Projection graphs of rings and near-rings

Teresa Arockiamary S.
Department of Mathematics
Stella Maris College
Chennai-600086, Tamil Nadu
India
drtessys70@gmail.com
Meera C.
Department of Mathematics
Bharathi Women's College (Autonomous)
Chennai-600108, Tamil Nadu
India
eya278@gmail.com
Santhi V.*
Department of Mathematics
Presidency College (Autonomous)
Chennai-600005, Tamil Nadu
India
santhivaiyapuri2019@gmail.com

Abstract

Association of graphs with algebraic structures facilitates the process of understanding the properties of algebraic structures through graphs. In this paper, projection graph $P(R)$ of a ring R is introduced as an undirected graph, whose vertices are the nonzero elements of R and any two distinct vertices x and y are adjacent if and only if their product is equal to either x or y. The projection graph $P(N)$ of a near-ring N is also defined in the same way. It is proved that $P(R)$ is a star graph if and only if R has no nonzero zero-divisors. A method of finding adjacent vertices with the help of annihilators is developed. The projection graphs of certain classes of rings are found to be bipartite and $P(R)$ is proved to be weakly pancyclic when R is a local ring with ascending chain condition on the annihilator ideals of its elements. $P\left(\mathbb{Z}_{n}\right)$ are constructed for certain values of n and their properties are studied. Moreover, $P(N)$ is shown as a complete graph when N is either a constant near-ring or an almost trivial near-ring.

Keywords: commutative rings, annihilator, near-ring, independent set, clique, planar graph.

[^0]
1. Introduction

There are many graphs associated to rings and the other algebraic structures such as groups, semigroups, semirings, near-rings, ternary rings, modules etc. to understand the properties of algebraic structures via graphs and vice versa.

The idea of associating a graph to a commutative ring R was introduced by Beck [11] in 1988. He defined a graph with the vertex set as the set of all elements of R and two distinct vertices x and y are adjacent if and only if $x y=0$ and mainly studied about coloring of the graph. In 1993, Anderson and Naseer [5] determined all finite commutative rings with chromatic number 4. Anderson and Livingston [6] in 1999, redefined Beck's graph by taking $Z D^{*}(R)$, the set of nonzero zero-divisors of R, as the vertex set and named the graph of R as zero-divisor graph denoted by $\Gamma(R)$. They proved that the zero-divisor graph of a commutative ring R is complete if and only if either $R \cong \mathbb{Z}_{2}^{2}$ or $x y=0$ for all $x, y \in Z D(R)$, the set of zero-divisors of R.

Afkhami and Khashyarmanesh [1] introduced cozero-divisor graph $\Gamma^{\prime}(R)$ of a commutative ring R. The vertex set of $\Gamma^{\prime}(R)$ is $W^{*}(R)$, the set of nonzero nonunits of R and $a, b \in W^{*}(R)$ are adjacent if and only if $a \notin b R$ and $b \notin$ $a R$. They studied $\Gamma^{\prime}(R)$ and its complement $\overline{\Gamma^{\prime}(R)}$ in [2]. In particular, they characterized all commutative rings whose cozero-divisor graphs are double-star, unicyclic, a star, or a forest. Further, Akbari et al. [3] continued the study of cozero-divisor graphs of commutative rings and proved that if $\Gamma^{\prime}(R)$ is a forest, then $\Gamma^{\prime}(R)$ is a union of isolated vertices or a star.

The concept of annihilator graph was introduced in 2014 by Badawi [9]. The annihilator graph of a commutative ring R is the simple graph denoted by $A G(R)$, whose vertex set is $Z D^{*}(R)$ and two distinct vertices x and y are adjacent if and only if $\operatorname{Ann}(x y) \neq \operatorname{Ann}(x) \cup \operatorname{Ann}(y)$, where $\operatorname{Ann}(x)=\{y \in R \mid$ $x y=0\}$. If R is a commutative ring with more than 2 nonzero zero-divisors, then $A G(R)$ is proved to be connected and $\operatorname{diam}(A G(R)) \leq 2$. More results on $A G(R)$ can be found in the survey article [10].

Teresa Arockiamary et al. [18] defined annihilator 3-uniform hypergraph $A H_{3}(N)$ of a right ternary near-ring (RTNR) N. Let $(N,+,[])$ be an RTNR. Then, $A H_{3}(N)$ is defined as the 3 -uniform hypergraph whose vertex set is the set of all elements of N having nontrivial annihilators and three distinct vertices x, y and z are adjacent whenever the intersection of their annihilators is not $\{0\}$, where the annihilator of x is given by $(0: x)=\cap_{s \in N}(0: x)_{s}$ and $(0: x)_{s}=$ $\left\{t \in N \left\lvert\,\left[\begin{array}{ll}s & x\end{array}\right]=0\right.\right\} . A H_{3}(N)$ is shown to be an empty hypergraph if N is a constant RTNR, and $A H_{3}(N)$ is trivial when N is a zero-symmetric integral RTNR.

Motivated by the results established in [6], [9], [10] and [18], the projection graphs of rings and near-rings are introduced in this article. Throughout, this article R is considered as a nonnil unital commutative ring unless otherwise mentioned. The induced subgraph of $P(R)$ on $R \backslash\{0,1\}$ is denoted by $P_{1}(R)$. Also, $U(R)$ denotes the set of all units of R.

Let R be a commutative ring. Then, the vertex set of $P(R)$ is R^{*}, the set of all nonzero elements of R and $x, y \in R^{*}$ are adjacent if and only if the product $x y$ in R equals either x or y. It is observed that $x, y \in W^{*}(R)$ are adjacent in $P(R)$ implies x, y are adjacent in $\overline{\Gamma^{\prime}(R)}$ and therefore the induced subgraph of $P(R)$ on $W^{*}(R)$ is a subgraph of $\overline{\Gamma^{\prime}(R)}$. It is proved that $P(R)$ is a connected graph with diameter at most 2 . Let $|R|>4$. Then, it is seen that $P_{1}(R)$ is nontrivial if and only if R has nonzero zero-divisors. Also $P(R)$ is a star if and only if R is a field. The girth of $P(R)$ is either 3 or ∞.

A method of finding adjacent vertices using concept of annihilators is given and it is illustrated for $R=\mathbb{Z} \times \mathbb{Z}$. $\operatorname{Reg}(R) \backslash\{1\}, \operatorname{Nil}(R) \backslash\{0\}$ are found independent sets, where $\operatorname{Reg}(R)$ is the set of all regular elements of R and $\operatorname{Nil}(R)$ is the set of all nilpotent elements of R. If R is presimplifiable ring which is not a domain, then it is proved that $P_{1}(R)$ is bipartite. $P(R)$ is shown to be weakly pancyclic when R is a local ring, which is not a domain, with ascending chain condition on the annihilator ideals of elements of R. The projection graphs of finite isomorphic rings are proved to be isomorphic. It is also shown that $P(R)$ is complete if and only if either $R \cong \mathbb{Z}_{3}$ or $R \cong \mathbb{Z}_{4}$. Some of the graph properties of $P\left(\mathbb{Z}_{n}\right)$ are verified for $n=2 q, 2^{k}, q$ is prime and $k \geq 1$.

Let N be a near-ring. Then, the projection graph $P(N)$ of N is defined in the same way as that of a ring. It is shown that if N is either a constant near-ring or an almost trivial near-ring, then $P(N)$ is a complete graph. Also $P(N)$ is complete if N is a Boolean near-ring which is subdirectly irreducible.

2. Preliminaries

In this section the basic definitions along with the results relevant to this paper, related to rings ([8], [4], [14]), near-rings ([15], [16], [17]) and graphs ([12]) are given. Let R be a commutative ring with unity. Then, an element $x \in R$ is called Von Neumann regular if $x=a x^{2}$ for some $a \in R . \quad R$ is called (i) Boolean if every $x \in R$ is idempotent (ii) a quasilocal ring if R has finitely many maximal ideals. (iii) a local ring if R has a unique maximal ideal. (iv) [4] a presimplifiable ring if, for any $a, b \in R, a=a b$ implies either $a=0$ or $b \in U(R)$. (v) a domain-like ring if $Z D(R) \subseteq \operatorname{Nil}(R)$, where $\operatorname{Nil}(R)$ equals the set of all nitpotent elements of R. (vi) a nil ring if every element in R is nilpotent. It is known that quasilocal rings are presimplifiable rings.

Lemma 2.1 ([14]). If R is nil, then $x y \neq y$ for all $x, y \in R^{*}$.
Lemma 2.2 ([4]). If R is a commutative ring, then the following are equivalent:
(i) R is presimplifiable;
(ii) $Z D(R) \subseteq J(R)$;
(iii) $Z D(R) \subseteq\{1-u \mid u \in U(R)\}$, where $J(R)$ denotes the Jacobson radical and $J(R)$ equals the intersection of all maximal ideals of R.

Definition 2.1 ([15]). A right near-ring N is an algebraic system with two binary operations + and \cdot satisfying the following conditions:
(i) $(N,+)$ is a group (not necessarily abelian);
(ii) (N, \cdot) is a semigroup;
(iii) $(x+y) z=x z+y z$ for every $x, y, z \in N$.

If $N=N_{0}=\{x \in N \mid x 0=0\}$, then N is called a zero-symmetric near-ring. If $N=N_{c}=\{x \in N \mid x 0=x\}=\{x \in N \mid x y=x$ for every $y \in N\}$, then N is called a constant near-ring. A near-field is a near-ring, in which there is a multiplicative identity and every non-zero element has a multiplicative inverse. Also by Pierce Decomposition, $(N,+)=N_{0}+N_{c}$ and $N_{0} \cap N_{c}=\{0\}$.

Definition 2.2 ([16]). A near-ring N is called an almost trivial near-ring if for all $x, y \in N, x y=\left\{\begin{array}{ll}x & \text { if } y \notin N_{c} \\ 0 & \text { if } y \in N_{c}\end{array}\right.$.

Lemma 2.3 ([16]). If N is a subdirectly irreducible Boolean near-ring, then N is an almost trivial near-ring.

A pair $G=(V, E)$ is an undirected graph if V is the set of vertices and E is set of edges $\overline{x y}$, where $x, y \in V$ and $x \neq y$. If $x \in V$, then $N_{G}(x)=\{y \in V \mid \overline{x y} \in$ $E, x \neq y\}$. The girth of G is the length of shortest cycle in G and if G has no cycles, then the girth of G is defined to be infinite. G is called weakly pancyclic if it contains cycles of all lengths between its girth and the longest cycle. The sequence of degrees of vertices in G arranged in a non decreasing order is called the degree sequence of G.

3. Projection graphs of rings

Definition 3.1. Let $(R,+, \cdot)$ be a ring. Then, the projection graph of R, denoted by $P(R)$, is defined as an undirected graph whose vertex set is the set of all nonzero elements of R and two distinct vertices x and y are adjacent whenever the product $x \cdot y$ equals either x or y. That is, $P(R)=(V, E)$, where $V=R^{*}$ and $E=\{\overline{x y} \mid x \cdot y=x$ or $y, x \neq y\}$. For the sake of convenience, $x \cdot y$ is simply written as $x y$.

Example 3.1. It is evident that the projection graph of $2 \mathbb{Z}$ is an empty graph. The projection graphs of the rings $\mathbb{Z}_{4}, \mathbb{Z}_{5}, \mathbb{Z}_{6}, \mathbb{Z}_{2}^{3}, \mathbb{Z}_{12}$ and \mathbb{Z}_{3}^{2} are shown in Figure 1, Figure 2, Figure 3, Figure 4, Figure 5 and Figure 6, respectively. Note that, $P\left(\mathbb{Z}_{4}\right)$ is a complete graph and $P\left(\mathbb{Z}_{5}\right)$ is a star. In $P\left(\mathbb{Z}_{2}^{3}\right), i j k$ stands for (i, j, k), where $i, j, k \in \mathbb{Z}_{2}$. In $P\left(\mathbb{Z}_{3}^{2}\right)$, $i j$ stands for (i, j), where $i, j \in \mathbb{Z}_{3}$.

Proposition 3.1. Let R be a commutative ring with nonzero identity. Then, $P(R)$ is a connected graph with diameter at most 2 .

Figure 1: $P\left(\mathbb{Z}_{4}\right)$ Figure 2: $P\left(\mathbb{Z}_{5}\right)$
Figure 3: $P\left(\mathbb{Z}_{6}\right)$

Figure 6: $P\left(\mathbb{Z}_{3}^{2}\right)$

Proof. Note that, $P(R)$ is nontrivial since $\overline{1 x}$ is an edge for every $x \in R^{*} \backslash\{1\}$. Let $x, y \in R^{*}$. If $\overline{x y}$ is an edge, then the distance between x and y is 1 . If $\overline{x y}$ is not an edge, then $x-1-y$ is a path between x and y. Thus, $P(R)$ is connected and the distance between x and y is at the most 2 , which proves the proposition.

Remark 3.1. Notice that the removal of 1 from the vertex set may result in disconnection of $P(R)$. For example, $P_{1}\left(\mathbb{Z}_{5}\right), P_{1}\left(\mathbb{Z}_{6}\right)$ and $P_{1}\left(\mathbb{Z}_{3}^{2}\right)$ are disconnected. Also it is observed that $P_{1}(R)$ is disconnected for the Boolean ring $R=\mathbb{Z}_{2}^{2}$.

Let R be a commutative ring with nonzero identity. If $x, y \in Z D^{*}(R)$ are adjacent in $\Gamma(R)$, then x, y are not adjacent in $P(R)$. However, $P_{1}(R)$ is nontrivial if and only if R has nonzero zero-divisor, which is proved in this section.

Proposition 3.2. If $x, y \in R^{*} \backslash\{1\}$ are distinct elements such that $x+y \neq 1$, then the following assertions hold in $P_{1}(R)$:
(i) If $x y=0$, then $1-y \in N_{P_{1}(R)}(x)$ and $1-x \in N_{P_{1}(R)}(y)$.
(ii) If x is adjacent to y, then $1-x \in N_{P_{1}(R)}(1-y)$.

Proof. (i) If $x y=0$, then $x(1-y)=x$ and $(1-x) y=y$, where $1-x, 1-y$ are in $R^{*} \backslash\{1, x, y\}$, proving (i).
(ii) If x is adjacent to y, then either $x y=x$ or $x y=y$.

If $x y=x$, then $(1-x)(1-y)=1-y$. Similarly, if $x y=y$, then $(1-x)(1-y)=$ $1-x$, where $1-x, 1-y \in R^{*} \backslash\{1, x, y\}$, proving (ii).

Proposition 3.3. If R is a Boolean ring with more than 4 elements and $x, y \in$ $R^{*} \backslash\{1\}$, then the following assertions hold in $P_{1}(R)$:
(i) If $x y=0$ and $x+y \neq 1$, then $x-(x+y)-y$ is a path between x and y.
(ii) If $x y=0$ and $x+y=1$, then there is no $z \in R^{*} \backslash\{1\}$ such that $x-z-y$ is a path between x and y.
(iii) If x and y are adjacent and $x+y \neq 1$, then either $x+y \in N_{P_{1}(R)}(x)$ or $x+y \in N_{P_{1}(R)}(y)$, but not both.
(iv) If $x y \neq 0$ and x, y are not adjacent, then $x-x y-y$ is a path between x and y.

Proof. (i) If $x y=0$ and $x+y \neq 1$, then $x(x+y)=x$ and $(x+y) y=y$, where $x+y \in R^{*} \backslash\{1, x, y\}$, proving (i).
(ii) Suppose $x y=0$ and $x+y=1$.

Let $z \in R^{*} \backslash\{1\}$ be adjacent to x. Then, either $x z=x$ or $x z=z$.
Case (a). Suppose $x z=x$. Then, $z y$ is neither z nor y. For, if $z y=z$, then $x=x z=x z y=0$, a contradiction to the choice of x. If $z y=y$, then $1=x+y=x z+z y=z(x+y)=z$, a contradiction to the choice of z.

Case (b). Suppose $x z=z$. Then, $z y$ is neither z nor y. For, if $z y=z$, then $z=(x+y) z=x z+y z=z+z=0$, a contradiction to the choice of z. If $z y=y$, then $y=z y=x z y=0$, a contradiction to the choice of y.

Hence, z is not adjacent to y in both the cases, which completes the proof of (ii).
(iii) Suppose x, y are adjacent and $x+y \neq 1$. Then, either $x y=x$ or $x y=y$. If $x y=x$, then $x(x+y)=x^{2}+x y=x+x=0$, since R is of characteristic 2. Also $(x+y) y=x y+y^{2}=x+y$. Hence, $x+y \notin N_{P_{1}(R)}(x)$, whereas $x+y \in N_{P_{1}(R)}(y)$.

Similarly, if $x y=y$, then it can be seen that $x+y \in N_{P_{1}(R)}(x)$ and $x+y \notin$ $N_{P_{1}(R)}(y)$.
(iv) If $x y \neq 0$ and x, y are not adjacent, then $x(x y)=x y$ and $(x y) y=x y$, where $x y \in R^{*} \backslash\{1, x, y\}$, proving (vi).

Proposition 3.4. If $P_{1}(R)$ is nontrivial, then R has nonzero zero-divisor.
Proof. Suppose $x, y \in R^{*} \backslash\{1\}$ and $\overline{x y}$ is an edge. Then, either $x y=x$ or $x y=y$. If $x y=x$, then $x(1-y)=0$, which shows that x is a nonzero zerodivisor. Similarly, if $x y=y$, then y is nonzero zero-divisor.

Remark 3.2. If $e \in R$ is a nontrivial idempotent, then $1-e$ is also a nontrivial idempotent and the principal ideal generated by e has at least two elements, namely 0 and e. Also $e R$ has more than 2 elements only if $|R| \geq 6$.

Proposition 3.5. If $e \in R$ is a nontrivial idempotent, then
(i) e is adjacent to every element in $e R \backslash\{0, e\}$.
(ii) no element in $e R \backslash\{0\}$ is adjacent to an element in $(1-e) R \backslash\{0\}$.

Proof. Suppose $e \in R$ is a nontrivial idempotent.
(i) Let $x \in e R \backslash\{0, e\}$. Then, $x=e r$ for some $r \in R^{*} \backslash\{1\}$ and hence $e x=e(e r)=e r=x$, which shows that e is adjacent to x.
(ii) Let $x \in e R \backslash\{0\}$ and $y \in(1-e) R \backslash\{0\}$. Then, $x=e r$ and $y=(1-e) s$, for some r, s in R^{*} and therefore $x y=0$ since $e(1-e)=0$. Hence, x and y are not adjacent.

Proposition 3.6. Let $e \in R$ be a nontrivial idempotent. If the principal ideal generated by e is of size two, then either $\overline{e x} \in E$ or $\overline{(1-e) x} \in E$, for every $x \in R^{*} \backslash\{1, e, 1-e\}$.

Proof. Suppose $|e R|=2$. Then, er is either 0 or e for every r in R.
Let $A_{1}(e)=\left\{r \in R^{*} \mid e r=e\right\}$ and $A_{1}^{\prime}(e)=\left\{r \in R^{*} \mid e r=0\right\}$. Then, $R^{*}=A_{1}(e) \cup A_{1}^{\prime}(e)$, where $1, e \in A_{1}(e)$ and $1-e \in A_{1}^{\prime}(e)$.

Let $x \in R^{*} \backslash\{1, e, 1-e\}$. If $x \in A_{1}(e)$, then $e x=e$, which implies $\overline{e x} \in E$. If $x \in A_{1}^{\prime}(e)$, then $(1-e) x=x$, which implies $\overline{(1-e) x} \in E$.

Proposition 3.7. Let R be a commutative ring with nonzero identity such that $|R|>4$. Then, $P_{1}(R)$ is nontrivial if and only if R has a nonzero zero-divisor.

Proof. By Proposition 3.4, it is enough to prove that $P_{1}(R)$ is nontrivial if R has nonzero zero-divisor.

Let $x \in R$ be nonzero zero-divisor. Then, there exists $y \in R^{*}$ such that $x y=0$.

Suppose $1-y \neq x$. Then $x(1-y)=x-x y=x$ and so $\overline{x(1-y)}$ is an edge, where $x, 1-y \in R^{*} \backslash\{1\}$. Suppose $1-y=x$. Then, x is a nontrivial idempotent. Now, consider the cases:
(i) $|x R|=2 \quad$ (ii) $|x R|>2$.

If $|x R|=2$, then $x R=\{0, x\}$ and therefore there exists $r \in R^{*} \backslash\{1\}$ such that $x r=x$, which implies $\overline{x r} \in E$, where $x, r \in R^{*} \backslash\{1\}$.

If $|x R|>2$, then by Proposition 3.5(i), there exists $y \in x R \backslash\{0, x\}$ such that $\overline{x y} \in E$, where $x, y \in R^{*} \backslash\{1\}$.

Corollary 3.1. Let R be a ring with $|R|>4$. Then, $P(R)$ is a star if and only if R satisfies any one of the following equivalent conditions:
(i) $P_{1}(R)$ is trivial.
(ii) R has no nonzero zero-divisor.
(iii) Every element in R^{*} has trivial annihilator.

Proof. $P_{1}(R)$ is trivial if and only if $E=\left\{\overline{x 1} \mid x \in R^{*} \backslash\{1\}\right\}$. Therefore, $P(R)$ is a star if and only if $P_{1}(R)$ is trivial.
(i) \Leftrightarrow (ii) follows from the above proposition.
(ii) \Leftrightarrow (iii) follows from the definition of annihilator.

Corollary 3.2. Let R be a ring with $|R|>4$. Then, $P(R)$ is a star if and only if R is a field.

Proposition 3.8. Let R be a ring with $|R|>4$. Then, the girth of $P(R)$ is either 3 or ∞.

Proof. If R has no nonzero zero-divisors, then $P(R)$ is a star by Corollary 3.1 and hence the girth is ∞.

If R has nonzero zero-divisor, then $P_{1}(R)$ is nontrivial by Proposition 3.7.
Let $\overline{x y} \in E$, where $x, y \in R^{*} \backslash\{1\}$. Then, $1-x-y-1$ forms a cycle and hence the girth is 3 .

For any ring R, write $V=R^{*}=\{1\} \cup(\operatorname{Reg}(R) \backslash\{1\}) \cup(Z D(R) \backslash\{0\})$, where $\operatorname{Reg}(R)=\left\{x \in R^{*} \mid x \notin Z D(R)\right\}$. Then, $N_{P(R)}(1)=R^{*} \backslash\{1\}$ and for every $x \in R^{*} \backslash\{1\}, N_{P(R)}(x)=\left\{y \in R^{*} \mid x y=x\right.$ or $\left.x y=y, y \neq x\right\}$. Now, for every $x \in R^{*} \backslash\{1\}$, write $A_{1}(x)=\left\{y \in R^{*} \mid x y=x\right\}$ and $A_{2}(x)=\left\{y \in R^{*} \mid x y=y\right\}$. Then, it is observed that $x=x y=x y^{2}=\ldots=x y^{k}=\ldots$ holds if $y \in A_{1}(x)$ and $y=x y=x^{2} y=\ldots=x^{k} y=\ldots$ holds if $y \in A_{2}(x)$. Thus, $N_{P(R)}(x)$ contains an infinite number of elements if any one of the above sequences does not terminate.

Proposition 3.9. Let $x \in R^{*} \backslash\{1\}$. Then, the following assertions hold:
(i) $A_{1}(x) \cap A_{2}(x)=\{x\}$ if and only if x is an idempotent.
(ii) $A_{1}(x)=\operatorname{Ann}(x)+1 ; A_{2}(x)=\operatorname{Ann}(1-x) \backslash\{0\}$.

Proof. (i) Suppose $x \in R^{*} \backslash\{1\}$ is an idempotent element. Then, $x^{2}=x$ and so $x \in A_{1}(x) \cap A_{2}(x)$. Also, $y \in A_{1}(x) \cap A_{2}(x)$ implies $y=x y=x$ and hence $A_{1}(x) \cap A_{2}(x)=\{x\}$.

Conversely, suppose $A_{1}(x) \cap A_{2}(x)=\{x\}$. Then, $x x=x$, which proves (i).
(ii) By the definition of $A_{1}(x), y \in A_{1}(x) \Leftrightarrow x y=x \Leftrightarrow x(y-1)=0 \Leftrightarrow$ $y-1 \in \operatorname{Ann}(x)$.

Now, $y-1 \in \operatorname{Ann}(x) \Leftrightarrow y \in \operatorname{Ann}(x)+1$. For, if $y-1 \in \operatorname{Ann}(x)$, then $y=(y-1)+1 \in \operatorname{Ann}(x)+1$. Also if $y \in \operatorname{Ann}(x)+1$, then $y=z+1$, for some $z \in \operatorname{Ann}(x)$, which implies $y-1=z \in \operatorname{Ann}(x)$. Hence, $A_{1}(x)=\operatorname{Ann}(x)+1$. By the definition of $A_{2}(x), y \in A_{2}(x) \Leftrightarrow y \neq 0$ and $x y=y \Leftrightarrow y \neq 0$ and $y(1-x)=$ $0 \Leftrightarrow y \in \operatorname{Ann}(1-x) \backslash\{0\}$ and hence $A_{2}(x)=\operatorname{Ann}(1-x) \backslash\{0\}$.

Proposition 3.10. If $x \in \operatorname{Reg}(R) \backslash\{1\}$, then $N_{P(R)}(x) \subseteq(Z D(R) \backslash\{0\}) \cup\{1\}$.

Proof. Let $x \in \operatorname{Reg}(R) \backslash\{1\}$ and $y \in N_{P(R)}(x)$. Then, $x y=x$ or $x y=y$.
If $x y=x$, then $x(y-1)=0$, which implies $y=1$ by the hypothesis.
If $x y=y$, then $(x-1) y=0$, which implies $y \in Z D(R) \backslash\{0\}$, completing the proof.

Corollary 3.3. $\operatorname{Reg}(R) \backslash\{1\}$ is an independent set.
Proof. Let $x \in \operatorname{Reg}(R) \backslash\{1\}$ and $y \in N_{P(R)}(x)$. Then, $y \notin \operatorname{Reg}(R) \backslash\{1\}$ from the above proposition. Hence, $\operatorname{Reg}(R) \backslash\{1\}$ is independent.

Remark 3.3. If R is finite, then $V=R^{*}=\{1\} \cup(U(R) \backslash\{1\}) \cup(Z D(R) \backslash\{0\})$. Hence, $U(R) \backslash\{1\}$ is independent by the above corollary.

Theorem 3.1. For any $x \in R^{*} \backslash\{1\}$, the following assertions hold, in which \mathbb{E} denotes the set of all nontrivial idempotents in R :
(i) $N_{P(R)}(x)=\{1\} \cup(\operatorname{Ann}(1-x) \backslash\{0\})$ if $x \in \operatorname{Reg}(R) \backslash\{1\}$.
(ii) $N_{P(R)}(x)=((\operatorname{Ann}(x)+1) \cup A n n(1-x)) \backslash\{0\}$ if $x \in Z D(R) \backslash\{0\}$ and $x \notin \mathbb{E}$.
(iii) $N_{P(R)}(x)=((\operatorname{Ann}(x)+1) \cup \operatorname{Ann}(1-x)) \backslash\{0, x\}$ if $x \in Z D(R) \backslash\{0\}$ and $x \in \mathbb{E}$.

Proof. Let $x \in R^{*} \backslash\{1\}$. Then, by the definitions of $A_{1}(x)$ and $A_{2}(x)$ and Proposition 3.9(ii), $N_{P(R)}(x)=A_{1}(x) \cup A_{2}(x)=(\operatorname{Ann}(x)+1) \cup(\operatorname{Ann}(1-x) \backslash\{0\})$.
(i) If $x \in \operatorname{Reg}(R) \backslash\{1\}$, then $\operatorname{Ann}(x)=\{0\}$. Hence, $N_{P(R)}(x)=\{1\} \cup$ $(A n n(1-x) \backslash\{0\})$.
(ii) If $x \in Z D(R) \backslash\{0\}$ and $x \notin \mathbb{E}$, then $N_{P(R)}(x)=(\operatorname{Ann}(x)+1) \cup(\operatorname{Ann}(1-$ $x) \backslash\{0\})$.
(iii) If $x \in Z D(R) \backslash\{0\}$ and $x \in \mathbb{E}$, then $N_{P(R)}(x)=((\operatorname{Ann}(x)+1) \cup A n n(1-$ $x)) \backslash\{0, x\}$, by Proposition 3.9(i).

Proposition 3.11. If $x \in R^{*} \backslash\{1\}$ is not a zero-divisor, then $N_{P(R)}(x) \backslash\{1\}$ together with 0 forms an ideal.

Proof. If x is not a zero-divisor, then by Theorem 3.1(i), $\left(N_{P(R)}(x) \backslash\{1\}\right) \cup\{0\}=$ $\operatorname{Ann}(1-x)$, which is an ideal.

Illustration 3.1. Consider $R=\mathbb{Z} \times \mathbb{Z}$, where $Z D(R)=(\mathbb{Z} \times\{0\}) \cup(\{0\} \times \mathbb{Z})$ and $\operatorname{Reg}(R)=\{(m, n) \in \mathbb{Z} \times \mathbb{Z} \mid m, n \neq 0\}$.

If $x=(1,1)$, then $N_{P(R)}(x)=R^{*} \backslash\{(1,1)\}$.
If $x=(m, n) \in \operatorname{Reg}(R) \backslash\{(1,1)\}$, then $N_{P(R)}(x)=\left(\{0\} \times \mathbb{Z}^{*}\right) \cup\{(1,1)\}$ if $m \neq 1, n=1, N_{P(R)}(x)=\left(\mathbb{Z}^{*} \times\{0\}\right) \cup\{(1,1)\}$ if $m=1, n \neq 1, N_{P(R)}(x)=$ $\{(1,1)\}$ if $m, n \neq 1$. Thus, $\operatorname{Reg}(R) \backslash\{(1,1)\}$ is independent.

If $x=(m, n) \in Z D(R) \backslash\{(0,0)\}$, then $N_{P(R)}(0,1)=(\mathbb{Z} \times\{1\}) \cup(\{0\} \times$ $\left.\mathbb{Z}^{*}\right) \backslash\{(0,1)\}, N_{P(R)}(1,0)=(\{1\} \times \mathbb{Z}) \cup\left(\mathbb{Z}^{*} \times\{0\}\right) \backslash\{(1,0)\}$.
$N_{P(R)}(x)=\mathbb{Z} \times\{1\}$ if $m=0, n \neq 1, N_{P(R)}(x)=\{1\} \times \mathbb{Z}$ if $m \neq 1, n=0$.
Note that, $(0,1)$ and $(1,0)$ are the nontrivial idempotents in R.

Proposition 3.12. Let $e \in R$ be a nontrivial idempotent. Then
(i) $N_{P(R)}(e)=(((1-e) R+1) \cup e R) \backslash\{0, e\}$.
(ii) Every element in e $R \backslash\{0\}$ is adjacent to every element in $(1-e) R+1$.
(iii) For every $x \in e R \backslash\{0, e\}$ and $y \in((1-e) R+1) \backslash\{e\}, e-x-y-e$ forms a cycle.

Proof. (i) If $e \in R$ is a nontrivial idempotent, then by Theorem 3.1(iii), $N_{P(R)}(e)=((A n n(e)+1) \cup A n n(1-e)) \backslash\{0, e\}$.

Now, if $r \in \operatorname{Ann}(e)$, then $r e=0$, which implies $r=r 1=r((1-e)+$ $e)=r(1-e) \in(1-e) R$. Also, $r \in(1-e) R$ implies $r \in \operatorname{Ann}(e)$. Hence, Ann $(e)=(1-e) R$.

Similarly, it can be proved that $\operatorname{Ann}(1-e)=e R$. Thus, $N_{P(R)}(e)=(((1-$ e) $R+1) \cup e R) \backslash\{0, e\}$.
(ii) Let $x \in e R \backslash\{0\}$ and $y \in(1-e) R+1$. Then, $x \in \operatorname{Ann}(1-e) \backslash\{0\}$, which implies $x e=x$ and there exists $z \in \operatorname{Ann}(e)$ such that $y=z+1$.

Now, $x y=x(z+1)=x e(z+1)=x$. Hence, $\overline{x y} \in E$, proving (ii).
(iii) Let $x \in e R \backslash\{0, e\}$ and $y \in((1-e) R+1) \backslash\{e\}$. Then, $\overline{e x}, \overline{y e} \in E$ by (i) and $\overline{x y} \in E$ by (ii). Hence, $e-x-y-e$ forms a cycle.

Proposition 3.13. Let $e \in R$ be a nontrivial idempotent such that both of eR and $(1-e) R+1$ contain more than 2 elements. Then, the following assertions hold in $P_{1}(R)$:
(i) $P_{1}(R)$ contains $K_{i, j}$, where $i=|e R|-2$ and $j=|(1-e) R+1|-2$.
(ii) $P_{1}(R)$ is not planar if both of $e R$ and $(1-e) R+1$ contain more than 5 elements.

Proof. (i) Let $V_{1}=e R \backslash\{0, e\}$ and $V_{2}=((1-e) R+1) \backslash\{1, e\}$. Then, for any $x \in V_{1}$ and $y \in V_{2}, \overline{x y} \in E$ by Proposition 3.12(ii), proving (i).
(ii) Clearly, $P_{1}(R)$ contains $K_{3,3}$ if both of $e R$ and $(1-e) R+1$ have more than 5 elements by (i). Hence, $P_{1}(R)$ is not a planar graph.

Proposition 3.14. The following assertions hold in $P(R)$:
(i) If $x \in R^{*}$ is a nilpotent element, then there exists an integer $k \geq 2$ such that x^{i} is adjacent to $1-x^{k-i}$ for every $1 \leq i \leq k-1$.
(ii) If $x \in R^{*}$ is a nilpotent element, then $N_{P(R)}(x)$ is a multiplicatively closed set of the form $I+1$ for an ideal I of R.
(iii) $\operatorname{Nil}(R) \backslash\{0\}$ is an independent set.

Proof. (i) If $x \in R^{*}$ is a nilpotent element, then there exists an integer $k \geq 2$ such that $x^{k}=0$ and $x^{i} \neq 0$ for $1 \leq i \leq k-1$. Hence, $x^{i}\left(1-x^{k-i}\right)=x^{i}$, which implies that x^{i} is adjacent to $1-x^{k-i}$ for all $1 \leq i \leq k-i$.
(ii) Let $x \in R^{*}$ be a nilpotent element and k be the least positive integer such that $x^{k}=0$. Then, it can be seen that $(1-x)\left(1+x+x^{2}+\ldots+x^{k-1}\right)=1$ and so $1-x$ is a unit. Hence, by Theorem 3.1(ii), $N_{P(R)}(x)=\operatorname{Ann}(x)+1$. Thus, by taking $I=\operatorname{Ann}(x), N_{P(R)}(x)=I+1$, which is a multiplicatively closed set.
(iii) Let $x, y \in \operatorname{Nil}(R) \backslash\{0\}$ and k and l be the least positive integers such that $x^{k}=0=y^{l}$.

Suppose, $\overline{x y} \in E$. Then, either $x y=x$ or $x y=y$.
If $x y=x$, then $x=x y=x y^{2}=\ldots=x y^{k}$, a contradiction to the choice of x.

Similarly, $x y=y$ implies $y=x^{l} y$, a contradiction to the choice of y. Hence, $\overline{x y} \notin E$.

Example 3.2. In $R=\frac{\mathbb{Z}_{2}[x]}{\left(x^{3}\right)}, \operatorname{Nil}(R) \backslash\{0\}=\left\{[x],\left[x^{2}\right],\left[x^{2}+x\right]\right\}$, which is an independent set.

Remark 3.4. If R is a domainlike ring, then every zero-divisor is a nilpotent and hence the set of nonzero zero-divisors in R is independent.

Proposition 3.15. If R is not a domain, then $P_{1}(R)$ is bipartite when R has any one of the following equivalent conditions:
(i) Every nonunit is a nilpotent.
(ii) R has a unique prime ideal.
(iii) $\frac{R}{N i l(R)}$ is a field.

Proof. Suppose that every nonunit in R is a nilpotent. Then, $R^{*} \backslash\{1\}=$ $(N i l(R) \backslash\{0\}) \cup(U(R) \backslash\{1\})$, in which $\operatorname{Nil}(R) \backslash\{0\}$ and $U(R) \backslash\{1\}$ are independet sets. Hence, any edge $\overline{x y}$ with $x, y \in R^{*} \backslash\{1\}$ has one end in $\operatorname{Nil}(R) \backslash\{1\}$ and the
 $P_{1}(R)$, as required.

As it is known that (i) \Leftrightarrow (ii) \Leftrightarrow (iii), the proposition follows.
Proposition 3.16. If R is a ring which is not domain, then $P_{1}(R)$ is bipartite when R has any one of the following equivalent conditions:
(i) R is presimplifiable.
(ii) $Z D(R) \subseteq J(R)$.
(iii) $Z D(R) \subseteq\{1-u \mid u \in U(R)\}$.

Proof. By Lemma 2.2, (i) \Leftrightarrow (ii) \Leftrightarrow (iii).
Suppose that R is presimplifiable.
Let $\overline{x y}$ be any edge with $x, y \in R^{*} \backslash\{1\}$. Then, $x y=x$ or $x y=y$. Now, consider the following cases:
(i) $x, y \in U(R) \backslash\{1\}$
(ii) $x, y \in W^{*}(R)$
(iii) $x \in U(R) \backslash\{1\}$ and $y \in$ $W^{*}(R)$.

Since $U(R) \backslash\{1\}$ is independent case (i) is not possible. Also, since R is presimplifiable and x, y are nonzero elements, if $x y=x$, then $y \in U(R)$. Similarly, if $x y=y$, then $x \in U(R)$, which shows that case (ii) is also not possible.

Hence, the only possible choice is case (iii). That is, $x \in U(R) \backslash\{1\}, y \in$ $W^{*}(R)$. Thus, $U(R) \backslash\{1\}$ and $W^{*}(R)$ form a bipartition for $P_{1}(R)$, as desired.

Corollary 3.4. If R is a local ring, which is not a domain, then $P_{1}(R)$ is bipartite.

Proof. As R is local, it is presimplifiable and hence the proof follows from Proposition 3.16.

Proposition 3.17. Let R be a local ring, which is not a domain.
If $x, y \in R^{*} \backslash\{1\}$ and $\operatorname{Ann}(x) \cap \operatorname{Ann}(y) \neq\{0\}$, then there exists a path $x-u-y$ with $u \in U(R) \backslash\{1\}$.

Proof. Since R is local, it has a unique maximal ideal \mathcal{M}, say.
Let $x, y \in R^{*} \backslash\{1\}$ and $t(\neq 0) \in \operatorname{Ann}(x) \cap \operatorname{Ann}(y)$. Then, $t x=t y=0$, which implies $(1-t) x=x$ and $(1-t) y=y$.

Hence, as $1-t \in R^{*} \backslash\{1, x, y\}, x-(1-t)-y$ is a path between x and y. Now, it is claimed that $1-t$ is a unit. Suppose $1-t$ is not a unit. Then, it must be in a maximal ideal. Now, both $t, 1-t \in \mathcal{M}$, which is closed under addition.

Hence, $1 \in \mathcal{M}$, showing that $\mathcal{M}=R$, a contradiction to the fact that \mathcal{M} is a proper ideal. Thus, the claim is proved.

Proposition 3.18. Let R be a local ring, which is not a domain, and R has ascending chain condition $(A C C)$ on ideals of the form $\operatorname{Ann}(x), x \in R$. Then, the following assertions hold:
(i) $P(R)$ contains cycles of lengths $j, 3 \leq j \leq 2 k+1$, where k is the number of nontrivial annihilators in R.
(ii) $P(R)$ is weakly pancyclic.

Proof. Since the ideals $\operatorname{Ann}(x), x \in R$ satisfy ACC, there exist $x_{1}, \ldots, x_{k}, x_{k+1} \ldots$ in R such that $\operatorname{Ann}\left(x_{1}\right) \subset \operatorname{Ann}\left(x_{2}\right) \subset \ldots \subset \operatorname{Ann}\left(x_{k}\right)=\operatorname{Ann}\left(x_{k+1}\right)=\ldots$ for some positive integer k.
(i) Let $y_{i} \in \operatorname{Ann}\left(x_{i}\right) \backslash \operatorname{Ann}\left(x_{i-1}\right)$ for every $1 \leq i \leq k$. Then, $x_{i} y_{i}=x_{i+1} y_{i}=$ 0 , which implies $x_{i}\left(1-y_{i}\right)=x_{i}$ and $x_{i+1}\left(1-y_{i}\right)=x_{i+1}$, where $1-y_{i} \in$ $R^{*} \backslash\left\{1, x_{i}, x_{i+1}\right\}$. Hence, $x_{i}-\left(1-y_{i}\right)-x_{i+1}$ is a path as in Proposition 3.17.

Thus, each one of the following is a cycle: $1-x_{1}-\left(1-y_{1}\right)-1$, (a cycle of length $3), 1-x_{1}-\left(1-y_{1}\right)-x_{2}-1$, (a cycle of length 4$), 1-x_{1}-\left(1-y_{1}\right)-x_{2}-\left(1-y_{2}\right)-1$, (a cycle of length 5) and so on, proving (i).
(ii) $P(R)$ is weakly pancyclic by (i) and the definition of weakly pancyclic graph.

The proof of the following proposition is omitted as it is trivial from the natural product defined in a quotient ring.

Proposition 3.19. Let I be a nontrivial ideal in R. If x, y are adjacent in $P(R)$, then $x+I$ and $y+I$ are adjacent in $P\left(\frac{R}{I}\right)$, where $\frac{R}{I}$ denotes the quotient ring.

The following proposition shows that the projection graphs of finite isomorphic rings are isomorphic.

Proposition 3.20. Let R and S be finite rings such that $R \cong S$. Then, $P(R) \cong$ $P(S)$.

Proof. By the hypothesis, there exists a one-one, onto ring homomorphism ϕ between R and S. Let ϕ^{*} be the restriction of ϕ to R^{*}. Then, ϕ^{*} is a oneone, onto function. As $\left|R^{*}\right|=\left|S^{*}\right|,|V(P(R))|=|V(P(S))|$, where $V(P(R))$ and $V(P(S))$ denote the sets of vertices of R and S respectively.

Let $x, y \in V(P(R))$ such that x and y are adjacent. Then, $x y=x$ or $x y=y$. If $x y=x$, then $\phi^{*}(x y)=\phi^{*}(x)$, which implies $\phi^{*}(x) \phi^{*}(y)=\phi^{*}(x)$. Therefore, $\phi^{*}(x)$ is adjacent to $\phi^{*}(y)$ in $P(S)$.

A similar argument holds for the case, where $x y=y$, proving that ϕ^{*} preserves the adjacency between vertices. Thus, $P(R) \cong P(S)$.

Example 3.3. Let $R=\frac{\mathbb{Z}_{2}[x]}{\left(x^{2}\right)} ; S=\frac{\mathbb{Z}_{2}[x]}{\left(x^{2}+1\right)}$. Then, $R \cong S$ and $P(R) \cong P(S)$.
Remark 3.5. The converse of the above proposition need not be true. For, if $R=\mathbb{Z}_{4}$ and $S=\frac{\mathbb{Z}_{2}[x]}{\left(x^{2}\right)}$, then $P(R) \cong P(S)$ and $R \nsubseteq S$.

Proposition 3.21. $P(R)$ is not complete in each of the following cases:
(i) R has nontrivial idempotent elements.
(ii) $\mid(U(R) \mid \geq 3$.

Proof. (i) If R has nontrivial idempotent element e, then $P(R)$ is not complete since e and $1-e$ are not adjacent.
(ii) If there are more than three units, then $P(R)$ is not complete since $U(R) \backslash\{1\}$ is independent.

Proposition 3.22. Let R be finite. Then, $P(R)$ is complete if and only if either $R \cong \mathbb{Z}_{3}$ or $R \cong \mathbb{Z}_{4}$.

Proof. It is known that $P\left(\mathbb{Z}_{3}\right)$ and $P\left(\mathbb{Z}_{4}\right)$ are complete. Hence, if $R \cong \mathbb{Z}_{3}$ or $R \cong \mathbb{Z}_{4}$, then $P(R)$ is complete by Proposition 3.20.

Conversely, suppose that $P(R)$ is complete. Then, $|U(R)| \leq 2$ and R has no nontrivial idempotents by the above proposition.

Let $R=\{0,1, u\} \cup Z D(R)$, where $u \neq 1$ is a unit. Then, it is claimed that $|Z D(R)| \leq 1$.

Suppose $x, y \in Z D(R)$ be distinct nonzero zero-divisors. Then, $x y=x$ or $x y=y$ by the hypothesis.

If $x y=x$, then $(x+u) y=x y+u y=x+y$ since $x u=x$ by the completeness. But, $(x+u) y=x+u$ or $(x+u) y=y$ since $P(R)$ is complete.

If $(x+u) y=x+u$, then from the previous step, $x+u=x+y$ which implies $y=u$, a contradiction to the choice of y. Therefore, $(x+u) y=y$, which implies $x=0$.

By a similar argument, it can be shown that if $x y=y$, then $y=0$. Hence, there can be at the most one nonzero zero-divisor. Thus, $|R| \leq 4$.

If $|R|=3$, then $R \cong \mathbb{Z}_{3}$.
If $|R|=4$, then $R \cong \mathbb{Z}_{4}$, since R is the unital commutative ring of cardinality 4 with no nontrivial idempotents, which completes the proof.

Proposition 3.23. If $P(R)$ is not a star, then there exists $x \in R^{*} \backslash\{1\}$ such that either $x R$ or $(1-x) R$ has a nonzero annihilating ideal.

Proof. If $P(R)$ is not a star, then there exists $\overline{x y} \in E$, for some $x, y \in R^{*} \backslash\{1\}$, which implies that either $y \in(\operatorname{Ann}(x)+1) \backslash\{1\}$ or $y \in \operatorname{Ann}(1-x) \backslash\{0\}$ by Theorem 3.1.

If $y \in(\operatorname{Ann}(x)+1) \backslash\{1\}$, then there exists a nozero $z \in \operatorname{Ann}(x)$ such that $y=z+1$ and $(y-1) x r=z x r=0$ for every r in R, showing that $\operatorname{Ann}(x R) \neq\{0\}$.

If $y \in \operatorname{Ann}(1-x) \backslash\{0\}$, then $(1-x) y=0$ and therefore $(1-x) y r=0$ for every $r \in R$. Hence, $\operatorname{Ann}((1-x) R) \neq\{0\}$. This completes the proof.

Proposition 3.24. If $x, y \in R^{*}$ are adjacent, then either $x R \subseteq y R$ or $y R \subseteq x R$.

Proof. Suppose $x, y \in R^{*}$ and $\overline{x y} \in E$. Then, either $x y=x$ or $x y=y$.
Consider the following possible cases:
(i) $x, y \in U(R) \quad$ (ii) $x \in U(R)$ and $y \notin U(R) \quad$ (iii) $x, y \notin U(R)$.

Case (i) If $x, y \in U(R)$, then $x R=y R=R$.
Case (ii) If $x \in U(R)$ and $y \notin U(R)$, then $x R=R$ and so $y R \subseteq x R$.
Case (iii) Let $x, y \notin U(R)$. If $x y=x$, then $z \in x R$ implies $z=x r$ for some $r \in R$. Therefore, $z=(x y) r=y(x r) \in y R$ and so $x R \subseteq y R$.

Similarly, if $x y=y$, then it can be shown that $y R \subseteq x R$, which completes the proof.

4. Projection graphs of \mathbb{Z}_{n}

In this section, $\mathbb{Z}_{n}, n \geq 3$, is considered and $P\left(\mathbb{Z}_{n}\right)$ is studied. It is observed that the vertex set V of $P\left(\mathbb{Z}_{n}\right)$ is given by $V=\mathbb{Z}_{n}^{*}=U\left(\mathbb{Z}_{n}\right) \cup\left(Z D\left(\mathbb{Z}_{n}\right) \backslash\{0\}\right)$ and $|V|=n-1$.

Proposition 4.1. Let $n \geq 3$. Then:
(i) $P\left(\mathbb{Z}_{n}\right)$ is complete if and only if $n=3,4$.
(ii) $P\left(\mathbb{Z}_{n}\right)$ is a star if and only if n is a prime.

Proof. (i) The proof follows from Proposition 3.22.
(ii) \mathbb{Z}_{n} has no zero-divisors if and only if n is a prime. Hence, (ii) follows from Corollary 3.1.

Proposition 4.2. $\operatorname{diam}\left(P\left(\mathbb{Z}_{n}\right)\right)= \begin{cases}1, & \text { if } n=3,4 \\ 2, & \text { otherwise. }\end{cases}$
Proof. By Proposition 4.1(i), it is clear that the diameter of $P\left(\mathbb{Z}_{n}\right)$ is 1 if and only if $n=3,4$. Hence, by Proposition 3.1, the diameter of $P\left(\mathbb{Z}_{n}\right)$ is 2 if $n \geq 5$.

Proposition 4.3. $\operatorname{girth}\left(P\left(\mathbb{Z}_{n}\right)\right)= \begin{cases}\infty, & \text { ifn is prime } \\ 3, & \text { otherwise. }\end{cases}$
Proof. By Proposition 4.1(ii), it is clear that the girth of $P\left(\mathbb{Z}_{n}\right)$ is ∞ if and only if n is a prime. Hence, if n is not a prime, then the girth of $P\left(\mathbb{Z}_{n}\right)$ is 3 by Proposition 3.8.

Remark 4.1. Note that, \mathbb{Z}_{n} has nontrivial idempotent, if and only if $x^{2} \equiv$ $x \bmod n$ for some $1<x<n$ if and only if n divides $x(1-x)$ if and only if n has at least two nontrivial divisors.

Proposition 4.4. Let $x, y \in \mathbb{Z}_{n}^{*}$. Then:
(i) $\operatorname{Ann}(x)=\operatorname{Ann}(c)$ if $(x, n)=c$.
(ii) $\operatorname{Ann}(x)=\{0\}$ if and only if $x \in U\left(\mathbb{Z}_{n}\right)$.
(iii) $\operatorname{Ann}(x)=\operatorname{Ann}(y)$ if and only if $(x, n)=(y, n)$.
(iv) If $(x, n)=x$, then $\operatorname{Ann}(x)=k \mathbb{Z}_{n}$, where $k=\frac{n}{x}$ and $\left|k \mathbb{Z}_{n}\right|=x$.
(v) $\operatorname{Ann}(e)=(1-e) \mathbb{Z}_{n}$ and $\operatorname{Ann}(1-e)=e \mathbb{Z}_{n}$, where e is a nontrivial idempotent.

Proof. (i) Suppose $(x, n)=c$. Then, there exist integers k and l, m such that $x=k c$ and $c=l x+m n$.

Now, $\operatorname{Ann}(x) \subseteq A n n(c)$. For, $t \in \operatorname{Ann}(x) \Rightarrow t x=0 \Rightarrow t l x=0 \Rightarrow t c=0 \Rightarrow$ $t \in A n n(c)$.

Also, $\operatorname{Ann}(c) \subseteq A n n(x)$, since $t \in A n n(c) \Rightarrow t c=0 \Rightarrow t k c=0 \Rightarrow t x=0 \Rightarrow$ $t \in \operatorname{Ann}(x)$, which proves (i).
(ii) If $x \in U\left(\mathbb{Z}_{n}\right)$, then $\operatorname{Ann}(x)=\left\{t \in \mathbb{Z}_{n} \mid t x=0\right\}=\{0\}$. Conversely, suppose $x \notin U\left(\mathbb{Z}_{n}\right)$. If $x=0$, then $\operatorname{Ann}(x)=\mathbb{Z}_{n}$.

If $x \neq 0$, then there exists $y \in \mathbb{Z}_{n}^{*}$ such that $x y=0$, which implies $\operatorname{Ann}(x) \neq$ $\{0\}$.
(iii) The proof of (iii) follows from (i).
(iv) As $\operatorname{Ann}(x)$ is an ideal and every ideal in \mathbb{Z}_{n} is principal, $\operatorname{Ann}(x)=a \mathbb{Z}_{n}$ for some $a \in \mathbb{Z}_{n}$.

If $(x, n)=x$, then there exists an integer k such that $k x=n$, which implies $k \in \operatorname{Ann}(x)$ and hence $k \mathbb{Z}_{n} \subseteq \operatorname{Ann}(x)$. Also, $t \in \operatorname{Ann}(x) \Rightarrow t x=0 \Rightarrow t x=\ln$, for some $l \in \mathbb{Z}_{n} \Rightarrow t=k l \in k \mathbb{Z}_{n}$. Hence, $\operatorname{Ann}(x) \subseteq k \mathbb{Z}_{n}$ and $\left|k \mathbb{Z}_{n}\right|=x$, proving (iv).
(v) Assertion (v) follows from the proof of Proposition 3.12 (i).

Proposition 4.5. Let s, t be two distinct factors of n. Then:
(i) $\operatorname{Ann}(s) \neq \operatorname{Ann}(t)$
(ii) $\operatorname{Ann}(s) \subset \operatorname{Ann}(t)$, whenever $s \mid t$.
(iii) $\operatorname{Ann}(s) \cap \operatorname{Ann}(t)=\{0\}$ if and only if $(s, t)=1$.

Proof. (i) Note that, $(s, n)=s$ and $(t, n)=t$. Therefore, from Proposition 4.4(iv), $\operatorname{Ann}(s)=k \mathbb{Z}_{n}$ and $\operatorname{Ann}(t)=l \mathbb{Z}_{n}$, where $k=\frac{n}{s}, l=\frac{n}{t}$. Hence, $\operatorname{Ann}(s) \neq$ $\operatorname{Ann}(t)$, since $k \neq l$.
(ii) If $s \mid t$, then $s k=t$ for some integer k and therefore $r \in \operatorname{Ann}(s) \Rightarrow$ $r s=0 \Rightarrow k r s=0 \Rightarrow t r=0 \Rightarrow r \in \operatorname{Ann}(t)$. Hence, $\operatorname{Ann}(s) \subset \operatorname{Ann}(t)$, since $|A n n(s)|=s<t=|A n n(t)|$.
(iii) Suppose $(s, t)=1$. Then, there exist integers k and l such that $k s+l t=$ 1. Hence, if $r \in \operatorname{Ann}(s) \cap \operatorname{Ann}(t)$, then $r=r k s+r l t$ and so $r=0$.

Conversely, suppose $(s, t)=r \neq 1$. Then, $r \mid s$ and $r \mid t$ and hence by (ii), $\operatorname{Ann}(s) \cap \operatorname{Ann}(t) \supset \operatorname{Ann}(r) \neq\{0\}$.

Definition 4.1. Define a relation \sim on \mathbb{Z}_{n}^{*} by $x \sim y$ if and only if $\operatorname{Ann}(x)=$ Ann(y) for every $x, y \in \mathbb{Z}_{n}^{*}$.

Remark 4.2. The relation \sim defined above on \mathbb{Z}_{n}^{*} is an equivalence relation. Hence, if $x \in \mathbb{Z}_{n}^{*}$ and $[x]_{\sim}$ denotes the equivalence class of x, then by Proposition $4.4(i i i),[x]_{\sim}=\left\{y \in \mathbb{Z}_{n}^{*} \mid \operatorname{Ann}(y)=\operatorname{Ann}(x)\right\}=\left\{y \in \mathbb{Z}_{n}^{*} \mid(y, n)=(x, n)\right\}$.

Proposition 4.6. Using the above notations, the following statements are true:
(i) $[1]_{\sim}=U\left(\mathbb{Z}_{n}\right) ;\left|[1]_{\sim}\right|=\phi(n)$.
(ii) $[1]_{\sim} \backslash\{1\}$ is an independent set of size $\phi(n)-1$.
(iii) If $d \mid n$, then $[d]_{\sim}=\left\{y \in \mathbb{Z}_{n}^{*} \mid(y, n)=d\right\}$.
(iv) $Z D\left(\mathbb{Z}_{n}\right) \backslash\{0\}=\cup_{(x, n) \neq 1}[x]_{\sim}=\cup_{d \mid n, d \neq 1}[d]_{\sim}$.

Proof. (i) By using Remark 4.2, [1] $]_{\sim}=\left\{y \in \mathbb{Z}_{n}^{*} \mid \operatorname{Ann}(y)=\{0\}\right\}=\{y \in$ $\left.\mathbb{Z}_{n}^{*} \mid(y, n)=1\right\}=U\left(\mathbb{Z}_{n}\right)$ and hence $\left|[1]_{\sim}\right|=\phi(n)$.
(ii) The proof follows from Corollary 3.3 using (i).
(iii) Let $d \mid n$. Then, $(d, n)=d$ and hence $[d]_{\sim}=\left\{y \in \mathbb{Z}_{n}^{*} \mid \operatorname{Ann}(y)=\right.$ $\operatorname{Ann}(d)\}=\left\{y \in \mathbb{Z}_{n}^{*} \mid(y, n)=d\right\}$.
(iv) From Remark 4.2, $\mathbb{Z}_{n}^{*}=[1]_{\sim} \cup\left(\cup_{x \in \mathbb{Z}_{n}^{*} \backslash\{1\}}[x]_{\sim}\right)$ and hence $Z D\left(\mathbb{Z}_{n}\right) \backslash\{0\}=$ $\cup_{(x, n) \neq 1}[x]_{\sim}=\cup_{d \mid n, d \neq 1}[d]_{\sim}$, by (iii).

Proposition 4.7. Let $n=p^{k}$, for some $k \geq 2$. Then, the following assertions hold:
(i) $Z D\left(\mathbb{Z}_{n}\right) \backslash\{0\}$ is an independent set.
(ii) $P_{1}\left(\mathbb{Z}_{n}\right)$ is bipartite.
(iii) $P\left(\mathbb{Z}_{n}\right)$ is weakly pancyclic.

Proof. If $n=p^{k}$, then $Z D\left(\mathbb{Z}_{n}\right) \backslash\{0\}=\cup_{i=1}^{k-1}\left[p^{i}\right]_{\sim}$, where $\left[p^{i}\right]_{\sim}=\left\{y \in \mathbb{Z}_{n}^{*} \mid(y, n)=\right.$ $\left.p^{i}\right\}$, by Proposition 4.6(iv).
(i) It is claimed that $Z D\left(\mathbb{Z}_{n}\right)=\operatorname{Nil}\left(\mathbb{Z}_{n}\right)$. For, if $x \in Z D\left(\mathbb{Z}_{n}\right) \backslash\{0\}$, then $x \in\left[p^{i}\right]_{\sim}$, for some i, which implies $x=t p^{i}$ for some integer t. Hence, $x^{k-i}=0$ and thus x is a nilpotent element, proving the claim.

Hence, $Z D\left(\mathbb{Z}_{n}\right) \backslash\{0\}=\operatorname{Nil}\left(\mathbb{Z}_{n}\right) \backslash\{0\}$, which is independent by $3.14(\mathrm{iii})$.
(ii) From the proof of (i), it is noted that the set of all nonunits is equal to $\operatorname{Nil}\left(\mathbb{Z}_{n}\right)$, which is the unique maximal ideal. Hence, \mathbb{Z}_{n} is local and thus $P_{1}\left(\mathbb{Z}_{n}\right)$ is bipartite by Corollary 3.4.
(iii) It is claimed that the ideals of the form $\operatorname{Ann}(x), x \in \mathbb{Z}_{n}$, have ACC.

If $x \in \mathbb{Z}_{n}^{*}$, then either $x \in U\left(\mathbb{Z}_{n}\right)$ or $x \in\left[p^{i}\right]_{\sim}=\left\{t \in \mathbb{Z}_{n}^{*} \mid \operatorname{Ann}(t)=\operatorname{Ann}\left(p^{i}\right)\right\}$, for some i. If $x \in U\left(\mathbb{Z}_{n}\right)$, then $\operatorname{Ann}(x)=\{0\}$.

Also, by Proposition 4.5 (ii), $\operatorname{Ann}(p) \subset \operatorname{Ann}\left(p^{2}\right) \subset \ldots \subset \operatorname{Ann}\left(p^{k-1}\right)$, proving the claim. Thus, $P\left(\mathbb{Z}_{n}\right)$ is weakly pancyclic by Proposition 3.18.

Proposition 4.8. If $n=2^{k}$, for some $k \geq 2$, then the following assertions hold:
(i) $\left|U\left(\mathbb{Z}_{n}\right) \backslash\{1\}\right|=\left|Z D\left(\mathbb{Z}_{n}\right) \backslash\{0\}\right|=\frac{n}{2}-1, U\left(\mathbb{Z}_{n}\right)=[1]_{\sim}=\left\{2 j+1 \in \mathbb{Z}_{n}^{*} \mid j \in\right.$ $\left.\mathbb{Z}_{n}\right\}$.
(ii) If $x \in\left[2^{i}\right] \sim$ and $x+u=1$, then $\operatorname{deg}(x)=\operatorname{deg}(u)=2^{i}$, for $1 \leq i \leq k-1$.
(iii) The degree sequence is given by $\left(2^{\left(a_{1}\right)}, 2^{2^{\left(a_{2}\right)}}, \ldots, 2^{k-1^{\left(a_{k-1}\right)}}, n-2^{(1)}\right)$, where $\left(a_{i}\right)$ denotes the multiplicity and $\left(a_{i}\right)=2\left|\left[2^{i}\right]_{\sim}\right|$ for $1 \leq i \leq k-1$.

Proof. (i) $\left|U\left(\mathbb{Z}_{n}\right)\right|=\phi(n)=2^{k}-2^{k-1}=n-\frac{n}{2}=\frac{n}{2}$.
Hence, $\left|U\left(\mathbb{Z}_{n}\right) \backslash\{1\}\right|=\left|Z D\left(\mathbb{Z}_{n}\right) \backslash\{0\}\right|=\frac{n}{2}-1$. Also, $U\left(\mathbb{Z}_{n}\right)=[1]_{\sim}=\{y \in$ $\left.\mathbb{Z}_{n}^{*} \mid\left(y, 2^{k}\right)=1\right\}=\left\{2 j+1 \in \mathbb{Z}_{n}^{*} \mid j \in \mathbb{Z}_{n}\right\}$.
(ii) Let $x \in\left[2^{i}\right]_{\sim}$ and $x+u=1$. Then, $u=1-x \in U\left(\mathbb{Z}_{n}\right) \backslash\{1\}$ since x is nilpotent from 4.7(i). Therefore, by Theorem 3.1(i), $N_{P(R)}(u)=\{1\} \cup(\operatorname{Ann}(1-$ $u) \backslash\{0\})=\{1\} \cup(\operatorname{Ann}(x) \backslash\{0\})=\{1\} \cup\left(\operatorname{Ann}\left(2^{i}\right) \backslash\{0\}\right)=\{1\} \cup\left(2^{k-i} \mathbb{Z}_{n} \backslash\{0\}\right)$ and so $\left|N_{P(R)}(u)\right|=2^{i}$. Thus, $\operatorname{deg}(u)=2^{i}$. Also, $N_{P\left(\mathbb{Z}_{n}\right)}(x)=\operatorname{Ann}\left(2^{i}\right)+1=$ $2^{k-i} \mathbb{Z}_{n}+1$ and so $\left|N_{P\left(\mathbb{Z}_{n}\right)}(x)\right|=\left|2^{k-i} \mathbb{Z}_{n}\right|=2^{i}$. Thus, $\operatorname{deg}(x)=2^{i}$. From the above discussion, it is clear that $\operatorname{deg}(u)=\operatorname{deg}(x)=2^{i}$.
(iii) Note that, $\mathbb{Z}_{n}^{*}=\{1\} \cup\left(U\left(\mathbb{Z}_{n}\right) \backslash\{1\}\right) \cup\left(Z D\left(\mathbb{Z}_{n}\right) \backslash\{0\}\right)$, where $Z D\left(\mathbb{Z}_{n}\right) \backslash\{0\}=$ $\cup_{i=1}^{k-1}\left[2^{i}\right]_{\sim}$.

As the degree of 1 is $n-2$ and for every $x \in Z D\left(\mathbb{Z}_{n}\right) \backslash\{0\}$, there is a unique $u \in U\left(\mathbb{Z}_{n}\right) \backslash\{1\}$ such that $x+u=1$, (iii) follows from (ii).

Proposition 4.7 and Proposition 4.8 are illustrated in Figure 7 and Table 1 for $n=32$.

Illustration 4.1. Consider \mathbb{Z}_{32}, where $Z D\left(\mathbb{Z}_{n}\right) \backslash\{0\}=\cup_{i=1}^{4}\left[2^{i}\right]_{\sim}$ and $U\left(\mathbb{Z}_{n}\right)=$ $[1]_{\sim}=\left\{y \in \mathbb{Z}_{n}^{*} \mid\left(y, 2^{5}\right)=1\right\}=\{1,3,5, \ldots, 31\}$.

i	$\left\{x \mid x \in\left[2^{i}\right]_{\sim}\right\}$	$\operatorname{Ann}\left(2^{i}\right)=k \mathbb{Z}_{n}, k=\frac{n}{2^{i}}$	$u=1-x$	$\operatorname{deg}(x)=\operatorname{deg}(u)$
1	$\{2,6, \ldots, 30\}$	$\{0,16\}$	$\{31,27, \ldots, 3\}$	2
2	$\{4,12,20,28\}$	$\{0,8,16,24\}$	$\{29,21,13,5\}$	4
3	$\{8,24\}$	$\{0.4,8, \ldots, 28\}$	$\{25,9\}$	8
4	$\{16\}$	$\{0.2,4, \ldots, 30\}$	$\{17\}$	16

Table 1: \mathbb{Z}_{32}

Figure 7: $P\left(\mathbb{Z}_{32}\right)$

Proposition 4.9. Let $n=2 q$. Then, the following assertions hold:
(i) $Z D\left(\mathbb{Z}_{n}\right)=\{2,4, \ldots, 2 q-2\} \cup\{q\}, U\left(\mathbb{Z}_{n}\right)=\{1,3,5, \ldots, 2 q-1\} \backslash\{q\}$.
(ii) $q, q+1$ are the nontrivial idempotents.
(iii) $N_{P\left(\mathbb{Z}_{n}\right)}(q)=\{1,3, \ldots, 2 q-1\} \backslash\{q\}, N_{P\left(\mathbb{Z}_{n}\right)}(q+1)=\{2,4, \ldots, 2 q-2\} \backslash\{q+$ $1\}$.
(iv) $N_{P\left(\mathbb{Z}_{n}\right)}(x)=\{1, q\}$ if $x \in[2] \sim\{q+1\}, N_{P\left(\mathbb{Z}_{n}\right)}(x)=\{1, q+1\}$ if $x \in$ $U\left(\mathbb{Z}_{n}\right) \backslash\{1\}$.
(v) $\operatorname{deg}(x)= \begin{cases}n-2, & \text { if } x=1 \\ q-1, & \text { if } x=q, q+1 \\ 2, & \text { otherwise. }\end{cases}$
(vi) The number of triangles in $P\left(\mathbb{Z}_{n}\right)$ is $2 q-4$.
(vii) $P\left(\mathbb{Z}_{n}\right)$ is the union of two copies of triangular book
(viii) $|E|=4 q-6$.
(ix) $P\left(\mathbb{Z}_{n}\right)$ is planar.
(x) $P_{1}\left(\mathbb{Z}_{n}\right)$ is disconnected.

Proof. (i) By Proposition 4.6(iv), $Z D\left(\mathbb{Z}_{n}\right) \backslash\{0\}=[2]_{\sim} \cup[q]_{\sim}$, where $[2]_{\sim}=$ $\left\{y \in \mathbb{Z}_{n}^{*} \mid(y, n)=2\right\}=\{2,4, \ldots, 2 q-2\}$ and $[q]_{\sim}=\left\{y \in \mathbb{Z}_{n}^{*} \mid(y, n)=q\right\}=\{q\}$. Hence, $U\left(\mathbb{Z}_{n}\right)=\mathbb{Z}_{n} \backslash Z D\left(\mathbb{Z}_{n}\right)=\{1,3,5, \ldots, 2 q-1\} \backslash\{q\}$.

Figure 8: $P\left(\mathbb{Z}_{2 q}\right)$
(ii) Since q is odd, $q(q+1) \equiv 0 \bmod 2 q$ and hence q and $q+1$ are the idempotents.
(iii) Note that, $1-q=q+1$ and as in the proof of Proposition 3.12, $\operatorname{Ann}(1-q)=\operatorname{Ann}(q+1)=q \mathbb{Z}_{n}=\{0, q\}$. Also, $\operatorname{Ann}(q)=2 \mathbb{Z}_{n}$ by Proposition 4.4(iv). Hence, by using Theorem 3.1(iii), $N_{P\left(\mathbb{Z}_{n}\right)}(q)=((\operatorname{Ann}(q)+1) \cup$ $A n n(1-q)) \backslash\{0, q\}=\left(\left(2 \mathbb{Z}_{n}+1\right) \cup q \mathbb{Z}_{n}\right) \backslash\{0, q\}=\{1,3,5, \ldots, 2 q-1\} \backslash\{q\}$.

Similarly, $N_{P\left(\mathbb{Z}_{n}\right)}(q+1)=((\operatorname{Ann}(q+1)+1) \cup \operatorname{Ann}(q)) \backslash\{0, q+1\}=\left(\left(q \mathbb{Z}_{n}+\right.\right.$ 1) $\left.\cup 2 \mathbb{Z}_{n}\right) \backslash\{0, q+1\}=\{1,2,4, \ldots, 2 q-2\} \backslash\{q+1\}$.
(iv) If $x \in[2] \sim \backslash\{q+1\}$, then $N_{P\left(\mathbb{Z}_{n}\right)}(x)=((\operatorname{Ann}(x)+1) \cup \operatorname{Ann}(1-x)) \backslash\{0\}$ by Theorem 3.1(ii) $=(\operatorname{Ann}(2)+1)$ by the definition of $\sim=q \mathbb{Z}_{n}+1$ by Proposition $3.1($ iv $)=\{1, q+1\}$. Also, since $\left|q \mathbb{Z}_{n}\right|=2$, by Proposition 3.6, either $\overline{q x} \in E$ or $\overline{(1-q) x} \in E$, for every $x \in \mathbb{Z}_{n}^{*} \backslash\{1, q, 1-q\}$. But, $\mathbb{Z}_{n}^{*} \backslash\{1, q, 1-q\}=\left([2]_{\sim} \backslash\{q+\right.$ $1\}) \cup\left([1]_{\sim} \backslash\{1\}\right)$, where $[1]_{\sim} \backslash\{1\}=U\left(\mathbb{Z}_{n}\right) \backslash\{1\}$.

Hence, for $x \in U\left(\mathbb{Z}_{n}\right) \backslash\{1\}, N_{P\left(\mathbb{Z}_{n}\right)}(x)=\{1, q\}$.
(v) The proof of (v) follows from (iii) and (iv).
(vi) From (iv), it can be seen that $1-x-(q+1)-1$ form triangles, which share $\overline{(q+1) 1}$ in common for every $x \in U\left(\mathbb{Z}_{n}\right) \backslash\{1\}$.

Similarly, $1-q-y-1$ form triangles, which share $\overline{1 q}$ in common for every $y \in[2] \sim\{q+1\}$, as drawn in Figure 8.

Hence, the number of triangles $=\left|U\left(\mathbb{Z}_{n}\right) \backslash\{1\}\right|+\left|[2]_{\sim} \backslash\{q+1\}\right|=2(q-1)=$ $2 q-4$. (vii) From Figure, it is clear that $P\left(\mathbb{Z}_{n}\right)$ is the union of two copies of triangular book.
(viii) As each triangle in one page of the triangular book counts two edges excluding the common edge, $|E|=(2(2 q-4))+2=4 q-6$.
(ix) Obviously, $P\left(\mathbb{Z}_{n}\right)$ is planar.
(x) $P\left(\mathbb{Z}_{n}\right)$ is disconnected if 1 is removed. Hence, $P_{1}\left(\mathbb{Z}_{n}\right)$ is disconnected.

5. Projection graphs of near-rings

In this section, the projection graph $P(N)$ of a near-ring N is defined as the same as that of a ring and the properties of $P(N)$ are discussed. Throughout, this section N denotes a right near-ring with at least 3 elements.

Proposition 5.1. If N is a near-field, then $P(N)$ is a star.
Proof. Let N be a near-field and 1 be the multiplicative identity. Then, $\overline{x 1} \in E$ since the equation $x 1=x$ holds in N, for every $x \in N^{*}$. If $\overline{x y} \in E$, then either $x y=x$ or $x y=y$, which implies $x=1$ or $y=1$ as every nonzero element in N has multiplicative inverse. Hence, $E=\left\{\overline{x 1} \mid x \in N^{*}\right\}$. Thus, $P(N)$ is a star.

Proposition 5.2. If N is a near-ring, then the following hold in $P(N)$:
(i) Every nonzero element in N is adjacent to every element in its constant part.
(ii) The subgraph induced on the constant part forms a clique.

Proof. The proof follows from the definition of constant part of N.

Corollary 5.1. If N is a constant near-ring, then $P(N)$ is complete.
Proof. If N is a constant near-ring, then $N=N_{c}$ and hence $P(N)$ is complete, by Proposition 5.2(ii).

Remark 5.1. The converse of the above proposition need not be true. For, consider $N=\left(D_{8},+, \cdot\right)$, where $\left(D_{8},+\right)$ is the dihedral group and \cdot is defined by $x \cdot y=\left\{\begin{array}{ll}x, & \text { if } y \neq 0 \\ 0, & \text { if } y=0 .\end{array}\right.$ Clearly, N is a near-ring, which is not constant and $P(N)$ is complete.

Theorem 5.1. If N is an almost trivial near-ring, then $P(N)$ is complete.
Proof. Suppose N is an almost trivial near-ring, then $x y=\left\{\begin{array}{ll}x, & \text { if } y \notin N_{c} \\ 0, & \text { if } y \in N_{c}\end{array}\right.$, for every $x, y \in N$.

Let $x, y \in N^{*}$. Then, by Pierce decomposition, $x=x_{0}+x_{c}$ and $y=y_{0}+y_{c}$, where x_{0} and y_{0} are the zero-symmetric parts and x_{c} and y_{c} are the constant parts of x and y, respectively.

Now, consider the following possible cases:
(i) $x, y \in N_{0} \quad$ (ii) $x, y \in N_{c} \quad$ (iii) $x \in N_{0}$ and $y \in N_{c} \quad$ (iv) $x, y \notin N_{0} \cup N_{c}$. It is claimed that $\overline{x y} \in E$. For,
(i) If $x, y \in N_{0}$, then $x=x_{0}$ and $x_{c}=0$. Therefore, $x y=x$.
(ii) If $x, y \in N_{c}$, then $x=x_{c}$ and $x_{0}=0$. Therefore, $x y=x_{c}=x$.
(iii) If $x \in N_{0}$ and $y \in N_{c}$, then $y=y_{c}$ and $y_{0}=0$. So, $y x=y$.
(iv) If $x, y \notin N_{0} \cup N_{c}$, then $x=x_{0}+x_{c}, y=y_{0}+y_{c}$, where $x_{0}, y_{0} \in N_{0} \backslash\{0\}$ and $x_{c}, y_{c} \in N_{c} \backslash\{0\}$. Hence, $x y=\left(x_{0}+x_{c}\right)\left(y_{0}+y_{c}\right)=x_{0}\left(y_{0}+y_{c}\right)+x_{c}\left(y_{0}+\right.$ $\left.y_{c}\right)=x_{0}+x_{c}=x$.

Hence, the claim is proved.
Proposition 5.3. If N is a Boolean near-ring, which is subdirectly irreducible, then $P(N)$ is complete.

Proof. The proof follows from Lemma 2.3 and Theorem 5.1.

6. Conclusion

In this paper, the projection graphs $P(R)$ of a ring R and $P(N)$ of a near-ring N are introduced and their graph properties are studied. A method of finding adjacent vertices in $P(R)$, using annihilators is provided. Certain algebraic properties of rings are observed through their projection graphs. This paper may be extended by considering substructures of rings and near-rings and more algebraic properties can be obtained through their projection graphs.

References

[1] M. Afkhami, K. Khashyarmanesh, The cozero-divisor graph of a commutative ring, South-East Asian Bull. Math., 35 (2011), 753-762.
[2] M. Afkhami, K. Khashyarmanesh, On the cozero-divisor graphs of commutative rings and their complements, Bull. Malays. Math. Sci. Soc., 35 (2012), 935-944.
[3] S. Akbari, F. Alizadeh, S. Khojasteh, Some results on cozero-divisor graph of a commutative ring, J. Algebra Appl., 13 (2014).
[4] D.D. Anderson, M. Axtell, S.J. Foreman, J. Stickles, When are associates unit multiples?, Rocky Mountain J. Math., 34 (2004), 811-828.
[5] D. D. Anderson, M. Naseer, Beck's coloring of a commutative ring, J. Algebra, 159 (1993), 500-514.
[6] D. F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434-447.
[7] D.F. Anderson, A. Badawi, On the zero-divisor graph of a ring, Comm. Algebra, 36 (2008), 3073-3092.
[8] M. F. Atiyah, I.G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Company, 1969.
[9] A. Badawi, On the annihilator graph of a commutative ring, Comm. Algebra, 42 (2014), 108-121.
[10] A. Badawi, Recent results on annihilator graph of a commutative ring: A survey. In nearrings, nearfields, and related topics, edited by K. Prasad et al, (2017), New Jersey: World Scientific, 170-185.
[11] Beck, Coloring of commutative rings, J. Algebra, 116 (1988), 208-226.
[12] J.A. Bondy, U.S.R. Murty, Graph theory with applications, 62 (419), 1978.
[13] G. A. Cannon, K. M. Neuerburg, S. P. Redmond, Zero-divisor graphs of near- rings and semigroups, Near rings and Near fields, Dordrecht: Springer, 2005, 189-200.
[14] M. Holloway, Some characterizations of finite commutative nil rings, Palestine Journal of Mathematics, 2 (2013), 6-8.
[15] G. Pilz, Near rings, Mathematic studies 23, North Holland Publishing Company, 1983.
[16] K. Pushpalatha, On subdirectly irreducible boolean near rings, Int.l J. of Pure and Applied Mathematics I, 113 (2017), 272-281.
[17] Bh. Satyanarayana, Kuncham Syamprasad, Near rings, fuzzy ideals, and graph theory, CRC Press, 2013.
[18] S. Teresa Arockiamary, C. Meera and V. Santhi, Annihilator 3-uniform hypergraphs of right ternary near-rings, South East Asian J. of Mathematics and Mathematical Sciences, 17 (2021), 251-264.

Accepted: June 9, 2022

[^0]: *. Corresponding author

