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Abstract. Association of graphs with algebraic structures facilitates the process of
understanding the properties of algebraic structures through graphs. In this paper,
projection graph P (R) of a ring R is introduced as an undirected graph, whose vertices
are the nonzero elements of R and any two distinct vertices x and y are adjacent if
and only if their product is equal to either x or y. The projection graph P (N) of a
near-ring N is also defined in the same way. It is proved that P (R) is a star graph if
and only if R has no nonzero zero-divisors. A method of finding adjacent vertices with
the help of annihilators is developed. The projection graphs of certain classes of rings
are found to be bipartite and P (R) is proved to be weakly pancyclic when R is a local
ring with ascending chain condition on the annihilator ideals of its elements. P (Zn) are
constructed for certain values of n and their properties are studied. Moreover, P (N) is
shown as a complete graph when N is either a constant near-ring or an almost trivial
near-ring.
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1. Introduction

There are many graphs associated to rings and the other algebraic structures
such as groups, semigroups, semirings, near-rings, ternary rings, modules etc.
to understand the properties of algebraic structures via graphs and vice versa.

The idea of associating a graph to a commutative ring R was introduced
by Beck [11] in 1988. He defined a graph with the vertex set as the set of all
elements of R and two distinct vertices x and y are adjacent if and only if xy = 0
and mainly studied about coloring of the graph. In 1993, Anderson and Naseer
[5] determined all finite commutative rings with chromatic number 4. Anderson
and Livingston [6] in 1999, redefined Beck’s graph by taking ZD∗(R), the set
of nonzero zero-divisors of R, as the vertex set and named the graph of R as
zero-divisor graph denoted by Γ(R). They proved that the zero-divisor graph
of a commutative ring R is complete if and only if either R ∼= Z2

2 or xy = 0 for
all x, y ∈ ZD(R), the set of zero-divisors of R.

Afkhami and Khashyarmanesh [1] introduced cozero-divisor graph Γ′(R) of
a commutative ring R. The vertex set of Γ′(R) is W ∗(R), the set of nonzero
nonunits of R and a, b ∈ W ∗(R) are adjacent if and only if a /∈ bR and b /∈
aR. They studied Γ′(R) and its complement Γ′(R) in [2]. In particular, they
characterized all commutative rings whose cozero-divisor graphs are double-star,
unicyclic, a star, or a forest. Further, Akbari et al. [3] continued the study of
cozero-divisor graphs of commutative rings and proved that if Γ′(R) is a forest,
then Γ′(R) is a union of isolated vertices or a star.

The concept of annihilator graph was introduced in 2014 by Badawi [9].
The annihilator graph of a commutative ring R is the simple graph denoted
by AG(R), whose vertex set is ZD∗(R) and two distinct vertices x and y are
adjacent if and only if Ann(xy) ̸= Ann(x) ∪Ann(y), where Ann(x) = {y ∈ R |
xy = 0}. If R is a commutative ring with more than 2 nonzero zero-divisors,
then AG(R) is proved to be connected and diam(AG(R)) ≤ 2. More results on
AG(R) can be found in the survey article [10].

Teresa Arockiamary et al. [18] defined annihilator 3-uniform hypergraph
AH3(N) of a right ternary near-ring (RTNR) N . Let (N,+, [ ]) be an RTNR.
Then, AH3(N) is defined as the 3-uniform hypergraph whose vertex set is the
set of all elements of N having nontrivial annihilators and three distinct vertices
x, y and z are adjacent whenever the intersection of their annihilators is not
{0}, where the annihilator of x is given by (0 : x) = ∩s∈N (0 : x)s and (0 : x)s =
{t ∈ N | [t s x] = 0}. AH3(N) is shown to be an empty hypergraph if N is
a constant RTNR, and AH3(N) is trivial when N is a zero-symmetric integral
RTNR.

Motivated by the results established in [6], [9], [10] and [18], the projection
graphs of rings and near-rings are introduced in this article. Throughout, this
article R is considered as a nonnil unital commutative ring unless otherwise
mentioned. The induced subgraph of P (R) on R \ {0, 1} is denoted by P1(R).
Also, U(R) denotes the set of all units of R.
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Let R be a commutative ring. Then, the vertex set of P (R) is R∗, the set of
all nonzero elements of R and x, y ∈ R∗ are adjacent if and only if the product
xy in R equals either x or y. It is observed that x, y ∈ W ∗(R) are adjacent in
P (R) implies x, y are adjacent in Γ′(R) and therefore the induced subgraph of
P (R) on W ∗(R) is a subgraph of Γ′(R). It is proved that P (R) is a connected
graph with diameter at most 2. Let |R| > 4. Then, it is seen that P1(R) is
nontrivial if and only if R has nonzero zero-divisors. Also P (R) is a star if and
only if R is a field. The girth of P (R) is either 3 or ∞.

A method of finding adjacent vertices using concept of annihilators is given
and it is illustrated for R = Z × Z. Reg(R)\{1}, Nil(R)\{0} are found inde-
pendent sets, where Reg(R) is the set of all regular elements of R and Nil(R)
is the set of all nilpotent elements of R. If R is presimplifiable ring which is not
a domain, then it is proved that P1(R) is bipartite. P (R) is shown to be weakly
pancyclic when R is a local ring, which is not a domain, with ascending chain
condition on the annihilator ideals of elements of R. The projection graphs of
finite isomorphic rings are proved to be isomorphic. It is also shown that P (R)
is complete if and only if either R ∼= Z3 or R ∼= Z4. Some of the graph properties
of P (Zn) are verified for n = 2q, 2k, q is prime and k ≥ 1.

Let N be a near-ring. Then, the projection graph P (N) of N is defined
in the same way as that of a ring. It is shown that if N is either a constant
near-ring or an almost trivial near-ring, then P (N) is a complete graph. Also
P (N) is complete if N is a Boolean near-ring which is subdirectly irreducible.

2. Preliminaries

In this section the basic definitions along with the results relevant to this paper,
related to rings ([8], [4], [14]), near-rings ([15], [16], [17]) and graphs ([12]) are
given. Let R be a commutative ring with unity. Then, an element x ∈ R is
called V on Neumann regular if x = ax2 for some a ∈ R. R is called (i)
Boolean if every x ∈ R is idempotent (ii) a quasilocal ring if R has finitely
many maximal ideals. (iii) a local ring if R has a unique maximal ideal. (iv)
[4] a presimplifiable ring if, for any a, b ∈ R, a = ab implies either a = 0 or
b ∈ U(R). (v) a domain-like ring if ZD(R) ⊆ Nil(R), where Nil(R) equals
the set of all nitpotent elements of R. (vi) a nil ring if every element in R is
nilpotent. It is known that quasilocal rings are presimplifiable rings.

Lemma 2.1 ([14]). If R is nil, then xy ̸= y for all x, y ∈ R∗.

Lemma 2.2 ([4]). If R is a commutative ring, then the following are equivalent:

(i) R is presimplifiable;

(ii) ZD(R) ⊆ J(R);

(iii) ZD(R) ⊆ {1 − u | u ∈ U(R)}, where J(R) denotes the Jacobson radical
and J(R) equals the intersection of all maximal ideals of R.
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Definition 2.1 ([15]). A right near-ring N is an algebraic system with two
binary operations + and · satisfying the following conditions:

(i) (N,+) is a group (not necessarily abelian);

(ii) (N, ·) is a semigroup;

(iii) (x+ y)z = xz + yz for every x, y, z ∈ N .

If N = N0 = {x ∈ N |x0 = 0}, then N is called a zero-symmetric near-ring.
If N = Nc = {x ∈ N |x0 = x} = {x ∈ N |xy = x for every y ∈ N}, then N
is called a constant near-ring. A near-field is a near-ring, in which there is a
multiplicative identity and every non-zero element has a multiplicative inverse.
Also by Pierce Decomposition, (N,+) = N0 +Nc and N0 ∩Nc = {0} .

Definition 2.2 ([16]). A near-ring N is called an almost trivial near-ring if for

all x, y ∈ N , xy =

{
x if y /∈ Nc

0 if y ∈ Nc

.

Lemma 2.3 ([16]). If N is a subdirectly irreducible Boolean near-ring, then N
is an almost trivial near-ring.

A pair G = (V,E) is an undirected graph if V is the set of vertices and E is set
of edges xy, where x, y ∈ V and x ̸= y. If x ∈ V , then NG(x) = {y ∈ V | xy ∈
E, x ̸= y}. The girth of G is the length of shortest cycle in G and if G has no
cycles, then the girth of G is defined to be infinite. G is called weakly pancyclic
if it contains cycles of all lengths between its girth and the longest cycle. The
sequence of degrees of vertices in G arranged in a non decreasing order is called
the degree sequence of G.

3. Projection graphs of rings

Definition 3.1. Let (R,+, ·) be a ring. Then, the projection graph of R, denoted
by P (R), is defined as an undirected graph whose vertex set is the set of all
nonzero elements of R and two distinct vertices x and y are adjacent whenever
the product x · y equals either x or y. That is, P (R) = (V,E), where V = R∗

and E = {xy | x ·y = x or y, x ̸= y}. For the sake of convenience, x ·y is simply
written as xy.

Example 3.1. It is evident that the projection graph of 2Z is an empty graph.
The projection graphs of the rings Z4, Z5, Z6, Z3

2, Z12 and Z2
3 are shown in

Figure 1, Figure 2, Figure 3, Figure 4, Figure 5 and Figure 6, respectively. Note
that, P (Z4) is a complete graph and P (Z5) is a star. In P (Z3

2), ijk stands for
(i, j, k), where i, j, k ∈ Z2. In P (Z2

3), ij stands for (i, j), where i, j ∈ Z3.

Proposition 3.1. Let R be a commutative ring with nonzero identity. Then,
P (R) is a connected graph with diameter at most 2.
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Figure 1: P (Z4)
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Figure 2: P (Z5)
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Figure 3: P (Z6)
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Figure 5: P (Z12)
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Figure 6: P (Z2
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Proof. Note that, P (R) is nontrivial since 1x is an edge for every x ∈ R∗\{1}.
Let x, y ∈ R∗. If xy is an edge, then the distance between x and y is 1. If
xy is not an edge, then x − 1 − y is a path between x and y. Thus, P (R) is
connected and the distance between x and y is at the most 2, which proves the
proposition.

Remark 3.1. Notice that the removal of 1 from the vertex set may result in dis-
connection of P (R). For example, P1(Z5), P1(Z6) and P1(Z2

3) are disconnected.
Also it is observed that P1(R) is disconnected for the Boolean ring R = Z2

2.

Let R be a commutative ring with nonzero identity. If x, y ∈ ZD∗(R)
are adjacent in Γ(R), then x, y are not adjacent in P (R). However, P1(R) is
nontrivial if and only if R has nonzero zero-divisor, which is proved in this
section.

Proposition 3.2. If x, y ∈ R∗\{1} are distinct elements such that x + y ̸= 1,
then the following assertions hold in P1(R):

(i) If xy = 0, then 1− y ∈ NP1(R)(x) and 1− x ∈ NP1(R)(y).

(ii) If x is adjacent to y, then 1− x ∈ NP1(R)(1− y).

Proof. (i) If xy = 0, then x(1− y) = x and (1−x)y = y, where 1−x, 1− y are
in R∗\{1, x, y}, proving (i).

(ii) If x is adjacent to y, then either xy = x or xy = y.
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If xy = x, then (1−x)(1−y) = 1−y. Similarly, if xy = y, then (1−x)(1−y) =
1− x, where 1− x, 1− y ∈ R∗\{1, x, y}, proving (ii).

Proposition 3.3. If R is a Boolean ring with more than 4 elements and x, y ∈
R∗\{1}, then the following assertions hold in P1(R):

(i) If xy = 0 and x+ y ̸= 1, then x− (x+ y)− y is a path between x and y.

(ii) If xy = 0 and x+ y = 1, then there is no z ∈ R∗\{1} such that x− z − y
is a path between x and y.

(iii) If x and y are adjacent and x + y ̸= 1, then either x + y ∈ NP1(R)(x) or
x+ y ∈ NP1(R)(y), but not both.

(iv) If xy ̸= 0 and x, y are not adjacent, then x − xy − y is a path between x
and y.

Proof. (i) If xy = 0 and x+ y ̸= 1, then x(x+ y) = x and (x+ y)y = y, where
x+ y ∈ R∗\{1, x, y}, proving (i).

(ii) Suppose xy = 0 and x+ y = 1.
Let z ∈ R∗\{1} be adjacent to x. Then, either xz = x or xz = z.
Case (a). Suppose xz = x. Then, zy is neither z nor y. For, if zy = z,

then x = xz = xzy = 0, a contradiction to the choice of x. If zy = y, then
1 = x+ y = xz + zy = z(x+ y) = z, a contradiction to the choice of z.

Case (b). Suppose xz = z. Then, zy is neither z nor y. For, if zy = z, then
z = (x+y)z = xz+yz = z+z = 0, a contradiction to the choice of z. If zy = y,
then y = zy = xzy = 0, a contradiction to the choice of y.

Hence, z is not adjacent to y in both the cases, which completes the proof
of (ii).

(iii) Suppose x, y are adjacent and x+y ̸= 1. Then, either xy = x or xy = y.
If xy = x, then x(x+y) = x2+xy = x+x = 0, since R is of characteristic 2. Also
(x+y)y = xy+y2 = x+y. Hence, x+y /∈ NP1(R)(x), whereas x+y ∈ NP1(R)(y).

Similarly, if xy = y, then it can be seen that x+ y ∈ NP1(R)(x) and x+ y /∈
NP1(R)(y).

(iv) If xy ̸= 0 and x, y are not adjacent, then x(xy) = xy and (xy)y = xy,
where xy ∈ R∗\{1, x, y}, proving (vi).

Proposition 3.4. If P1(R) is nontrivial, then R has nonzero zero-divisor.

Proof. Suppose x, y ∈ R∗\{1} and xy is an edge. Then, either xy = x or
xy = y. If xy = x, then x(1 − y) = 0, which shows that x is a nonzero zero-
divisor. Similarly, if xy = y, then y is nonzero zero-divisor.

Remark 3.2. If e ∈ R is a nontrivial idempotent, then 1− e is also a nontrivial
idempotent and the principal ideal generated by e has at least two elements,
namely 0 and e. Also eR has more than 2 elements only if |R| ≥ 6.

Proposition 3.5. If e ∈ R is a nontrivial idempotent, then
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(i) e is adjacent to every element in eR\{0, e}.

(ii) no element in eR\{0} is adjacent to an element in (1− e)R\{0}.

Proof. Suppose e ∈ R is a nontrivial idempotent.

(i) Let x ∈ eR\{0, e}. Then, x = er for some r ∈ R∗\{1} and hence
ex = e(er) = er = x, which shows that e is adjacent to x.

(ii) Let x ∈ eR\{0} and y ∈ (1 − e)R\{0}. Then, x = er and y = (1 − e)s,
for some r, s in R∗ and therefore xy = 0 since e(1− e) = 0. Hence, x and y are
not adjacent.

Proposition 3.6. Let e ∈ R be a nontrivial idempotent. If the principal ideal
generated by e is of size two, then either ex ∈ E or (1− e)x ∈ E, for every
x ∈ R∗\{1, e, 1− e}.

Proof. Suppose |eR| = 2. Then, er is either 0 or e for every r in R.

Let A1(e) = {r ∈ R∗|er = e} and A′
1(e) = {r ∈ R∗|er = 0}. Then,

R∗ = A1(e) ∪A′
1(e), where 1, e ∈ A1(e) and 1− e ∈ A′

1(e).

Let x ∈ R∗\{1, e, 1− e}. If x ∈ A1(e), then ex = e, which implies ex ∈ E. If
x ∈ A′

1(e), then (1− e)x = x, which implies (1− e)x ∈ E.

Proposition 3.7. Let R be a commutative ring with nonzero identity such that
|R| > 4. Then, P1(R) is nontrivial if and only if R has a nonzero zero-divisor.

Proof. By Proposition 3.4, it is enough to prove that P1(R) is nontrivial if R
has nonzero zero-divisor.

Let x ∈ R be nonzero zero-divisor. Then, there exists y ∈ R∗ such that
xy = 0.

Suppose 1− y ̸= x. Then x(1− y) = x− xy = x and so x(1− y) is an edge,
where x, 1−y ∈ R∗\{1}. Suppose 1−y = x. Then, x is a nontrivial idempotent.
Now, consider the cases:

(i) |xR| = 2 (ii) |xR| > 2.

If |xR| = 2, then xR = {0, x} and therefore there exists r ∈ R∗\{1} such
that xr = x, which implies xr ∈ E, where x, r ∈ R∗\{1}.

If |xR| > 2, then by Proposition 3.5(i), there exists y ∈ xR\{0, x} such that
xy ∈ E, where x, y ∈ R∗\{1}.

Corollary 3.1. Let R be a ring with |R| > 4. Then, P (R) is a star if and only
if R satisfies any one of the following equivalent conditions:

(i) P1(R) is trivial.

(ii) R has no nonzero zero-divisor.

(iii) Every element in R∗ has trivial annihilator.
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Proof. P1(R) is trivial if and only if E = {x1|x ∈ R∗\{1}}. Therefore, P (R)
is a star if and only if P1(R) is trivial.

(i) ⇔ (ii) follows from the above proposition.

(ii) ⇔ (iii) follows from the definition of annihilator.

Corollary 3.2. Let R be a ring with |R| > 4. Then, P (R) is a star if and only
if R is a field.

Proposition 3.8. Let R be a ring with |R| > 4. Then, the girth of P (R) is
either 3 or ∞.

Proof. If R has no nonzero zero-divisors, then P (R) is a star by Corollary 3.1
and hence the girth is ∞.

If R has nonzero zero-divisor, then P1(R) is nontrivial by Proposition 3.7.

Let xy ∈ E, where x, y ∈ R∗\{1}. Then, 1 − x − y − 1 forms a cycle and
hence the girth is 3.

For any ring R, write V = R∗ = {1} ∪ (Reg(R)\{1})∪ (ZD(R)\{0}), where
Reg(R) = {x ∈ R∗|x /∈ ZD(R)}. Then, NP (R)(1) = R∗\{1} and for every
x ∈ R∗\{1}, NP (R)(x) = {y ∈ R∗|xy = x or xy = y, y ̸= x}. Now, for every
x ∈ R∗\{1}, write A1(x) = {y ∈ R∗|xy = x} and A2(x) = {y ∈ R∗|xy = y}.
Then, it is observed that x = xy = xy2 = . . . = xyk = . . . holds if y ∈ A1(x)
and y = xy = x2y = . . . = xky = . . . holds if y ∈ A2(x). Thus, NP (R)(x)
contains an infinite number of elements if any one of the above sequences does
not terminate.

Proposition 3.9. Let x ∈ R∗\{1}. Then, the following assertions hold:

(i) A1(x) ∩A2(x) = {x} if and only if x is an idempotent.

(ii) A1(x) = Ann(x) + 1; A2(x) = Ann(1− x)\{0}.

Proof. (i) Suppose x ∈ R∗\{1} is an idempotent element. Then, x2 = x and
so x ∈ A1(x) ∩ A2(x). Also, y ∈ A1(x) ∩ A2(x) implies y = xy = x and hence
A1(x) ∩A2(x) = {x}.

Conversely, suppose A1(x) ∩A2(x) = {x}. Then, xx = x, which proves (i).

(ii) By the definition of A1(x), y ∈ A1(x) ⇔ xy = x ⇔ x(y − 1) = 0 ⇔
y − 1 ∈ Ann(x).

Now, y − 1 ∈ Ann(x) ⇔ y ∈ Ann(x) + 1. For, if y − 1 ∈ Ann(x), then
y = (y − 1) + 1 ∈ Ann(x) + 1. Also if y ∈ Ann(x) + 1, then y = z + 1, for some
z ∈ Ann(x), which implies y−1 = z ∈ Ann(x). Hence, A1(x) = Ann(x)+1. By
the definition of A2(x), y ∈ A2(x) ⇔ y ̸= 0 and xy = y ⇔ y ̸= 0 and y(1− x) =
0 ⇔ y ∈ Ann(1− x)\{0} and hence A2(x) = Ann(1− x)\{0}.

Proposition 3.10. If x ∈ Reg(R)\{1}, then NP (R)(x) ⊆ (ZD(R)\{0}) ∪ {1}.
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Proof. Let x ∈ Reg(R)\{1} and y ∈ NP (R)(x). Then, xy = x or xy = y.
If xy = x, then x(y − 1) = 0, which implies y = 1 by the hypothesis.
If xy = y, then (x− 1)y = 0, which implies y ∈ ZD(R)\{0}, completing the

proof.

Corollary 3.3. Reg(R)\{1} is an independent set.

Proof. Let x ∈ Reg(R)\{1} and y ∈ NP (R)(x). Then, y /∈ Reg(R)\{1} from
the above proposition. Hence, Reg(R)\{1} is independent.

Remark 3.3. If R is finite, then V = R∗ = {1} ∪ (U(R)\{1}) ∪ (ZD(R)\{0}).
Hence, U(R)\{1} is independent by the above corollary.

Theorem 3.1. For any x ∈ R∗\{1}, the following assertions hold, in which E
denotes the set of all nontrivial idempotents in R:

(i) NP (R)(x) = {1} ∪ (Ann(1− x)\{0}) if x ∈ Reg(R)\{1}.

(ii) NP (R)(x) = ((Ann(x)+1)∪Ann(1−x))\{0} if x ∈ ZD(R)\{0} and x /∈ E.

(iii) NP (R)(x) = ((Ann(x) + 1) ∪ Ann(1 − x))\{0, x} if x ∈ ZD(R)\{0} and
x ∈ E.

Proof. Let x ∈ R∗\{1}. Then, by the definitions of A1(x) and A2(x) and
Proposition 3.9(ii), NP (R)(x) = A1(x)∪A2(x) = (Ann(x)+1)∪(Ann(1−x)\{0}).

(i) If x ∈ Reg(R)\{1}, then Ann(x) = {0}. Hence, NP (R)(x) = {1} ∪
(Ann(1− x)\{0}).

(ii) If x ∈ ZD(R)\{0} and x /∈ E, then NP (R)(x) = (Ann(x)+1)∪ (Ann(1−
x)\{0}).

(iii) If x ∈ ZD(R)\{0} and x ∈ E, then NP (R)(x) = ((Ann(x)+1)∪Ann(1−
x))\{0, x}, by Proposition 3.9(i).

Proposition 3.11. If x ∈ R∗\{1} is not a zero-divisor, then NP (R)(x)\{1}
together with 0 forms an ideal.

Proof. If x is not a zero-divisor, then by Theorem 3.1(i), (NP (R)(x)\{1})∪{0} =
Ann(1− x), which is an ideal.

Illustration 3.1. Consider R = Z× Z, where ZD(R) = (Z× {0}) ∪ ({0} × Z)
and Reg(R) = {(m,n) ∈ Z× Z|m,n ̸= 0}.

If x = (1, 1), then NP (R)(x) = R∗\{(1, 1)}.
If x = (m,n) ∈ Reg(R)\{(1, 1)}, then NP (R)(x) = ({0} × Z∗) ∪ {(1, 1)} if

m ̸= 1,n = 1, NP (R)(x) = (Z∗ × {0}) ∪ {(1, 1)} if m = 1,n ̸= 1, NP (R)(x) =
{(1, 1)} if m,n ̸= 1. Thus, Reg(R)\{(1, 1)} is independent.

If x = (m,n) ∈ ZD(R)\{(0, 0)}, then NP (R)(0, 1) = (Z × {1}) ∪ ({0} ×
Z∗)\{(0, 1)}, NP (R)(1, 0) = ({1} × Z) ∪ (Z∗ × {0})\{(1, 0)}.

NP (R)(x) = Z× {1} if m = 0, n ̸= 1, NP (R)(x) = {1} × Z if m ̸= 1, n = 0.
Note that, (0, 1) and (1, 0) are the nontrivial idempotents in R.
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Proposition 3.12. Let e ∈ R be a nontrivial idempotent. Then

(i) NP (R)(e) = (((1− e)R+ 1) ∪ eR)\{0, e}.

(ii) Every element in eR\{0} is adjacent to every element in (1− e)R+ 1.

(iii) For every x ∈ eR\{0, e} and y ∈ ((1− e)R + 1)\{e}, e− x− y − e forms
a cycle.

Proof. (i) If e ∈ R is a nontrivial idempotent, then by Theorem 3.1(iii),
NP (R)(e) = ((Ann(e) + 1) ∪Ann(1− e))\{0, e}.

Now, if r ∈ Ann(e), then re = 0, which implies r = r1 = r((1 − e) +
e) = r(1 − e) ∈ (1 − e)R. Also, r ∈ (1 − e)R implies r ∈ Ann(e). Hence,
Ann(e) = (1− e)R.

Similarly, it can be proved that Ann(1− e) = eR. Thus, NP (R)(e) = (((1−
e)R+ 1) ∪ eR)\{0, e}.

(ii) Let x ∈ eR\{0} and y ∈ (1− e)R+1. Then, x ∈ Ann(1− e)\{0}, which
implies xe = x and there exists z ∈ Ann(e) such that y = z + 1.

Now, xy = x(z + 1) = xe(z + 1) = x. Hence, xy ∈ E, proving (ii).

(iii) Let x ∈ eR\{0, e} and y ∈ ((1− e)R + 1)\{e}. Then, ex, ye ∈ E by (i)
and xy ∈ E by (ii). Hence, e− x− y − e forms a cycle.

Proposition 3.13. Let e ∈ R be a nontrivial idempotent such that both of eR
and (1− e)R+ 1 contain more than 2 elements. Then, the following assertions
hold in P1(R):

(i) P1(R) contains Ki,j, where i = |eR| − 2 and j = |(1− e)R+ 1| − 2.

(ii) P1(R) is not planar if both of eR and (1 − e)R + 1 contain more than 5
elements.

Proof. (i) Let V1 = eR\{0, e} and V2 = ((1 − e)R + 1)\{1, e}. Then, for any
x ∈ V1 and y ∈ V2, xy ∈ E by Proposition 3.12(ii), proving (i).

(ii) Clearly, P1(R) contains K3,3 if both of eR and (1 − e)R + 1 have more
than 5 elements by (i). Hence, P1(R) is not a planar graph.

Proposition 3.14. The following assertions hold in P (R):

(i) If x ∈ R∗ is a nilpotent element, then there exists an integer k ≥ 2 such
that xi is adjacent to 1− xk−i for every 1 ≤ i ≤ k − 1.

(ii) If x ∈ R∗ is a nilpotent element, then NP (R)(x) is a multiplicatively closed
set of the form I + 1 for an ideal I of R.

(iii) Nil(R)\{0} is an independent set.
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Proof. (i) If x ∈ R∗ is a nilpotent element, then there exists an integer k ≥ 2
such that xk = 0 and xi ̸= 0 for 1 ≤ i ≤ k − 1. Hence, xi(1− xk−i) = xi, which
implies that xi is adjacent to 1− xk−i for all 1 ≤ i ≤ k − i.

(ii) Let x ∈ R∗ be a nilpotent element and k be the least positive integer
such that xk = 0. Then, it can be seen that (1−x)(1+x+x2+ . . .+xk−1) = 1
and so 1−x is a unit. Hence, by Theorem 3.1(ii), NP (R)(x) = Ann(x)+1. Thus,
by taking I = Ann(x), NP (R)(x) = I + 1, which is a multiplicatively closed set.

(iii) Let x, y ∈ Nil(R)\{0} and k and l be the least positive integers such
that xk = 0 = yl.

Suppose, xy ∈ E. Then, either xy = x or xy = y.

If xy = x, then x = xy = xy2 = . . . = xyk, a contradiction to the choice of
x.

Similarly, xy = y implies y = xly, a contradiction to the choice of y. Hence,
xy /∈ E.

Example 3.2. In R = Z2[x]
(x3)

, Nil(R)\{0} = {[x], [x2], [x2 + x]}, which is an

independent set.

Remark 3.4. If R is a domainlike ring, then every zero-divisor is a nilpotent
and hence the set of nonzero zero-divisors in R is independent.

Proposition 3.15. If R is not a domain, then P1(R) is bipartite when R has
any one of the following equivalent conditions:

(i) Every nonunit is a nilpotent.

(ii) R has a unique prime ideal.

(iii) R
Nil(R) is a field.

Proof. Suppose that every nonunit in R is a nilpotent. Then, R∗\{1} =
(Nil(R)\{0})∪(U(R)\{1}), in which Nil(R)\{0} and U(R)\{1} are independet
sets. Hence, any edge xy with x, y ∈ R∗\{1} has one end in Nil(R)\{1} and the
other end in U(R)\{1}. Thus, Nil(R)\{1} and U(R)\{1} form a bipartition for
P1(R), as required.

As it is known that (i) ⇔ (ii) ⇔ (iii), the proposition follows.

Proposition 3.16. If R is a ring which is not domain, then P1(R) is bipartite
when R has any one of the following equivalent conditions:

(i) R is presimplifiable.

(ii) ZD(R) ⊆ J(R).

(iii) ZD(R) ⊆ {1− u|u ∈ U(R)}.
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Proof. By Lemma 2.2, (i) ⇔ (ii) ⇔ (iii).
Suppose that R is presimplifiable.
Let xy be any edge with x, y ∈ R∗\{1}. Then, xy = x or xy = y. Now,

consider the following cases:
(i) x, y ∈ U(R)\{1} (ii) x, y ∈ W ∗(R) (iii) x ∈ U(R)\{1} and y ∈

W ∗(R).
Since U(R)\{1} is independent case (i) is not possible. Also, since R is pres-

implifiable and x, y are nonzero elements, if xy = x, then y ∈ U(R). Similarly,
if xy = y, then x ∈ U(R), which shows that case (ii) is also not possible.

Hence, the only possible choice is case (iii). That is, x ∈ U(R)\{1}, y ∈
W ∗(R). Thus, U(R)\{1} and W ∗(R) form a bipartition for P1(R), as desired.

Corollary 3.4. If R is a local ring, which is not a domain, then P1(R) is
bipartite.

Proof. As R is local, it is presimplifiable and hence the proof follows from
Proposition 3.16.

Proposition 3.17. Let R be a local ring, which is not a domain.
If x, y ∈ R∗\{1} and Ann(x) ∩ Ann(y) ̸= {0}, then there exists a path

x− u− y with u ∈ U(R)\{1}.

Proof. Since R is local, it has a unique maximal ideal M, say.
Let x, y ∈ R∗\{1} and t( ̸= 0) ∈ Ann(x)∩Ann(y). Then, tx = ty = 0, which

implies (1− t)x = x and (1− t)y = y.
Hence, as 1 − t ∈ R∗\{1, x, y}, x − (1 − t) − y is a path between x and y.

Now, it is claimed that 1− t is a unit. Suppose 1− t is not a unit. Then, it must
be in a maximal ideal. Now, both t, 1− t ∈ M, which is closed under addition.

Hence, 1 ∈ M, showing that M = R, a contradiction to the fact that M is
a proper ideal. Thus, the claim is proved.

Proposition 3.18. Let R be a local ring, which is not a domain, and R has
ascending chain condition(ACC) on ideals of the form Ann(x), x ∈ R. Then,
the following assertions hold:

(i) P (R) contains cycles of lengths j, 3 ≤ j ≤ 2k + 1, where k is the number
of nontrivial annihilators in R.

(ii) P (R) is weakly pancyclic.

Proof. Since the idealsAnn(x), x∈R satisfy ACC, there exist x1, . . . , xk, xk+1 . . .
in R such that Ann(x1) ⊂ Ann(x2) ⊂ . . . ⊂ Ann(xk) = Ann(xk+1) = . . . for
some positive integer k.

(i) Let yi ∈ Ann(xi)\Ann(xi−1) for every 1 ≤ i ≤ k. Then, xiyi = xi+1yi =
0, which implies xi(1 − yi) = xi and xi+1(1 − yi) = xi+1, where 1 − yi ∈
R∗\{1, xi, xi+1}. Hence, xi − (1 − yi) − xi+1 is a path as in Proposition 3.17.



PROJECTION GRAPHS OF RINGS AND NEAR-RINGS 125

Thus, each one of the following is a cycle: 1−x1− (1−y1)−1, (a cycle of length
3), 1−x1−(1−y1)−x2−1, (a cycle of length 4), 1−x1−(1−y1)−x2−(1−y2)−1,
(a cycle of length 5) and so on, proving (i).

(ii) P (R) is weakly pancyclic by (i) and the definition of weakly pancyclic
graph.

The proof of the following proposition is omitted as it is trivial from the
natural product defined in a quotient ring.

Proposition 3.19. Let I be a nontrivial ideal in R. If x, y are adjacent in
P (R), then x+ I and y+ I are adjacent in P (RI ), where

R
I denotes the quotient

ring.

The following proposition shows that the projection graphs of finite isomor-
phic rings are isomorphic.

Proposition 3.20. Let R and S be finite rings such that R ∼= S. Then, P (R) ∼=
P (S).

Proof. By the hypothesis, there exists a one-one, onto ring homomorphism ϕ
between R and S. Let ϕ∗ be the restriction of ϕ to R∗. Then, ϕ∗ is a one-
one, onto function. As |R∗| =|S∗|, |V (P (R))| =|V (P (S))|, where V (P (R)) and
V (P (S)) denote the sets of vertices of R and S respectively.

Let x, y ∈ V (P (R)) such that x and y are adjacent. Then, xy = x or xy = y.
If xy = x, then ϕ∗(xy) = ϕ∗(x), which implies ϕ∗(x)ϕ∗(y) = ϕ∗(x). Therefore,
ϕ∗(x) is adjacent to ϕ∗(y) in P (S).

A similar argument holds for the case, where xy = y, proving that ϕ∗ pre-
serves the adjacency between vertices. Thus, P (R) ∼= P (S).

Example 3.3. Let R = Z2[x]
(x2)

; S = Z2[x]
(x2+1)

. Then, R ∼= S and P (R) ∼= P (S).

Remark 3.5. The converse of the above proposition need not be true. For, if
R = Z4 and S = Z2[x]

(x2)
, then P (R) ∼= P (S) and R ≇ S.

Proposition 3.21. P(R) is not complete in each of the following cases:

(i) R has nontrivial idempotent elements.

(ii) |(U(R)| ≥ 3.

Proof. (i) If R has nontrivial idempotent element e, then P (R) is not complete
since e and 1− e are not adjacent.

(ii) If there are more than three units, then P (R) is not complete since
U(R)\{1} is independent.

Proposition 3.22. Let R be finite. Then, P (R) is complete if and only if either
R ∼= Z3 or R ∼= Z4.
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Proof. It is known that P (Z3) and P (Z4) are complete. Hence, if R ∼= Z3 or
R ∼= Z4, then P (R) is complete by Proposition 3.20.

Conversely, suppose that P (R) is complete. Then, |U(R)| ≤ 2 and R has no
nontrivial idempotents by the above proposition.

Let R = {0, 1, u} ∪ ZD(R), where u ̸= 1 is a unit. Then, it is claimed that
|ZD(R)| ≤ 1.

Suppose x, y ∈ ZD(R) be distinct nonzero zero-divisors. Then, xy = x or
xy = y by the hypothesis.

If xy = x, then (x+u)y = xy+uy = x+y since xu = x by the completeness.
But, (x+ u)y = x+ u or (x+ u)y = y since P (R) is complete.

If (x+u)y = x+u, then from the previous step, x+u = x+y which implies
y = u, a contradiction to the choice of y. Therefore, (x+u)y = y, which implies
x = 0.

By a similar argument, it can be shown that if xy = y, then y = 0. Hence,
there can be at the most one nonzero zero-divisor. Thus, |R| ≤ 4.

If |R| = 3, then R ∼= Z3.

If |R| = 4, then R ∼= Z4, since R is the unital commutative ring of cardinality
4 with no nontrivial idempotents, which completes the proof.

Proposition 3.23. If P (R) is not a star, then there exists x ∈ R∗\{1} such
that either xR or (1− x)R has a nonzero annihilating ideal.

Proof. If P (R) is not a star, then there exists xy ∈ E, for some x, y ∈ R∗\{1},
which implies that either y ∈ (Ann(x) + 1)\{1} or y ∈ Ann(1 − x)\{0} by
Theorem 3.1.

If y ∈ (Ann(x) + 1)\{1}, then there exists a nozero z ∈ Ann(x) such that
y = z+1 and (y−1)xr = zxr = 0 for every r in R, showing that Ann(xR) ̸= {0}.

If y ∈ Ann(1 − x)\{0}, then (1 − x)y = 0 and therefore (1 − x)yr = 0 for
every r ∈ R. Hence, Ann((1− x)R) ̸= {0}. This completes the proof.

Proposition 3.24. If x, y ∈ R∗ are adjacent, then either xR ⊆ yR or yR ⊆ xR.

Proof. Suppose x, y ∈ R∗ and xy ∈ E. Then, either xy = x or xy = y.

Consider the following possible cases:

(i) x, y ∈ U(R) (ii) x ∈ U(R) and y /∈ U(R) (iii) x, y /∈ U(R).

Case (i) If x, y ∈ U(R), then xR = yR = R.

Case (ii) If x ∈ U(R) and y /∈ U(R), then xR = R and so yR ⊆ xR.

Case (iii) Let x, y /∈ U(R). If xy = x, then z ∈ xR implies z = xr for some
r ∈ R. Therefore, z = (xy)r = y(xr) ∈ yR and so xR ⊆ yR.

Similarly, if xy = y, then it can be shown that yR ⊆ xR, which completes
the proof.
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4. Projection graphs of Zn

In this section, Zn, n ≥ 3, is considered and P (Zn) is studied. It is observed
that the vertex set V of P (Zn) is given by V = Z∗

n = U(Zn) ∪ (ZD(Zn)\{0})
and |V | = n− 1.

Proposition 4.1. Let n ≥ 3. Then:

(i) P (Zn) is complete if and only if n = 3, 4.

(ii) P (Zn) is a star if and only if n is a prime.

Proof. (i) The proof follows from Proposition 3.22.

(ii) Zn has no zero-divisors if and only if n is a prime. Hence, (ii) follows
from Corollary 3.1.

Proposition 4.2. diam(P (Zn)) =

{
1, if n = 3, 4

2, otherwise.

Proof. By Proposition 4.1(i), it is clear that the diameter of P (Zn) is 1 if and
only if n = 3, 4 . Hence, by Proposition 3.1, the diameter of P (Zn) is 2 if
n ≥ 5.

Proposition 4.3. girth(P (Zn)) =

{
∞, if n is prime

3, otherwise.

Proof. By Proposition 4.1(ii), it is clear that the girth of P (Zn) is ∞ if and
only if n is a prime. Hence, if n is not a prime, then the girth of P (Zn) is 3 by
Proposition 3.8.

Remark 4.1. Note that, Zn has nontrivial idempotent, if and only if x2 ≡
x mod n for some 1 < x < n if and only if n divides x(1 − x) if and only if n
has at least two nontrivial divisors.

Proposition 4.4. Let x, y ∈ Z∗
n. Then:

(i) Ann(x) = Ann(c) if (x, n) = c.

(ii) Ann(x) = {0} if and only if x ∈ U(Zn).

(iii) Ann(x) = Ann(y) if and only if (x, n) = (y, n).

(iv) If (x, n) = x, then Ann(x) = kZn, where k = n
x and |kZn| = x.

(v) Ann(e) = (1− e)Zn and Ann(1− e) = eZn, where e is a nontrivial idem-
potent.
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Proof. (i) Suppose (x, n) = c. Then, there exist integers k and l,m such that
x = kc and c = lx+mn.

Now, Ann(x) ⊆ Ann(c). For, t ∈ Ann(x) ⇒ tx = 0 ⇒ tlx = 0 ⇒ tc = 0 ⇒
t ∈ Ann(c).

Also, Ann(c) ⊆ Ann(x), since t ∈ Ann(c) ⇒ tc = 0 ⇒ tkc = 0 ⇒ tx = 0 ⇒
t ∈ Ann(x), which proves (i).

(ii) If x ∈ U(Zn), then Ann(x) = {t ∈ Zn|tx = 0} = {0}. Conversely,
suppose x /∈ U(Zn). If x = 0, then Ann(x) = Zn.

If x ̸= 0, then there exists y ∈ Z∗
n such that xy = 0, which implies Ann(x) ̸=

{0}.
(iii) The proof of (iii) follows from (i).

(iv) As Ann(x) is an ideal and every ideal in Zn is principal, Ann(x) = aZn

for some a ∈ Zn.

If (x, n) = x, then there exists an integer k such that kx = n, which implies
k ∈ Ann(x) and hence kZn ⊆ Ann(x). Also, t ∈ Ann(x) ⇒ tx = 0 ⇒ tx = ln,
for some l ∈ Zn ⇒ t = kl ∈ kZn. Hence, Ann(x) ⊆ kZn and |kZn| = x, proving
(iv).

(v) Assertion (v) follows from the proof of Proposition 3.12 (i).

Proposition 4.5. Let s, t be two distinct factors of n. Then:

(i) Ann(s) ̸= Ann(t)

(ii) Ann(s) ⊂ Ann(t), whenever s | t.

(iii) Ann(s) ∩Ann(t) = {0} if and only if (s, t) = 1.

Proof. (i) Note that, (s, n) = s and (t, n) = t. Therefore, from Proposition
4.4(iv), Ann(s) = kZn and Ann(t) = lZn, where k = n

s , l =
n
t . Hence, Ann(s) ̸=

Ann(t), since k ̸= l.

(ii) If s | t, then sk = t for some integer k and therefore r ∈ Ann(s) ⇒
rs = 0 ⇒ krs = 0 ⇒ tr = 0 ⇒ r ∈ Ann(t). Hence, Ann(s) ⊂ Ann(t), since
|Ann(s)| = s < t = |Ann(t)|.

(iii) Suppose (s, t) = 1. Then, there exist integers k and l such that ks+ lt =
1. Hence, if r ∈ Ann(s) ∩Ann(t), then r = rks+ rlt and so r = 0.

Conversely, suppose (s, t) = r ̸= 1. Then, r | s and r | t and hence by (ii),
Ann(s) ∩Ann(t) ⊃ Ann(r) ̸= {0}.

Definition 4.1. Define a relation ∼ on Z∗
n by x ∼ y if and only if Ann(x) =

Ann(y) for every x, y ∈ Z∗
n.

Remark 4.2. The relation ∼ defined above on Z∗
n is an equivalence relation.

Hence, if x ∈ Z∗
n and [x]∼ denotes the equivalence class of x, then by Proposition

4.4(iii), [x]∼ = {y ∈ Z∗
n|Ann(y) = Ann(x)} = {y ∈ Z∗

n|(y, n) = (x, n)}.

Proposition 4.6. Using the above notations, the following statements are true:
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(i) [1]∼ = U(Zn); |[1]∼| = ϕ(n).

(ii) [1]∼\{1} is an independent set of size ϕ(n)− 1.

(iii) If d | n, then [d]∼ = {y ∈ Z∗
n|(y, n) = d}.

(iv) ZD(Zn)\{0} = ∪(x,n) ̸=1[x]∼ = ∪d|n,d ̸=1[d]∼.

Proof. (i) By using Remark 4.2, [1]∼ = {y ∈ Z∗
n|Ann(y) = {0}} = {y ∈

Z∗
n|(y, n) = 1} = U(Zn) and hence |[1]∼| = ϕ(n).
(ii) The proof follows from Corollary 3.3 using (i).
(iii) Let d | n. Then, (d, n) = d and hence [d]∼ = {y ∈ Z∗

n|Ann(y) =
Ann(d)} = {y ∈ Z∗

n|(y, n) = d}.
(iv) From Remark 4.2, Z∗

n = [1]∼∪(∪x∈Z∗
n\{1}[x]∼) and hence ZD(Zn)\{0} =

∪(x,n)̸=1[x]∼ = ∪d|n,d ̸=1[d]∼, by (iii).

Proposition 4.7. Let n = pk, for some k ≥ 2. Then, the following assertions
hold:

(i) ZD(Zn)\{0} is an independent set.

(ii) P1(Zn) is bipartite.

(iii) P (Zn) is weakly pancyclic.

Proof. If n = pk, then ZD(Zn)\{0} = ∪k−1
i=1 [p

i]∼, where [p
i]∼ = {y ∈ Z∗

n|(y, n) =
pi}, by Proposition 4.6(iv).

(i) It is claimed that ZD(Zn) = Nil(Zn). For, if x ∈ ZD(Zn)\{0}, then
x ∈ [pi]∼, for some i, which implies x = tpi for some integer t. Hence, xk−i = 0
and thus x is a nilpotent element, proving the claim.

Hence, ZD(Zn)\{0} = Nil(Zn)\{0}, which is independent by 3.14(iii).
(ii) From the proof of (i), it is noted that the set of all nonunits is equal to

Nil(Zn), which is the unique maximal ideal. Hence, Zn is local and thus P1(Zn)
is bipartite by Corollary 3.4.

(iii) It is claimed that the ideals of the form Ann(x), x ∈ Zn, have ACC.
If x ∈ Z∗

n, then either x ∈ U(Zn) or x ∈ [pi]∼ = {t ∈ Z∗
n|Ann(t) = Ann(pi)},

for some i. If x ∈ U(Zn), then Ann(x) = {0}.
Also, by Proposition 4.5 (ii), Ann(p) ⊂ Ann(p2) ⊂ . . . ⊂ Ann(pk−1), proving

the claim. Thus, P (Zn) is weakly pancyclic by Proposition 3.18.

Proposition 4.8. If n = 2k, for some k ≥ 2, then the following assertions hold:

(i) |U(Zn)\{1}| = |ZD(Zn)\{0}| = n
2 − 1, U(Zn) = [1]∼ = {2j + 1 ∈ Z∗

n|j ∈
Zn}.

(ii) If x ∈ [2i]∼ and x+ u = 1, then deg(x) = deg(u) = 2i, for 1 ≤ i ≤ k − 1.

(iii) The degree sequence is given by (2(a1), 22
(a2) , . . . , 2k−1(ak−1)

, n− 2(1)), where
(ai) denotes the multiplicity and (ai) = 2|[2i]∼| for 1 ≤ i ≤ k − 1.
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Proof. (i) |U(Zn)| = ϕ(n) = 2k − 2k−1 = n− n
2 = n

2 .

Hence, |U(Zn)\{1}| = |ZD(Zn)\{0}| = n
2 − 1. Also, U(Zn) = [1]∼ = {y ∈

Z∗
n|(y, 2k) = 1} = {2j + 1 ∈ Z∗

n|j ∈ Zn}.
(ii) Let x ∈ [2i]∼ and x + u = 1. Then, u = 1 − x ∈ U(Zn)\{1} since x is

nilpotent from 4.7(i). Therefore, by Theorem 3.1(i), NP (R)(u) = {1}∪(Ann(1−
u)\{0}) = {1} ∪ (Ann(x)\{0}) = {1} ∪ (Ann(2i)\{0}) = {1} ∪ (2k−iZn\{0})
and so |NP (R)(u)| = 2i. Thus, deg(u) = 2i. Also, NP (Zn)(x) = Ann(2i) + 1 =

2k−iZn + 1 and so |NP (Zn)(x)| = |2k−iZn| = 2i. Thus, deg(x) = 2i. From the
above discussion, it is clear that deg(u) = deg(x) = 2i.

(iii) Note that, Z∗
n = {1}∪(U(Zn)\{1})∪(ZD(Zn)\{0}), where ZD(Zn)\{0} =

∪k−1
i=1 [2

i]∼.

As the degree of 1 is n− 2 and for every x ∈ ZD(Zn)\{0}, there is a unique
u ∈ U(Zn)\{1} such that x+ u = 1, (iii) follows from (ii).

Proposition 4.7 and Proposition 4.8 are illustrated in Figure 7 and Table 1
for n = 32.

Illustration 4.1. Consider Z32, where ZD(Zn)\{0} = ∪4
i=1[2

i]∼ and U(Zn) =
[1]∼ = {y ∈ Z∗

n|(y, 25) = 1} = {1, 3, 5, . . . , 31}.

i {x|x ∈ [2i]∼} Ann(2i) = kZn, k = n
2i

u = 1− x deg(x) = deg(u)

1 {2, 6, . . . , 30} {0, 16} {31, 27, . . . , 3} 2

2 {4, 12, 20, 28} {0, 8, 16, 24} {29,21,13,5} 4

3 {8, 24} {0.4, 8, . . . , 28} {25, 9} 8

4 {16} {0.2, 4, . . . , 30} {17} 16

Table 1: Z32

2 46 810 1214 1618 2022 2426 2830

35 79 1113 1517 1921 2325 2729 31

1

Figure 7: P (Z32)
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Proposition 4.9. Let n = 2q. Then, the following assertions hold:

(i) ZD(Zn) = {2, 4, . . . , 2q − 2} ∪ {q}, U(Zn) = {1, 3, 5, . . . , 2q − 1}\{q}.

(ii) q, q + 1 are the nontrivial idempotents.

(iii) NP (Zn)(q) = {1, 3, . . . , 2q−1}\{q}, NP (Zn)(q+1) = {2, 4, . . . , 2q−2}\{q+
1}.

(iv) NP (Zn)(x) = {1, q} if x ∈ [2]∼\{q + 1}, NP (Zn)(x) = {1, q + 1} if x ∈
U(Zn)\{1}.

(v) deg(x) =


n− 2, if x = 1

q − 1, if x = q, q + 1

2, otherwise.

(vi) The number of triangles in P (Zn) is 2q − 4.

(vii) P (Zn) is the union of two copies of triangular book

(viii) |E| = 4q − 6.

(ix) P (Zn) is planar.

(x) P1(Zn) is disconnected.

Proof. (i) By Proposition 4.6(iv), ZD(Zn)\{0} = [2]∼ ∪ [q]∼, where [2]∼ =
{y ∈ Z∗

n|(y, n) = 2} = {2, 4, . . . , 2q − 2} and [q]∼ = {y ∈ Z∗
n|(y, n) = q} = {q}.

Hence, U(Zn) = Zn\ZD(Zn) = {1, 3, 5, . . . , 2q − 1}\{q}.

............n− 1 n− 2

q q + 1

............

1
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Figure 8: P (Z2q)

(ii) Since q is odd, q(q + 1) ≡ 0 mod 2q and hence q and q + 1 are the
idempotents.
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(iii) Note that, 1 − q = q + 1 and as in the proof of Proposition 3.12,
Ann(1 − q) = Ann(q + 1) = qZn = {0, q}. Also, Ann(q) = 2Zn by Proposi-
tion 4.4(iv). Hence, by using Theorem 3.1(iii), NP (Zn)(q) = ((Ann(q) + 1) ∪
Ann(1− q))\{0, q} = ((2Zn + 1) ∪ qZn)\{0, q} = {1, 3, 5, . . . , 2q − 1}\{q}.

Similarly, NP (Zn)(q+1) = ((Ann(q+1)+1)∪Ann(q))\{0, q+1} = ((qZn+
1) ∪ 2Zn)\{0, q + 1} = {1, 2, 4, . . . , 2q − 2}\{q + 1}.

(iv) If x ∈ [2]∼\{q+1}, then NP (Zn)(x) = ((Ann(x)+1)∪Ann(1−x))\{0} by
Theorem 3.1(ii) = (Ann(2)+1) by the definition of ∼ = qZn+1 by Proposition
3.1(iv) = {1, q + 1}. Also, since |qZn| = 2, by Proposition 3.6, either qx ∈ E or
(1− q)x ∈ E, for every x ∈ Z∗

n\{1, q, 1− q}. But, Z∗
n\{1, q, 1− q} = ([2]∼\{q +

1}) ∪ ([1]∼\{1}), where [1]∼\{1} = U(Zn)\{1}.
Hence, for x ∈ U(Zn)\{1}, NP (Zn)(x) = {1, q}.
(v) The proof of (v) follows from (iii) and (iv).
(vi) From (iv), it can be seen that 1− x− (q + 1)− 1 form triangles, which

share (q + 1)1 in common for every x ∈ U(Zn)\{1}.
Similarly, 1− q − y − 1 form triangles, which share 1q in common for every

y ∈ [2]∼\{q + 1}, as drawn in Figure 8.
Hence, the number of triangles = |U(Zn)\{1}|+ |[2]∼\{q+ 1}| = 2(q− 1) =

2q − 4. (vii) From Figure, it is clear that P (Zn) is the union of two copies of
triangular book.

(viii) As each triangle in one page of the triangular book counts two edges
excluding the common edge, |E| = (2(2q − 4)) + 2 = 4q − 6.

(ix) Obviously, P (Zn) is planar.
(x) P (Zn) is disconnected if 1 is removed. Hence, P1(Zn) is disconnected.

5. Projection graphs of near-rings

In this section, the projection graph P (N) of a near-ring N is defined as the
same as that of a ring and the properties of P (N) are discussed. Throughout,
this section N denotes a right near-ring with at least 3 elements.

Proposition 5.1. If N is a near-field, then P (N) is a star.

Proof. Let N be a near-field and 1 be the multiplicative identity. Then, x1 ∈ E
since the equation x1 = x holds in N , for every x ∈ N∗. If xy ∈ E, then either
xy = x or xy = y, which implies x = 1 or y = 1 as every nonzero element in
N has multiplicative inverse. Hence, E = {x1 | x ∈ N∗}. Thus, P (N) is a
star.

Proposition 5.2. If N is a near-ring, then the following hold in P (N):

(i) Every nonzero element in N is adjacent to every element in its constant
part.

(ii) The subgraph induced on the constant part forms a clique.

Proof. The proof follows from the definition of constant part of N .
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Corollary 5.1. If N is a constant near-ring, then P (N) is complete.

Proof. If N is a constant near-ring, then N = Nc and hence P (N) is complete,
by Proposition 5.2(ii).

Remark 5.1. The converse of the above proposition need not be true. For,
consider N = (D8,+, ·), where (D8,+) is the dihedral group and · is defined by

x ·y =

{
x, if y ̸= 0

0, if y = 0.
Clearly, N is a near-ring, which is not constant and P (N)

is complete.

Theorem 5.1. If N is an almost trivial near-ring, then P (N) is complete.

Proof. Suppose N is an almost trivial near-ring, then xy =

{
x, if y /∈ Nc

0, if y ∈ Nc

, for

every x, y ∈ N .
Let x, y ∈ N∗. Then, by Pierce decomposition, x = x0 + xc and y = y0 + yc,

where x0 and y0 are the zero-symmetric parts and xc and yc are the constant
parts of x and y, respectively.

Now, consider the following possible cases:
(i) x, y ∈ N0 (ii) x, y ∈ Nc (iii) x ∈ N0 and y ∈ Nc (iv) x, y /∈ N0∪Nc.
It is claimed that xy ∈ E. For,

(i) If x, y ∈ N0, then x = x0 and xc = 0. Therefore, xy = x.

(ii) If x, y ∈ Nc, then x = xc and x0 = 0. Therefore, xy = xc = x.

(iii) If x ∈ N0 and y ∈ Nc, then y = yc and y0 = 0. So, yx = y.

(iv) If x, y /∈ N0∪Nc, then x = x0+xc, y = y0+yc, where x0, y0 ∈ N0\{0} and
xc, yc ∈ Nc\{0}. Hence, xy = (x0 + xc)(y0 + yc) = x0(y0 + yc) + xc(y0 +
yc)=x0 + xc = x.

Hence, the claim is proved.

Proposition 5.3. If N is a Boolean near-ring, which is subdirectly irreducible,
then P (N) is complete.

Proof. The proof follows from Lemma 2.3 and Theorem 5.1.

6. Conclusion

In this paper, the projection graphs P (R) of a ring R and P (N) of a near-ring
N are introduced and their graph properties are studied. A method of finding
adjacent vertices in P (R), using annihilators is provided. Certain algebraic
properties of rings are observed through their projection graphs. This paper
may be extended by considering substructures of rings and near-rings and more
algebraic properties can be obtained through their projection graphs.
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