ring with respect to matrix addition and
matrix multiplication. Define mappings F,d: N x N x ... x N — N by

n—times

0 =1 w1 0 z2 o 0 =z, yn 0 ziz9..xzp, O
F( o o o}]J,{o o O0},....,10 0 O >: 0 0 0],

0 0 =z 0 0 2o 0 0 2z, 0 0 0

0 =1 n 0 z2 yo 0 zn yn 0 0 yiz2...2n
d( o o o0)],{0 0 O01],...,10 O O ): 0 0 0

0 0 =z 0 0 =2 0 0 =z, 0 0 z129..2n
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and a map g: N — N by

S O R
N ow

0 0
=10 0
0 0

O O 8

0
glo0
0

It is easy to see that F' is a generalized n-semiderivation associated with an
n-semiderivation d and a map ¢ associated with d on N. However, F' is not a
generalized n-derivation on N.

2. Preliminary results

We begin with several Lemmas, most of which have been proved elsewhere.
Lemma 2.1 ([3, Lemma 1.2 and Lemma 1.3]). Let N be 3-prime near ring.
(1) If z € Z(N)\{0}, then z is not a zero divisor.

(13) If Z(N)\{0} contains an element z for which z+ z € Z(N), then (N,+)
is abelian.

(zit) If Z(N)\{0} and x is an element of N for which xz € Z(N), then x €
Z(N).

Lemma 2.2 ([3, Lemma 1.3 and Lemma 1.4]). Let N be 3-prime near ring and
U be a nonzero semigroup ideal of N.

(¢) If v € N and 2U = {0} or Ux = {0}, then z = 0.
(13) If z,y € N and 2Uy = {0}, then x =0 ory = 0.
(tit) If x € N centralizes U, then x € Z(N).

Lemma 2.3 ([3, Lemma 1.5]). If N is a 3-prime near ring and Z(N) contains
a nonzero semigroup left ideal or a nonzero semigroup right ideal, then N is a
commutative ring.

Lemma 2.4. Let N be a 3-prime near ring and d be a nonzero n-semiderivation
of N associated with a map g. If Uy, Us, ..., U, are nonzero semigroup ideals of

N, then d(Uy,Us,...,U,) # {0}.

Proof. Suppose that d(Uy,Us,...,U,) = {0}. Then

(1) d(xi,xa,...,2,) =0, forall 2y € Uj,x9 € Us,...,x, €U,
Replacing z1 by z171 for r; € N in (1) and using it, we have

x1d(r1, 22, ..., Tpn) = 0.
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By Lemma 2.2(i), we obtain
(2) d(ri,xa,...,x,) = 0.

Now, substituting zary for xe, where o € N in (2), we get d(r1,ro,...,zy,) = 0.
Proceeding inductively as above, we conclude that d(ry,r2,...,7,) = 0, for all
T1,72, ..., € N. This shows that d(N, N, ..., N) = {0}, leading to a contradic-
tion as d is a nonzero n-semiderivation. Therefore, d(Uy,Us, ..., Uy) # {0}. O

Lemma 2.5. Let N be a 3-prime near ring. Then F is a generalized n-
semiderivation associated with an n-semiderivation d and a map g associated

with d of N if and only if
F(xa, xo, ... 20) = g(o)d(2), 0, ..., 2p) + F(21, 22, ..., 20) 2],

for all 1,2}, x9,...,2, € N.

Proof. We have

(1’1(1’1 + 13/1),1'2, e ,l’n)
F(‘Tlax% s ,(L‘n)(ﬂfll + ':L‘ll) + g(xl)d(xll + xll?x% ERR) ‘TTL)
(3) = F(z1,%9,...,20)2) + F(x1,72,...,7,)7}

+g(x1)d(2y), 20, ... 2p) + g(x1)d(2], 20, .. ., 1)

and
F(rz) + oz, 2o, .., 2n) = Fa12), 20, ..., 20) + F(z12), 20, . . ., )
= F(x1,79,...,0p)7) + g(x1)d(2), 20, ..., 2)
(4) + F(f]fl, fEQ, e 7:671)1{[ + g(wl)d(wll7 1.27 MRS x’fL)'
Comparing (3) and (4), we get
F(x1,m9,...,2p)2) + g(x1)d(2), 22, ..., 2)
= g(z1)d(z), 22, ..., xn) + F(x1, 20, ..., 25)7].
This implies that
Fxa,zo, ... zn) = g(x)d(2), o, .. 2p) + F(z1, 22, ..., 20) 7).
Converse can be proved in a similar way. O
Lemma 2.6. Let N be a 3-prime near ring and U1,Us, ..., U, be nonzero semi-

group ideals of N. If N admits a generalized n-semiderivation F associated with
an n-semiderivation d and a map g associated with d such that g(Uy) = Uy and
Ui NZ(N) # {0}, then F(Z(N),Us,Us,...,U,) € Z(N).
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Proof. If z € Uy N Z(N), then
F(zxy,29,...,2n) = F(x12,22,...,2y,), forall z; €eU; for i=1,2,...,n
Using Lemma 2.5, we have

g(2)d(x1,x9,...,xn) + F(z,29,...,2,)x1 = d(x1, T2, ..., 2,)g(2)
+x1F(z,29,...,2p).

Since g(Uy) = Uy, so replacing g(z) by arbitrary element 2’ € Uy N Z(N), we get
Zd(xr, w2, 1)+ F (2,20, . 2 T1=d(21, T2, . . ., )2 21 F (2,10, ... 1).

This implies that F(z,x9,...,2,)z1 = x1F(2z,29,...,2,), for all z € U N
Z(N),z; € U; for i = 1,2,...,n. Now, replacing x; by xir, where r € N in

the last expression and using it again, we obtain zi[F(z,x2,...,2,),7] = 0,
for all z; € Uj,r € N for i = 1,2,...,n. By Lemma 2.2(i), we find that
[F(z,22,...,2,),7] = 0. Hence, F(Z(N),Us,Us,...,Uy,) C Z(N). O

Lemma 2.7. Let N be a 3-prime near ring admitting an n-semiderivation d
associated with a map g such that g(x12)) = g(x1)g(x}), for all z1,2} € N, then
N satisfies the following partial distributive law:

{d(xlu Zo, ... 71.77»):1:& + g(xl)d(ngxQ? ce ,-’I}n>}y
=d(z1,22,. .., 221y + g(x1)d(2], T2, . . ., TR)Y,
for all x1,2),x9,...,2n,y € N.

Proof. For all z1,2,x9,...,2,,y € N, we have

U@z @, . 20) = @12, 2, )y + 9(@12)dy, T, . 20)
= {d(x1,79,...,2,)x) + g(x1)d(2}), 22, ..., ) }y

On the other hand

d(z1(21y), 22, ..., T) = d(@1, 22, ..., 20)2hy + g(z1)d(21y, 22, . . ., T0)
d(x1, 22, ..., zn)xhy + g(z){d(2], 22, ... 20y
9(@1)d(y, x2, ..., 2n)},

d(z1(2hy), z2, ..., 2n) = d(x1, 22, .. ., 20) 2y + g(21)d(2), 22, ... 20)Y
g(z1)g(z))d(y, o, ..., xp).

_|_

(6)
From (5) and (6), we get

_l’_

{d(IEla Z2,... 7mn)$/1 + g(l‘l)d(l‘/l,l'g, cee 7$n)}y
=d(z1,m9,...,20)2 Yy + g(x1)d(2], 20, . .., 20)y. O
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Lemma 2.8. Let N be a 3-prime near ring and Uy, Us, ..., U, be nonzero semi-
group ideals of N. Let d be a nonzero n-semiderivation of N associated with a
map g such that g(x12}) = g(x1)g(z), for all z1,2) € Uy. If x € N and
d(U1,Us, ..., Up)x = {0} (or zd(Uy, Uy, ..., U,) = {0}), then x = 0.

Proof. By hypothesis,
(7) d(xy,29,...,2n)x =0, forall x; € U;;1 <i<n,xr & N.
Replacing z1 by rz; for r; € N in (7), we get

{d(r1,xe, ..., zn)x1 + g(r1)d(x1, 2, ..., 2y) }x = 0.

Using Lemma 2.7 and (7), we get d(r1,x2, ..., z,)Uix = {0}. By Lemma 2.2(ii),

we have either d(ry,xo,...,2,) = 0 or x = 0. If d(ry,x2,...,2,) = 0, for all

rn € N, 2o € Us,..., x, € U,, then proceeding as in the proof of Lemma 2.4,

we can show that d(N, N, ..., N) = {0}, leading to a contradiction. Therefore,
z =0.

A similar argument using above, handles the case zd(z1,xo,...,z,)={0}.

L]

Lemma 2.9. Let N be a 3-prime near ring admitting a generalized n-semi-
derivation F' associated with an n-semiderivation d and an onto map g associated
with d such that g(x12)) = g(x1)g(x}), for all z1,2) € N. Then N satisfies the
following partial distributive laws:

() {F(x1, w0, ..., 2p)x) + g(x1)d(x), 22, . 20) by

= F(x1,79,...,2p)2 y + g(x1)d(2), 2, . .., 1)y
(i0){d(z1, 2, ..., xn)g(z)) + 1 F (2, 22, ..., 20) by

=d(x1,T2,...,20)9(z))y + 21 F (2}, 2, .. ., 20y,

for all 1,2}, 29,..., 2,y € N.
Proof. For all z1,2),22,...,2,,y € N, we have
F((xlxll)y?x% s ,Ql’n) = F(xlxllvx% s >$n)y +g(x1x/1)d(y>$2a s 73311)

={F(x1,29,...,2,)x) + g(z1)d(2), 22, ..., 20) }y
(8) —|—g($1)g($,1)d(y,$2,...,$n).

On the other hand

F(x(2)y), 2, ... 1) = Fx1, 20, ..., 20) 2y + g(z1)d(2y, 22, . .., 20)
= F(x1, 10, ..., 2p)2 y + g(z){d(z), 22, .. ., 20)y
T 9@, 7202},
Fxi(2\y), o, ..., 2n) = Fa1,20,. .., 20)2 y + g(x1)d(2), 20, . .., 20)Y
9) +g(z1)g(21)d(y, 2, ..., ).
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From (8) and (9), we get

{F($1,$2, e 7xn)xll +g($1)d(x/1,[1:2, e ,l’n)}y
= F(xth; v 7‘/En)x/1y + g(x1>d(fﬂll,(£2, v 71.71)3/7

for all 1,2}, z2,...,2n,y € N.
Arguing in the similar manner, we can prove the result for case (ii). O
Lemma 2.10. Let N be a 3-prime near ring and Uy, Us, ..., U, be nonzero

semigroup ideals of N. If F is a nonzero generalized n-semiderivation on N
associated with an n-semiderivation d and a map g associated with d such that

g(Uy) = Uy, then F(Uy,Us,...,U,) # {0}.

Proof. Suppose that

(10)  F(x1,z9,...,24) =0, forall z; € Uj,z9 € Us,...,x, € U,.

Substituting x17r; in place of x1, where r; € N in (10), we have
F(z1,2z2,...,25)r1 + g(x1)d(r1, 22, . . ., 20) = 0.

Using (10) and since g(U;) = Uy, so replacing g(x1) by an arbitrary element 7,
we get

xyd(ry, o, ..., m,) =0, forall o) € Uy,z9 € Us,..., 2 € Up,r1 € N.

It follows by Lemma 2.2(i) that d(r1,z2,...,z,) =0, for all 9 € Uy, ...z, €
Un,r1 € N. Arguing in the similar manner as in Lemma 2.4, we obtain d = 0.

Therefore, we have F(riz1,22,...,2,) = F(r1,22,...,25)z1 = 0, for all 1 €
Ui,zo € Us,...,x, € Uy,m1 € N, and another appeal to Lemma 2.2(i) gives
F =0, which is a contradiction. ]
Lemma 2.11. Let N be a 3-prime near ring and Uy,Us,...,U, be nonzero

semigroup ideals of N. If N admits a nonzero generalized n-semiderivation
F associated with an n-semiderivation d and a map g associated with d such
that g(Ur) = Uy and g(z12})) = g(z1)g(x}), for all 1,24 € Uy. If a € N and
aF(Uy,Us,...,Uy) ={0} (or F(Uy,Us,...,Uy)a={0}), then a =0.

Proof. Suppose that
(11) aF(z1,22,...,2,) =0, forall zy € Uy,x9 € Us,...,x, € Uy,a € N.
Replacing z1 by z12} in (11) for x| € Uy, we get

aF(z1,22,...,2,)2) + ag(x)d(z), 22, ..., 2,) = 0.

This implies that aUyd(z1,22,...,2,) = {0}. In view of Lemma 2.2(ii), we
obtain either d(Uy,Us,...,U,) = {0} or a =0, for all a € N.
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If d(Uy,Us,...,U,) = {0}, then aF(x12), 22, ..., 2p) = ax1 F (2}, 22, ..., 2p)
=0, for all z1,2] € Uy,xz9 € Us,...,xy € Uy,a € N. Therefore, it follows by
Lemma 2.2(ii) and Lemma 2.10 that a = 0.

Suppose that F(Uy, Us,...Uy)a = {0}. Then,
(12)  F(x1,x9,...,2y)a =0, forall 1 € Uy,x9 € Us,...,z, € Up,a € N.
Replacing z1 by z12} in (12), where o] € Uy, we get
(d(z1, 22, ..., 20)9(x)) + 21 F (2], 29, ..., 25))a = 0.
Using Lemma 2.9(i), we get
d(zy, w0, ..., 2)g(x))a+ 21 F (2, 22,...,2,)a = 0.

This implies that d(z1,x2,...,2,)g(z])a = 0, for all 1‘1 ceU,z0€Us,...,xpn €
Un,a € N. Replacing g(z}) by an arbitrary element z € U1 in the last expres-
sion and applying Lemma 2.2(ii), we find that d(Uq, Ug, ..Up) = {0} or a =0,
for all a € N.

Ifd(Uy, Us, ...U,) = {0}, then F(z12),z2,...,xn)a = F(x1,22,...,2,)2a =
0, for all x1,2) € Uy,xe2 € Us,...,z, € Uyp,a € N. Therefore, it follows by
Lemma 2.2(ii) and Lemma 2.10 that a = 0. O

3. Main results

Theorem 3.1. Let N be a 3-prime near ring and Uy,Us, ..., U, are nonzero
semigroup ideals of N. Let Fy and F» be any two generalized n-semiderivations
associated with n-semiderivations dy and ds respectively and a map g associated
with dy and dy such that g(Uy) = Uy. If [F1(U1,Us, ..., Uy), Fo(Uy,Us, ..., U,)] =
{0}, then at least one of Fy and F is trivial or (N, +) is an abelian group.

Proof. Suppose that x € N is such that
[z, F»(U1,Us, ..., Upy)] =[x+ x, F2(Uy, Us,...,Up,)] = 0.
For all z1,2) € Up such that z1 + 2} € Uy,
[# 4+ x, Fo(z1 + 2}, 20, ..., 2,)] = 0.
This implies that
(x4 2)Fy(z1 + 2, 20, ...y 20) = Fa(m1 + 2, 22, . .., 20) (2 + ),
(x +2)Fo (21,22, . . ., ) + (7 4+ 2) Fo (2], 20, . . ., 1)
)

= Fy(z + 2,20, ..., op)x + Fa(xy + 2, 20, ..., 202,

Fo(zy, 22, ... z0)(x + 2) + Fo(z), 2o, ..., 2n) (2 + )

=aFy (v + 2, 20, ..., xn) + 2 Fa (21 + 2], 20, .., T0),

Fy(x1, 2, ... x0)x + Fo(x1, 10, ..., 20+ Fo (2], 2o, . .., 2p)x+Fo (2!, 22, ... 2p)2
=aFy(x,20,. .., 20) + B (2, 20, ..., 20) + 2Fo (21, 20, ..., 1)

+ 2Fy (2, 29, ..., 1y),
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which reduces to xFy((x1, 7)), z2,...,2,) =0, for all zg € Us, ..., 2, € Uy, €
N, where (z1,2)) is the additive commutator (z; + x| — z1 — 2}).

If r,s € Uy, we have rs € Uy and rs +rs = r(s + s) € Uy and since
[F1(U1,Us, ..., Uy), Fo(Ur,Us,...,Uy,)| = {0}, taking @ = Fi(rs,zh,...,z}),
where r,s € Uy, 2, € Us, ...,z € U, gives

[Fi(rs,ab,....x0), Fo(Uy,Us, ..., Uy,)] = {0}
= [Fi(rs,zy, ..., 20) + Fi(rs, oy, ..., 2h), Fo(Uy, U,y ..., Uyp)).
Arguing in the similar manner as above, we get
F\(U2, Us,...,U)Fo(zy 4+ 2| — 21 — 24, 29, ..., 2,) = {0}.
Since U? is a semigroup ideal, Lemma 2.11 gives
(13) Fo(zy + o) — 21 — 2, 20,...,2,) =0,

for all 21,2 € U; such that 21 + 2} € U;. Now, take zy = r2’ and | = ry’ for
r €Uy and o',y € N, so that z1,2] and 21 + 2y =ra’ +ry/ =r(2' +/) € Us.
It follows from relation (13) that

B(ra' +ry —ra’ —ry' g, 2,) =0, forall r € Up,a’,y" € N,

Replacing r by rw, w € Uy we get Fo(Uy,Us, ..., Uy)Ui (2’ +y' — 2’ —y') = {0},
for all 2,y € N and by Lemma 2.2(ii) either Fy(Uy,Us,...,U,) = {0} or
+y -2 —y =0, for all 2,y € N. If Fy(Uy,Us,...,U,) = {0}, then
proceeding as in Lemma 2.10, we find F5 = 0 and the second case implies that
(N, +) is an abelian group. Similarly if we consider

[F1(Uy,Us, ..., Uy),x) = [F1(U,Us,...,Uy),z+ 2] =0

and proceeding as above, we can find either F; = 0 or (N, +) is an abelian
group. [

Theorem 3.2. Let N be a 3-prime near ring and Uy, Us, ..., U, are nonzero
semigroup ideals of N. Let F be a generalized n-semiderivation associated with
an n-semiderivation d and a map g associated with d such that g(Uy) = Uy and
g(x12)) = g(x1)g(x}), for all x1,24 € Uy. If F(Uy,Us,...,U,) C Z(N), then
F =0 or N is a commutative ring.

Proof. For all z1,2] € Uy,x2 € Us, ..., 2z, € Uy, we get
(14) Flarg, oo, a)=d(my, s, ..., 2)a(@h) tar F () 2, . 2a)EZ(N).
Now, commuting (14) with the element z1, we get

(d(x1,29,. .., 20)g(x}) + 21 F (2, 22, ..., 2))21

= z1(d(w1, 2, ..., 20)g(2)) + 21 F (27, 22, ., T0)).
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Using the hypothesis and Lemma 2.9(ii), we have

d(zy, w0, ..., 20)g(x)) 21 + 2121 F (2], 200, . . ., T11)

= xld(ajla Z, ... 7xn)g(x/1) + xll'lF(l',l?l'% ety xn)

This implies that,

(15) d(z1,x2,. .., xn)2 71 = 21d(T1, T2, . . ., TH) T

Replacing | by zjr for r € N in (22) and using it again, we get
d(z1,22,...,20)2)[x1,7] =0, for all xy,2) € Uy, 20 € Us, ..., 2, € Uy, 7 € N.

By Lemma 2.2(ii), either d(z1, z2,...,x,) =0, forall x; € Uy,x9 € Us, ...,z €
U,orUy C Z(N). Ifd(z1,22,...,2,) =0, forall x1,€ Uy, x9 € Us, ..., x5 € Uy,
then

F(z2),x2,...,2,) = F(z1,29,...,2,)7}) € Z(N).

This implies that F(z1,xa,...,2z,)x s = sF(x1,22,...,2,)2), for all z1,2] €
Up,x9 € Us,...,xy € Uy, and s € N. Replacing x| by zjz/, for all 2/ € Uy in
above expression and using it again, we find that

F(xy,m9,...,2,)U1[27, s] = {0}.

By Lemma 2.2(ii), we have F'(z1,2,...,2,) =0, forallzy € Uy, z0 € Uy, ...,z
€ Uyor Uy CZ(N). If F(z1,22,...,2,) =0, for all z1 € Uy, 29 € Us,...,x, €
Uy, then proceeding as in Lemma 2.10, we can get ' = 0 on N. In later case
Uy C Z(N) implies that N is a commutative ring by Lemma 2.3. O

Theorem 3.3. Let N be a 2-torsion free 3-prime near ring and Uy, Us, ..., Uy
are nonzero semigroup ideals of N. Suppose that N admits a nonzero generalized
n-semiderivation F associated with an n-semiderivations d and a map g associ-
ated with d such that g(Uy) = Uy and g(z12y) = g(z1)g(2}), for all 1,2} € U;.
If [F(Uy,Us,...,Up), F(Uy,Us,...,Uy)] = {0}, then F maps U™ into Z(N) or
F is an n-multiplier on N.

Proof. By hypothesis, for all x1,y1 € Uy, z2,y2 € Ua, ..., %n,yn € Uy,
(16) F(l’l,.’EQ, CIEIR a$n)F(3/17y27 cee 7yn) - F(y17y27 .. '7yn)F(x17$27 cee ’xn)-

Replacing y; by F(z1, 22, ..., 2n)y1 in (16), where 21 € Uy, 25 € Ua, ..., 2z, € Up,
we get

F(wy,22,...,00)F(F(21,22,. ., 20)Y1, Y2, - - -, Un)
= F(F(ZDZQ""7Zn)y1’y27"',yn)F(mlax%---7mn)a
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F(z1,z2,...,xn){d(F (21,22, -y 2n),Y2, -, Yn)9(Y1)
+ F(z1,22, -y 2n) F(Y1,92, - -, Yn) }
={d(F(z1,22,---y2n),Y2, -, Yn)9(y1)

+ F(z1,29, ..y 20)F(y1,y2, -« o yn) JE (21, 22, . .., ).

By Lemma 2.9(ii), we have

F(z1,29,...,x0)d(F (21,22, -y 2n), Y25 - - - s Yn)g(y1)

+ F(x1,29,...,2n)F (21,22, .., 20) F (Y1, Y25 - - .y Yn)
=d(F (21,22, ,2n)s Y2y - s Yn)g(y1) F(x1, 22, . .., Tp)
+ F(z1,22, . 2n)F(Y1,y2, - - -y yn) F(x1, 22, . .., 24).

This implies that

F(xi,xo,...,xn)d(F (21,22, s 2n), Y2y« -+ Yn) Y1
(17) = d(F(217227 .. '7zn)7y27 cee 7yn)ylF($1,$2, “e 7xn)-

Replacing y1 by yit, for all t € N and using (17), we obtain

F(.%'l,xg,...,$n)d(F(Zl,ZQ,...,Zn),y2,...,yn)y1t
= F($17x27'"axn)yltd(F(zlszw"azn)ay27"'7yn)7

which reduces to,
d(F (21,22, -y 2n),Y2, - - -, Yn) U1 [F (21, 22, . . ., 20), t] = {0}.

By Lemma 2.2(ii), we get[F'(z1, 2, ..., 2Zy),t] =0, forallzy; € Uy, xz9 € Us, ..., x,
€ Up,t € N or d(F(z1,22,..-,2n),Y2,---,Yn) = 0, for all z1 € Uy, y2,22 €
Ua,...,Yn,2n € Uy. In the first case F(Uy,Us,...,U,) € Z(N) shows that F
maps U" into Z(N), the centre of N. Let us assume that d(F(Uy, Us,...,Uy,),
Us,...,U,) = {0}, then

0=d(F(y1y1,y2:--+Un)s Y2, Yn)
= d{(F(y1,y2, -, yn)¥1 + 9(W1)dW1, Y2, - Yn)) Y25 - Un}
= d((F(y1,92, - Yn)Y1: Y2, - - Yn) + drd(y1, Y2, - Yn)s Y25 - -+ Un)
= F(y1,92: - Yn)dW1, Y2, - - -1 Un) + A1, 92, - Yn) A1, Y25 - -5 Yn)
+y1d(d(Yy, Y25 Yn), Y2, - - -5 yn) for all y1, 4y € Ur,y2 € Ua, ..., yn € U,

Now, replacing y1 by y121, for all z; € Uy, we have

{d(y17y27 s ayn)zl + ylF(Z17y27 s 7yn)}d(y/17y27 s 7Z/n)
+ {d(ylay27 s 7yn)zl + yld(zla Y2,..., yn)}d(yiay% s 7yn)
+ ylzld(d(yllﬂ Y2, -, yn)?yQa s ayn)} = 0)
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2d(y1ay27 < 7yn)zld(y{l7y27 <. 72/”) + yl{F(zbva o 7yn)d(y{l7y27 o 7yn)
+ d(zl7y27 cee 7yn)d(y/17y27 cee 7yn) + Zld(d(ylla Y2, -, yn)7y27 s 7yn)} = Oa

which implies that

2d(y1, Y2, - - - Yn)21d(Y1, Y2, - - - yn)=0 for all y1,y1, 21€U1, y2€Us, . .., Yy, €U,,.
Since N is 2-torsion free, we get

d(y1,y2; - - Yn)U1d(Y1, Y2, - - - yn) = {0} for all y1, ¢} € Ur,y2 € Us, ..., yn € Up.

Thus, we obtain d(Uy,Us,...,U,) = {0}. Arguing as above, we conclude that
F' is an n-multiplier on N. O

Theorem 3.4. Let N be a 3-prime near ring and Uy, Us, ..., U, be nonzero
semigroup ideals of N. Suppose that N admits a generalized n-semiderivation
F associated with an n-semiderivation d and an additive map g associated with
d such that g(Uy) = Uy and g(x12)) = g(xz1)g(zy), for all x1,2) € Uy. If
F([z,y],z2,...,2n) = £[x,y], for all x,y € Uy, x9 € Uy, ..., x, € Uy, then F is
an n-multiplier or N is a commutative ring.

Proof. By hypothesis
(18)  F([z,y],z2,...,xy) = £[x,y], forall z,y € U,z € Us,...,x, € U,.
Replacing y by zy in (18) and using [z, zy] = x[z,y], we get

F(z[x,y], xo,...,x,) = £x[z,9],
d(z,za,...,2)g([x,y]) + 2F([x,y], 2, ..., Tn) = £x[x, Y]

Using (18), we get
(19)  d(z,z2,...,zy)g([x,y]) =0, forall z,y € Uj,x9 € Us,...,x, € U,.
This implies that
d(@, @2, ..., 2n)g(x)g(y) = d(z, 22, .., 2n)9(y)g(z).
Replacing y by ¢z in the above expression and using it again, we arrive at

d($,$2, R xn)g(y)[g(:v),g(z)] =0.

Since g(Uy) = Uy, substituting arbitrary elements 2’,y" and 2’ of U; in place of
g(z),g(y) and g(z) respectively, we obtain

d(z,z2, ..., uy)Ui[2, 2] = {0}, for all z,2',2" € Uy,x9 € Us,..., 2, € Up,.
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By Lemma 2.2(ii), we have either d(z,zs,...,2,) = 0 or [2/,2'] = 0, for all
x, 2’2 € Uy,ag € Ug, ...,z € Uy. If d(z,x9,...,2,) = 0, then proceeding as
in Lemma 2.4, we can find d = 0 on N. Therefore,

F(oa,ze, ... xn) = 21 F (2,10, ... 1) = F(x1, 39, ..., 25)7],

for all x1, 2!, za,..., 2, € N and hence F is an n-multiplier on N. In later case,
we have [2/,2/] = 0, i.e., 2'2' = 2/2’. Replacing 2’ by z/'r and using it again,
we find that 2/[z/,r] = 0, i.e., Ui[2/,r] = {0}, for all 2’ € U;,r € N. By an
application of Lemma 2.2(i) and Lemma 2.3, N is a commutative ring. O

Theorem 3.5. Let N be a 2-torsion free 3-prime near ring and Uy, Us, ..., Uy
be nonzero semigroup ideals of N. Suppose that N admits a generalized n-
semiderivation F associated with an n-semiderivation d and an additive map
g associated with d such that g(Uy) = Uy and g(z12)) = g(z1)g(x}), for all
x1, 2y € Ur. If F(x oy, xa,...,x,) =0, for all x,y € Uy, x9 € Us, ...,y € Uy,
then F = 0.

Proof. By hypothesis
(20) F(xoy,zg,...,x,) =0, forall z,y € Uj,x9 € Ug,...,xp € Up.
Replacing y by zy in (20), we get
d(z,xe,...,xp)g(xoy) + xF(x oy, xa,...,x,) = 0.
Using (20), we get
(21)  d(z,zo,...,xn)g(xoy) =0, forall x,y € Uy,zo € Us,...,x, € Up,.

Since ¢ is additive and g(xz12]) = g(z1)g(x}), for all z1,2) € Uy, then (21) can
be written as

d(z,xe,...,xn)9(x)g(y) = —d(x, z2,...,2,)9(y)g(x).
Replacing y by yz in the above expression and using it again, we arrive at
d(@, 32, ..., 2n)g(y)g(—2)g(2) = d(z, 2, ..., 20)9(y)9(2)9(—2),
which implies that
d(z,za,...,24)9(y)[g(—x),9(2)] =0, forall z,y,z € Uj,x9 € Us,...,x, € Up.
Putting —z in place of x in the last expression, we obtain
d(—x,x9,...,2,)9(y)[9(x),9(2)] =0, forall z,y,z € Uj,x9 € Ua,...,x, € Up.

Now, replacing g(z), g(y) and g(z) by arbitrary elements /.3 and 2’ of Uy
and applying Lemma 2.2(ii), we get either d(—z,z2,...,2,) = 0 or [2/,2] =
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0, for all z,y,z € Uy,xz9 € Us,...,z, € U,. Since d is n-additive, then
d(—z,z9,...,x,) = 0 implies that d(z,zs,...,z,) = 0. Hence, we have ei-
ther d(z,za,...,z,) =0or [2/,2'] =0, for all z,y,z € Uy, 29 € Us,...,x, € U,.
Arguing in the similar manner as in Theorem 3.4, we get F' is an n-multiplier
or N is commutative.

If N is commutative, then the hypothesis becomes

0=F(zxoy,xzg,...,xy) = 2F(xy,x2,...,2y).
Since N is 2-torsion free, we get
(22) F(xy,xo,...,x,) = 0.
Replacing y by yz in (22), we obtain

F(zy,x9,...,xp)z + g(zy)d(z, 29, ...,

) =0,
g(x)g(y)d(z, xa, .. ., 0.

)
Since ¢g(U1) = U, then by Lemma 2.2(ii), we have d(z,z2,...,2,) = 0, so
Lemma 2.4 forces that d = 0, thus F' is an n-multiplier and (22) becomes

F(z,x9,...,2,)y = 0 and Lemma 2.10 forces that F' = 0.
If F' is an n-multiplier, then replacing y by zy in (20), we obtain

Tn
Tn

F(iE,:L‘z,. : ,ZEn)(l‘Oy) =0.
By using same argument as above, we get
F(z,x9,...,2,)U1[z, 2] = 0.

By Lemma 2.2(ii), we get z € Z(N) or F(z,x2,...,z,) = 0. If z € Z(N),
then the hypothesis becomes 2F(xy,u2,us,...,u,) = 0. By 2-torsion free-
ness of N, we find that F(z,z9,...u,)y = 0, thus in all the cases we arrive
at F(x,x9,...,2,) =0 and Lemma 2.10 forces that F' = 0. O

Theorem 3.6. Let N be a 2-torsion free 3-prime near ring; U1, Us, ..., U, are
nonzero semigroup ideals of N and an additive map g such that g(Uy) = Uy
and g(x12)) = g(z1)g(x}), for all x1,2} € Uy. There is no generalized n-
semiderivation F associated with an n-semiderivation d and g such that F(x o
Yy T, ..., Tpn) = £(zovy), for all z,y € Ur,x9 € U, ...,z € U,.

Proof. Suppose that there exists F' such that
(23) F(xoy,x2,...,xy) =x(xoy) forall z,y € Uy,x2 € Us, ...,z € U,.
Substituting xy for y in (23), we get

F(x(xoy),za,...,oy) = tx(x0y).
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This implies that
d($,$2, . 'axn)g(x © y) + IL’F((IE o y)a'x% s 7$n) = :|:£L‘(33 o y)

Using (23), we get d(x,x9,...,z,)g(x oy) = 0. Arguing in the similar manner
as in Theorem 3.4 and Theorem 3.5, we get N is commutative or F' is an n-
multiplier.

If N is commutative, then the hypothesis becomes 2F (zy, 2, ..., x,) = 2zy
that is F(zy,xa,...,2,) = xy this yields that d = 0 and replacing zo by xaox,
and xoxl, where xf, # zf and comparing the result, we arrive at

(ah — ) (woy) =0

This leads to N = (0), a contradiction.
If F'is an n-multiplier, then reasoning as above we arrive at N = (0), a
contradiction, so we obtain the required result. ]

Theorem 3.7. Let N be a prime near ring and U1,Us, ..., U, be nonzero semi-
group ideals of N. Suppose that N admits a generalized n-semiderivation F as-
sociated with a map d : N X N X ... x N = N and a map g such that g(Uy) = U;

n—times
and Uy N Z(N) # {0}. If F([z1,01],22,...,2n) = £[F(x1,22,...,2p),11], for
all x1,y1 € Uy, 29 € Ug, ..., xy, € Uy, then F is commuting on Uj.
Proof. By hypothesis
(24) F([z1, 0], m2, ..., x0n) = [F(z1,22,...,Z0n), y1]

Replacing y1 by z1y; in (24), we have

d(x1, 2, ...tp)g([z1,11]) + 21 F([x1, 1], 2, - . - T0) = [F(21, 22, ..., Tp), T1Y1],
d(x1, 2, ...tp)g([z1,11]) + 21[F (21, 22, . . -y 20), 01] = [F(21, 22, ..., Tpn), T1Y1],
d(xla X2, xn)g([xbyl]) + .’L'lF(.fl, 2, . .. 7mn)y1 - .’I}lylF(Z'l,.’L'Q, ceey .’En)

= F(x1,x9,...,2n)T1y1 — T11 F (21,22, .. ., Tp).

If we choose y; € U1NZ(N), then above relation yields that z1 F(x1, 2, ..., Zn)Y1
= F(x1,x2,...,on)r1y1. This implies that yi[F(z1, 22, ...,2,),21] = 0 and by
Lemma 2.2(i), we find [F(z1,%2,...,2n),21] = 0. Hence, F' is commuting on
Ui. In the similar manner we can prove the result for F([z1,y1], 2, ..., 2pn) =
—[F(z1,22,...,2pn), 1], for all x1,y; € Uy, 29 € Ug, ...,z € Up. O

Theorem 3.8. Let N be a 3-prime near ring and Uy,Us, ..., U, are nonzero
semigroup ideals of N. Suppose that N admits a generalized n-semiderivation F
associated with a map d: N X N X ... x N = N and a map g such that g(Uy) =

n—times
Uy and Uy N Z(N) # {0}. If F([z1,11], 22, ..., 2n) = X[x1, F(y1,22,...,25)],
for all x1,y1 € Uy, x0 € U, ..., xy, € Uy, then F is commuting on Uy.
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Proof. By hypothesis

(25) F([z1, 0], 2, ..., xn) = [x1, F(y1, 22, ..., Tp)]

Replacing z1 by y121 in (25), we get

d(y1, 22, ...x)g([21, 11]) + i F([z1, 1], 22, - 20) = [121, (21,22, .. 20,
d(y1,xo, ...xn)g([z1,11]) + yilz1, F(y1, 22, . . .y xn)] = [y121, F (21, 22, .. ., 24)],
d(y1, 2, ...xn)g([z1,11]) + yix1 F(y1, x2, ... xn) — y1 F(y1, o, . .., 2p) 21

=y F(z1,20,...,2,) — F(x1,22,...,20)y171

If we choose 1 € UjNZ(N), then above relation yields that y1 F'(y1, 22, . . ., &n )21
= F(x1,x2,...,2y)y121. This implies that x1[F(y1,22,...,2y),y1] = 0 and by
Lemma 2.2(i), we find [F(y1,22,...,2n),y1] = 0. Hence F is commuting on
Ui. In the similar manner we can prove the result for F([z1,v1],2z2,...,2n) =
—[z1, F(y1, 2, ..., xy,)], for all z1,y1 € Uy,xe € Us,...,x, € U,, then F is
commuting on Uj. 0

Theorem 3.9. Let N be a 3-prime near ring and Uy,Us, ..., U, be nonzero
semigroup ideals of N. Suppose that N admits a nonzero generalized n-semi-
derivation F associated with an n-semiderivation d on N and a map g such that

g(U1) =Uy andd(Z(N),Us, ..., Up)#{0}. If [F(x1,22,...,20), F(y1,y2, -, Yn)]
=0, for all x1,y1 € U, 20 € Us, ..., xy € Uy,, then N is a commutative ring.

Proof. Let z € Z(N) and d(z,ya2,...,yn) # 0. Then by hypothesis

F(z1,29,...,20)F(y12,92, ..., yn) = F(y12,92, ..., yn) F(x1,22, ..., 2p),

F(z1,29,...,20)F(y1,92, -, yn)z + F(z1,22, ..., 20)g(y1)d(z,y2, . . ., Yn)
=F(y1,92,---,yn)2F (x1, 22, ..., 2)

9(y1)d(z,y2, .- yn) F(x1, 22, ..., 24).

+

This implies that,

F(x17x27 s 7$n)g(y1)d(zu Y2, -, yn) = g(yl)d(zvy27 s 7y7l)F(x17 Zo,... 7xn)~

By hypothesis, we find d(z,ya,...,yn)[F(z1,22,...,2,),9(y1)] = 0. By Lemma
2.1(i), we get [F(x1,x2,...,2,),y1] = 0. Replacing y; by y17 for r € N, we have

yl[F(l‘l,l‘Q, ey ZL‘n),’l“] =0.
By Lemma 2.2(ii), we obtain
[F(z1,22,...,2,),7] =0, forall 21 € Uj,zo € Us,...,x, € Up,7 € N.

Therefore, F(Uy,Us,...,U,) € Z(N) and hence N is a commutative ring by
Theorem 3.2. ]
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Theorem 3.10. Suppose that N is a prime near ring; U1, Us, ..., U, are nonzero
semigroup ideals of N and Vi,Va, ..., V, are nonempty subsets of N.

If F is a generalized n-semiderivation acts as a left multiplier such that
F(ziy1,22,...,2n) = F(y121,22,...,2y), for ally; € Vi,z1 € Uy, x9 € Us...,xp,
€ Uy, then F(V1,Va,...,V,) ={0} or V4 C Z(N).

Proof. By hypothesis, for all y; € Vi, 21 € Uy, 20 € Us, ..., x, € Uy,

(26) F(xiy1,22,...,2n) = F(y121,22,...,Zp).

Replacing 21 by y121 in (26), we get

(27) F(yi,xo,...,xn)z191 = F(y1,22,. .., Tn)y121.

Replacing z1 by zq27, for all 2} € Uy in (27), we have
F(yi,xo,...,xp)z100051 = F(y1, 22, - - ., Tn)T1y17,

which implies that,

F(y1, 22, ..., 2n)U1lx], 1] = {0}.

By Lemma 2.2(ii), we have F(y1, xa, ..., 2,)=0, forally; € V1,x9 € Us, ..., 2z, €
U, or yi centralizes U;. In first case, replacing zo by yoxo, for all yo €
Vo, we find that F(y1,v2,...,2,)x2 = 0 and again by Lemma 2.2(i), we get
F(y1,y2,...,2n) = 0. Proceeding inductively, we obtain F(y1,y2,...,yn) = 0,
for all y; € Vi,ys € Vo, ..., yn € V,, which completes the proof. ]

Theorem 3.11. Let N be a 3-prime near ring and Uy, Us, . .., U, are nonempty
subsets of N and V1, Va, ..., V, are nonzero semigroup ideals of N. Suppose that
N admits a generalized n-semiderivation F associated with an n- semideriva-
tion d and an additive map g such that g(Vi) = V4. If F(z1y1,Y2,---,Yn) =
F(yiz1,y2,.--,Yn), for all v1 € Un,yn € Vi,y2 € Vo,...,yp, € V,, then
D(Uy,Us,...,U,) ={0} or Uy C Z(N).

Proof. By hypothesis, for all x1 € Uy,y1 € V1,92 € Vo,...,yn € Vp,
(28) F<xly17y27"‘7yn) :F(ylxlvaV"vyn)'
Replacing y1 by x1y; in (28), we have

d(x1,92, ., yn)9(z1y1) + 21 F (2191, Y2, - - -, Yn)

=d(x1, 92, yn)9(W121) + 1 F (Y121, Y2, - - Yn),
d(x1,92, ., Yn)g(z1y1) + 21 F (191, Y2, - - -, Yn)

=d(x1,92, -, yn)9(y121) + T1F (2191, Y25 - -, Yn)-

This implies that,

d(z1,y2,- - Yn)g(x191 — Y171) = 0.
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Since g is additive and g(V71) = V1, we have
(29) d(ﬂ?l, Y2,... 7yn)[$17 y1]207 for all :E1€U1, yle‘/lv 2/26‘/2, <y Yn S Vn
Replacing y1 by yir, for all » € N in (29) and using (29), we find

d(x17y27 M ,yn)yl[xl,r] - O

By Lemma 2.2(ii), we get d(x1,y2,...,yn) =0, for all x; € Uy, y2 € Vo, ...y, €
Vi or Uy C Z(N). In first case, replacing y2 by xays9, for all 9 € Uy, we conclude
that

d(ﬂjl,l’Q, ey yn)yQ + g(J:Z)d(xlvau “e 7yn) = 0.

The last expression yields that d(xi,zo,...,y,) = 0, for all z; € Uy,zy €
Usg,...,yn € Vy. Proceeding inductively, we obtain d(x1,x9,...,2z,) = 0, for
all x1 € Uy,x9 € Us,...,xz, € U,. Hence, d(Ul,UQ,...,Un) = {0} or U; C
Z(N). O

The following example demonstrates that the primeness hypothesis in The-
orems 3.2, 3.4 to 3.11 is not superfluous.

Example 3. Let S be a commutative near ring. Consider

0 = y 0 z vy
N:{ 0 00 \O,x,y,zeS} and U:{ 0 00 ]O,x,yGS}.

0 2 O 0 0 0

It can be easily seen that N is a non prime zero-symmetric left near ring with
respect to matrix addition and matrix multiplication and U is a nonzero semi-
group ideal of N. Define mappings F,d: N x N x ... x N — N by

n—times
0 1 w1 0 zo w2 0 =n Yn 0 z129...z, O
F o o o})],{o 0o O0},...,10 0 O =10 0 0],
0 1 O 0 z O 0 z, O 0 0 0
0 z1 »n 0 z2 u2 0 zn yn 0 1y2..yn O
d o o o}]J,{o o O0},...,10 0 O =10 0 0
0 z O 0 z 0 0 2z, O 0 0 0
Define a map g : N — N by
ccc =y 0 2 0
gl 0 0 O0)J=1{0 0 O
0 =z 0 0 00
If we choose Uy = Uy = - -+ = U,, = U, then it is easy to check that F'is a nonzero

generalized n-semiderivation associated with a nonzero n-semiderivation d and
a map g associated with d on N satisfying the following conditions:
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(1) F(Ul,UQ,...,Un) Q Z(N), (11) F([l‘l,yl],l‘Q,. . .,l’n) = :I:[xl,yl],

(ili) F(zioy,@2,...,an) =0, (iv) F(z10y1, @2, ..., 2n) = £(z1091),

(v) F([z1,y1], 22, .., 2n +[F(x1,x2,...,20), 1],

)
(Vi) F(lzy,p], 22,0 on) = £z, Fyy, 22, 2n)],
(vii) [F(z1, 22, 2n), F(y1, Y2, .- yn)] = 0,

for all 1,91 € Uy, x0,y2 € Us, ..., Tn,yn € U,. However, N is not commutative.

Example 4. Let Ny = (C, 4+, -) be the ring of complex numbers with respect to
the usual addition and multiplication of complex numbers and Ny = (C, 4, %),
where C is the set of complex numbers, + is the usual addition of complex
numbers and * is defined by z xy =| = | -y, for all ,y € C. Then it is
easy to see that Ns is a zero-symmetric left near ring. Now, consider the set
S = Ni X Ny, which is a non-commutative zero-symmetric left near ring with
respect to the componentwise addition and multiplication. Suppose that

(0,0) (z,2") (y,9")
N = { (0,0) (0,0) (0,0) | [ (z,2"),(y,9),(2,2),(0,0) € 5}-
(0,0) (z,2") (0,0)

Then N is a zero-symmetric left near ring with respect to matrix addition and
matrix multiplication but /N is not 3-prime. Let

0,0) (z,2") (v,9)
U= { (0,0) (070) (070) ’ (xvrl)v (yay/)a (070) € S}a
(0,0) (0,0) (0,0)

which is a nonzero semigroup ideal of N.
Define mappings F,d: N X N x ... x N = N by

(0,0) (z1,21) (w,mn)\ [((0,0) (z2,25) (y2,95)
F( (0,0)  (0,0) (0,0) |, (0,0) (0,0) (0,0) |,...,
(07 O) (Zla Zi) ( ) (Ov O) (227 Zé) (07 0)
(070) ((L‘n, n) (ynayn) (070) (y_ly_Qy_nvO) (070)
(0,0)  (0,0)  (0,0) ) =1(0,0) (0,0) (0,0) |,
(0,0) (2n,2,) (0,0 (0,0) (0,0) (0,0)
(an) (xlvmll) (yl’yi) (an) (1‘2,$2) (9273/&)
d< (0,0) (0,0) (0,0) ], (0,0) (0,0) 0,0) |,...,
(O’ 0) (21, Zl) (0’ O) (0’ 0) (227 Z2) (O’ O)
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(0,0)  (0,0) (0,0 = | (0,0) (0,00  (0,0)
(0,0)  (2n:2,) (0,0 (0,0) (0,0) (0,0

n

(an) ('rnyl‘{n) (yn,y;) ) (O’O) (ylyZ-'-ymO) (070)

and a map g : N — N by

0,0) (z,2) (v,9) (0,0) (z,2) (v,9)
g {(0,0) (0,0) (0,0) ] =1¢(0,0 (0,00 (0,0)[,
(0,0) (z,2) (0,0) (0,0) (0,0") (0,0)
where 91,92, . .., yn are the complex conjugates of y1,yo, ..., y, respectively. If
we choose Uy = Uy = -+ = U, = U, then it is verified that F' is a generalized

n-semiderivation associated with an n-semiderivation d and a map g associated
with d on N satisfying the following conditions:

(i) F(U,Us,...,U,) C Z(N), (i) F([z1, 1), 22, ..., 2n) = £[z1, 1],
(i) F(z10y1,29,...,2,) =0, (iv) F(z1 01,29, ..., o) = £(z1 0 1),
v) F([z1, 0] 22, ... 2n) = £[F (21,29, .. ., 20), y1],

(Vi) F(lz1,01), 29, . .., 2n) = £[z1, F(y1, 32, . .., 20)],

(Vi) [F(x1, 22, @n), F(y1,52, - yn)] = 0,

for all z1,y1 € Uy, x2,y2 € Ua, ..., Tp, Yn € Up.
But, N is not commutative.

Open problem

(i) However, one can construct a natural example of a non-commutative near
ring satisfying the hypothesis of the above theorems. (ii) Our hypothesis are
dealt with the prime near rings. For further research, one can discuss the com-
mutativity of semiprime near rings which is an interesting work in future.
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