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Chain dot product graph of a commutative ring
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Abstract. In this article, we generalized the concepts of total dot product graph (the
chain zero-divisor dot product), which were investigated in 2015 by A. Badawi, to what
we call chain total dot product graph CTD(R) (the chain zero-divisor dot product
graph CZD(R)). We give some basic graph properties for the graphs CTD(R) and
CZD(R) such as connectedness, diameter and the girth.
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1. Introduction

Graph theory has recently become a significant tool for studying the structure
of rings, in addition to being a beautiful and sophisticated theory in its own
right. As a result, several writers explore the relationship between rings and
graph theory. see for example [3, 5, 4].

Throughout this article, let A be a commutative ring with nonzero identity
1, for the natural number n, let R = A × A × · · · × A(n − times). Badawi in
[2] presented the total and the zero-divisor dot product graphs associated to
the ring A, where the total dot product graph, denoted by TD(R), is the graph
with vertex set R∗ = R\{(0, 0, · · · , 0)}, and two vertices x, y are adjacent if
x.y = 0 ∈ A ( the normal dot product between x and y is zero). Also the zero-
divisor dot product graph, denoted by ZD(R), is the induced subgraph of the
total dot product graph TD(R) with vertex set Z(R)∗ = Z(R)\{(0, 0, · · · , 0)}.

In this article, we generalized these concepts by developing the concept of
the dot product. Let A1, A2, . . . , An be commutative rings with nonzero identity
1, such that A1 ⊆ A2 ⊆ . . . ⊆ An. Let R = A1 × A2 × . . . × An, then the
generalized dot product between x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) is
x.y = x1y1 + x2y2 + · · ·+ xnyn ∈ An.

Now, we introduce our generalization. Let A be a commutative ring with
nonzero identity 1, R = A × A[α1] × A[α1, α2] · · · × A[α1, α2, . . . αn], where
A[α1, α2, . . . αk] is a ring with elements of the form x = xk1 + xk2α1 + xk3α2 +
· · ·+ xkkαk such that αiαj = 0 for 1 ≤ i, j ≤ k, with the operations
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Addition: (xk1+xk2α1+xk3α2+ · · ·+xkkαk)+ (yk1+ yk2α1+ yk3α2+ · · ·+
ykkαk) = (xk1 + yk1) + (xk2 + yk2)α1 + (xk3 + yk3)α2 + · · ·+ (xkk + ykk)αk , and

Multiplication: (xk1+xk2α1+xk3α2+· · ·+xkkαk)(yk1+yk2α1+yk3α2+· · ·+
ykkαk) = xk1yk1 + (xk1yk2 + xk2yk1)α1 + (xk1yk3 + xk3yk1)α2 + · · ·+ (xk1ykk +
xkkyk1)αk.

The chain dot product graph, denoted by CTD(R) is a graph with a vertex
set R∗ = R\{(0, 0, · · · , 0)}, and two vertices x, y are adjacent if x.y = 0 ∈ A
(the generalized dot product between x and y is 0). Similarly, as above, the
chain zero-divisor dot product graph, denoted by CZD(R), is the induced
subgraph of the chain total dot product graph CTD(R) with a vertex set
Z(R)∗ = Z(R)\{(0, 0, · · · , 0)} (the nonzero zero-divisors of R).

For undefined notation or terminology consult [6] for graph theory and [7]
for ring theory.

2. Some basic properties of CTD(R) and CZD(R)

In this section, we will study some properties of CTD(R) and CZD(R), such
as connectedness, diameter and girth.

We start by defining the k − th neighborhood for the vertex x.

Definition 2.1. Let G be a finite simple graph, and x be any vertex in G and
let k be any nonnegative integer. Then, the k − th neighborhood for the vertex
x, denoted by Nk(x), is defined as

N0(x) = {x},
N1(x) = N(x), the usual neighborhood of x.

...

for k ≥ 1

Nk(x) =

y ∈ V (G)\
k−1⋃
j=1

N j(x) : z is adjacent to y, for any z ∈ Nk−1(x)


where V (G) is the vertex set of the graph G.

The definition of Nk(x) makes it obvious that there is a path of length k,
between the vertex x and any vertex in Nk(x).

Lemma 2.1. Let G be a finite simple graph, and x, y be two distinct vertices.
Then, there is a path between x and y if and only if there exist two non negative
integers n,m such that Nn(x) and Nm(x) are not disjoint sets.

Proof. Suppose that x−a1−a2−· · ·−at−y is a path between x and y. Then,
a1 ∈ N1(x) ∩N t(y). Conversely, assume that Nn(x) and Nm(x) are not disjoint
sets, for some non negative integers n,m. Hence, Nn(x) and Nm(x) have at least
one vertex in common , say z. Thus, and since z ∈ Nn(x), there is a path between
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the vertex x and z, say x− c1− c2−· · ·− cn−z. Similarly, and since z ∈ Nm(y),
there is a path between the vertex y and z, say z − d1 − d2 − · · · − dm − y.
Therefore, x− c1 − c2 − · · · − cn − z − d1 − d2 − · · · − dm − y.

The following theorem describes when CTD(R) is disconnected.

Theorem 2.1. If A is an integral domain and R = A×A[α], then CTD(R) is
disconnected.

Proof. Let B = {(a, a), (−a, a), (a,−a) : a ∈ A∗} and let x ∈ B. Suppose that
y ∈ R∗, that is y = (y11, y21 + y22α), such that x.y = 0. Since A is an integral
domain, one can deduce y ∈ B (in general, Nn(y) ⊆ B for any positive integer
n)

Let M = {(a, bα) : a ∈ A∗ and b ∈ A} ∪ {(0, a + bα) : a, b ∈ A not both
zero)} and let m ∈ M. Suppose that m.r = 0 for some r ∈ R∗. Again, since A
is an integral domain, we deduce that r ∈ M (in general, Nm(r) ⊆ M for any
positive integer m). It is clear that B and M are disjoint sets.

We claim here that the sets B andM are disconnected in the graph CTD(R).
To see this, suppose the contrary. If x ∈ M and y ∈ B and there is a path
between x and y in the graph CTD(R), then by Lemma 2.1 there exist two
non negative integers n,m such that Nn(x) ∩ Nm(y) is nonempty, which is a
conradiction, since Nn(x) ∩ Nm(y) ⊆ B ∩ M . Thus, the graph CTD(R) is
disconnected.

The following theorem establishes the necessary conditions for the chain
zero-divisor dot product graph CZD(R) to be equal to the known zero-divisor
graph Γ(R).

Theorem 2.2. Let A be a ring, 2 ≤ n < ∞, and R = A× A[α1]× A[α1, α2]×
· · · ×A[α1, α2, . . . , αn−1]. Then, CZD(R) = Γ(R) if and only if n = 2 and A is
an integral domain.

Proof. Suppose that A is an integral domain and R = A×A[α]. Then, Z(R) =
{(a, bα) : a ∈ A∗ and b ∈ A} ∪ {(0, a+ bα) : a, b ∈ A } . Let x, y ∈ Z∗(R) such
that x.y = 0. Hence, we have three cases to consider, which are x = (x11, x22α)
and y = (y11, y22α), x = (x11, x22α) and y = (0, y21+y22α) or x = (0, x21+x22α)
and y = (0, y21 + y22α). In all three cases it is clear that x.y = 0 if and only if
xy = (0, 0). Hence, CZD(R) = Γ(R).

Conversely, suppose that CZD(R) = Γ(R). Assume that n ≥ 3, then there
exist x = (0, α1, α1, 0, . . . , 0), y = (0, 1,−1, 0, . . . , 0) ∈ Z∗(R), with x.y = 0, but
xy ̸= (0, 0, 0, . . . , 0). Thus, x − y is an edge of CZD(R) that is not an edge of
Γ(R), a contradiction. Thus, n = 2. Now, if A is not an integral domain, then
there are a, b ∈ A∗ such that ab = 0. Hence, x = (1, a), y = (a,−1+bα) ∈ Z∗(R),
and x.y = 0, but xy ̸= (0, 0). Again, x− y is an edge of CZD(R) that is not an
edge of Γ(R), a contradiction. Thus, A must be an integral domain.
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Corollary 2.1. Let A be an integral domain. If R = A× A[α], then CZD(R)
is connected with diam(CZD(R)) = 3.

Proof. Since A is an integral domain, the vertex set of CZD(R) can be divided
into three disjoint sets X = {(a, bα) : a ∈ A∗ and b ∈ A}, Y = {(0, a+ bα) : a ∈
A∗ and b ∈ A} and Z = {(0, bα) : b ∈ A∗}. It is clear that X, Y are independent
sets (that is any two vertices in X or Y are not adjacent). Also, Z forms a com-
plete subgraph of CZD(R). Now, by Theorem 2.2 and since X is an independent
set, we deduce that CZD(R) is connected with 2 ≤ diam(CZD(R)) ≤ 3. Now,
let x = (1, α) and y = (0, 1+α). Then, x.y ̸= 0. Let t = (t11, t21+t22α) ∈ Z∗(R)
such that x.t = t.y = 0. Then, we conclude that t = (0, 0) which is a contradic-
tion. Thus, dcz(x, y) = 3. Hence, diam(CZD(R)) = 3.

Or (Another Proof) By Theorem (2.2) and sinceR is nonreduced ring and the
zero divisors of R does not form an ideal, then by [1], diam(CZD(R)) = 3.

Theorem 2.3. Let A be a ring that is not an integral domain, and let R =
A×A[α]. Then:

1. CTD(R) is connected with diam(CTD(R)) = 3.

2. CZD(R) is connected with diam(CZD(R)) = 3.

Proof. 1) Let x = (x11, x21 + x22α), y = (y11, y21 + y22α) ∈ R∗, where x ̸= y,
and assume that x.y ̸= 0. Since A is not an integral domain, there are a, b ∈ A∗

(not necessarily distinct) such that ab = 0. Let w = (ax21,−ax11 + ax22α) and
v = (by21,−by11 + by22α). Note that w, v ∈ Z(R). It is clear that x.w = w.v =
v.y = 0. Since x.y ̸= 0, w ̸= y and v ̸= x. Now, there are two cases:

Case 1. Suppose that w ̸= (0, 0) and v ̸= (0, 0). If x.v = 0 or y.w = 0, then
x − v − y or x − w − y is a path of length 2 in CTD(R) from x to y. But, if
x.v ̸= 0 or y.w ̸= 0, then x,w, v and y are distinct and x− w − v − y is a path
of length 3 in CTD(R) from x to y.

Case 2. Suppose that w = (0, 0) and v = (0, 0). If w = (0, 0), then replace w
by (a, a) ∈ Z∗(R), and hence x.w = (x11, x21 + x22α).(a, a) = (ax11 + ax21) +
ax22α = 0. Again, if v = (0, 0), then replace v by (b, b) ∈ Z∗(R), and hence,
y.v = 0. Thus, as we have done, we can redefine w and v so that w, v ∈ Z∗(R)
and x.w = w.v = v.y = 0. Hence, as in the earlier argument, we can conclude
that there is a path of length at most 3 in CTD(R) from x to y.

Thus, CTD(R) is connected with dCT (x, y) ≤ 3, for every x, y ∈ R∗. Now, let
x = (1, 1) and y = (1, 0). It is clear that, x.y ̸= 0. Let t = (t11, t21 + t22α) ∈ R∗

such that x.t = t.y = 0. Then, t11 = t21 = t22 = 0, so t = (0, 0) a contradiction.
Therefore, dCT (x, y) = 3, and hence, diam(CTD(R)) = 3.

Theorem 2.4. Let A be a ring , 4 ≤ n < ∞, and let R = A×A[α1]×A[α1, α2]×
· · ·×A[α1, α2, . . . , αn−1]. Then, CTD(R) is connected with diam(CTD(R)) = 2.
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Proof. Let x = (x11, x21+x22α1, x31+x32α1+x33α2, . . . , xn1+
∑n

i=1 xniαi−1),
y = (y11, y21 + y22α1, y31 + y32α1 + y33α2, . . . , yn1 +

∑n
i=1 yniαi−1) ∈ R∗, and

suppose that x.y ̸= 0. Then, let M = {j : xji = yji = 0, 1 ≤ j ≤ n and
1 ≤ i ≤ j}. Now, we have two cases:

Case 1. Suppose that M is not empty set. Then, choose k ∈ M, and let
w = (w11, w21 + w22α1, w31 + w32α1 + w33α2, . . . ,

∑n
i=1wniαi−1) ∈ R∗, where

wij =


1, j = k and i = 1,

0, j = k and 1 < i ≤ j,

0, j ̸= k.

Then, x− w − y is a path of length 2 in CTD(R) from x to y.

Case 2. Suppose that M is empty set. Then, let f(x) = min{j : xj1 ̸= 0, 2 ≤
j ≤ n} and f(y) = min{j : yj1 ̸= 0, 2 ≤ j ≤ n}. Since M is empty set, we deduce
that f(x) = 2 or f(y) = 2, without loss of generality, assume that f(x) = 2. Let
v = (0, (x31y41 − x41y31)α1, (x41y21 − x21y41)α1, (x21y31 − x31y21)α1, 0, . . . , 0).
Now, we have two subcases:

Subcase 2.1. Suppose that v ̸= (0, 0, . . . , 0). Then, x.v = v.y = 0. Since
x.y ̸= 0, x ̸= v and y ̸= v. Hence, x − v − y is a path of length 2 in CTD(R)
from x to y.

Subcase 2.2. Suppose that v = (0, 0, . . . , 0). Then, x21y31 − x31y21 = 0. Let
w = (0,−x31α1, x21α1, 0, . . . , 0) Since x21 ̸= 0, w ∈ R∗. Hence, x.w = −x31x21+
x21x31 = 0 and w.y = −x31y21 + x21y31 = 0. Since x.w = w.y = 0, and x.y ̸= 0,
x ̸= w and y ̸= w. Thus, x−w− y is a path of length 2 in CTD(R) from x to
y. Hence, CTD(R) is connected with diam(CTD(R)) = 2.

Theorem 2.5. Let A be a ring, and let R = A × A[α1] × A[α1, α2]. Then,
CTD(R) is connected with diam(CTD(R)) = 2.

Proof. Let x = (x11, x21+x22α1, x31+x32α1+x33α2), y = (y11, y21+y22α1, y31+
y32α1 + y33α2) ∈ R∗, and suppose that x.y ̸= 0. Then, let M = {j : xj1 = yj1 =
0, 1 ≤ j ≤ 3}. Now, we have two cases:

Case 1. Suppose that M is not empty set. Then, choose k ∈ M, and let z =,
where

z =


(1, 0, 0), if k = 1

(0, α1, 0), if k = 2

(0, 0, α1), if k = 3

∈ R∗.

Then, x− z − y is a path of length 2 in CTD(R) from x to y.

Case 2. Suppose that M is an empty set. Then, define f(x) = min{j : xj1 ̸= 0,
2 ≤ j ≤ 3} and f(y) = min{j : yj1 ̸= 0, 2 ≤ j ≤ 3}. Since M is an empty set,
we deduce that f(x) = 2 or f(y) = 2, without loss of generality, assume that
f(x) = 2, that is x21 ̸= 0. Now, we have three subcases:
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Subcase 2.1. Suppose that x31 ̸= 0, y21 = 0. If y31x21 ̸= 0, then select
v1 = (0, x31α1,−x21α1), v2 = (0, α1, 0) ∈ R∗. Thus, x.v1 = v1.v2 = v2.y = 0.
Since x.y ̸= 0, x.v2 ̸= 0, y.v1 ̸= 0, x ̸= v1 and y ̸= v2. Hence, x − v1 − v2 − y
is a path of length 3 in CTD(R) from x to y. If y31x21 = 0, then select
v = (0, x31α1,−x21α1) ∈ R∗. So, x.v = v.y = 0. Since x.y ̸= 0, x ̸= v and
y ̸= v. Hence, x− v − y is a path of length 2 in CTD(R) from x to y.

Subcase 2.2. Suppose that x31 = 0, y21 = 0. If y31 ̸= 0, then select v1 =
(0, 0, α1), v2 = (0, α1, 0) ∈ R∗. Then, x.v1 = v1.v2 = v2.y = 0. Since x.y ̸= 0,
x.v2 ̸= 0, y.v1 ̸= 0, x ̸= v1 and y ̸= v2. Hence, x − v1 − v2 − y is a path of
length 3 in CTD(R) from x to y. If y31 = 0, then select v = (0, 0, α1) ∈ R∗. So,
x.v = v.y = 0. Since x.y ̸= 0, x ̸= v and y ̸= v. Hence, x − v − y is a path of
length 2 in CTD(R) from x to y.

Subcase 2.3. Suppose that x31 ̸= 0, y21 ̸= 0. If x21y31 − x31y21 = 0, then
select v = (0, x31α1,−x21α1) ∈ R∗. So, x.v = v.y = 0. Since x.y ̸= 0, x ̸= v
and y ̸= v, we have x − v − y a path of length 2 in CTD(R) from x to y. If
x21y31−x31y21 ̸= 0, then select v1 = (0, x31α1,−x21α1), v2 = (0, y31α1,−y21α1)
∈ R∗. Since x.y ̸= 0, x.v2 ̸= 0, y.v1 ̸= 0, x ̸= v1 and y ̸= v2, we have x−v1−v2−y
a path of length 3 in CTD(R) from x to y.

Therefore, by the previous cases we deduce that diam(CTD(R)) ≤ 3. Now,
let x = (1, α1, 1 + α1 + α2) and y = (1, 1 + α1, α1 + α2). Suppose there exists
(v11, v21 + v22α1, v31 + v32α1 + v33α2) ∈ R∗ such that x − v − y is a path of
length 2 in CTD(R) from x to y. Since x.v = v.y = 0, we have the following
equations

v11 + v31 = 0

v21 + v32 + v31 = 0

v33 + v31 = 0

v11 + v21 = 0

v21 + v22 + v31 = 0

v31 = 0

Solving these equations produces that v = (0, 0, 0) which is a contradiction.
Thus, dCT (x, y) = 3, and hence, diam(CTD(R)) = 3.

Theorem 2.6. Let A be a ring, and let R = A × A[α1] × A[α1, α2].If A is an
integral domain, then CZD(R) is connected with diam(CZD(R)) = 3.

Proof. Every path in Γ(R) is also a path in CZD(R). Now, since Γ(R) is
connected with diam(Γ(R)) ≤ 3 by [3], we conclude that CZD(R) is con-
nected with diam(CZD(R)) ≤ diam(Γ(R)). Thus, diam(CZD(R)) ≤ 3. Let
x = (1,−1, 0), y = (1, 0,−1) ∈ Z(R)∗. It is clear that x.y = 1 ̸= 0. Hence,
1 < dCZ(x, y) ≤ 3. Suppose that dCZ(x, y) = 2. Then, there is w = (w11, w21 +
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w22α1, w31+w32α1+w33α2) ∈ Z(R)∗ (Since A is an integral domain w11, w21or
w31 must be zero) such that x.w = w.y = 0. By direct calculations, we deduce
that w = (0, 0, 0) which is a contradiction. Hence, dCZ(x, y) = 3. Therefore,
diam(CZD(R)) = 3.

Theorem 2.7. Let A be a ring, and let R = A × A[α1] × A[α1, α2] × · · · ×
A[α1, α2, . . . , αn−1].

(1) If |A| > 2 and 2 ≤ n < ∞, then gr(CTD(R)) = gr(CZD(R)) = 3.

(2) IfA is isomorphic to Z2, and 3 ≤ n < ∞, then gr(CTD(R)) = gr(CZD(R))
= 3.

(3) If A is isomorphic to Z2, and n = 2 then gr(CZD(R)) = ∞.

Proof. (1) Since |A| > 2, there is a ∈ A\{0, 1}. Let x = (1, 0, . . . , 0), y =
(0, α1, . . . , 0), and z = (0, aα1, . . . , 0). Then, x− y− z− x is a cycle of length 3.

(2) Let x = (1, 0, 0, . . . , 0), y = (0, 1, 0, . . . , 0), and z = (0, 0, 1, 0 . . . , 0).
Then, x− y − z − x is a cycle of length 3.

(3) Clear.

According to the previous results, one can conclude the following corollaries.

Corollary 2.2. Let A be a ring, and let R = A × A[α1] × A[α1, α2] × · · · ×
A[α1, α2, . . . , αn−1] (with 2 ≤ n < ∞). Then, the following are equivalent:

(1) gr(CTD(R)) = 3.

(2) gr(CZD(R)) = 3.

(3) |A| > 2 or A is isomorphic to Z2, and 3 ≤ n.

Proof. Obvious, by Theorem 2.7.

Corollary 2.3. Let A be a ring, and let R = A × A[α1] × A[α1, α2] × · · · ×
A[α1, α2, . . . , αn−1] (with 2 ≤ n < ∞). Then, the following are equivalent:

(1) gr(CZD(R)) = ∞.

(2) A is isomorphic to Z2, and n = 2.

Proof. Obvious, by Theorem 2.7.

Corollary 2.4. Let A be a ring, and let R = A × A[α1] × A[α1, α2] × · · · ×
A[α1, α2, . . . , αn−1] (with 2 ≤ n < ∞). Then, the following are equivalent:

(1) CZD(R) = Γ(R).

(2) CTD(R) is disconnected.

(3) A is an integral domain and n = 2.
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3. Conclusion

Let A be a commutative ring with nonzero identity 1. for the natural number n,
we use the ring R = A×A[α1]×A[α1, α2] · · ·×A[α1, α2, . . . αn] to construct what
we call the chain total dot product graph (the chain zero-divisor dot product
graph), denoted by CTD(R) (CZD(R)). These two graphs are considered to be
a generalization of the total and the zero-divisor dot product graphs in [2]. In
this article, we studied some basic graph properties for the graphs CTD(R) and
CZD(R) such as connectedness, diameter and the girth. Many graph properties,
such as the graph’s core, center, and median, as well as planarity, can be explored
in the future for the graphs CTD(R) and CZD(R).
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