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Abstract. In this paper, we provide an improvement of the modular product of
fuzzy graphs defined by [16] in 2015, which we call strong modular product. We give
sufficient conditions for the strong modular product of two fuzzy graphs to be complete
and we show that if the strong modular product of two fuzzy graphs is complete, then
at least one factor is a complete fuzzy graph. Moreover, we give necessary and sufficient
conditions for the strong modular product of two balanced fuzzy graphs to be balanced.
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1. Introduction

Graph theory applications in system analysis, operations research and economics
are very important. Since the appearance of graph problems are somtimes not
known beyond doubt, it is nice to deal with them via fuzzy logic. The concept
of fuzzy relation was introduced by Zadeh [23] in his landmark paper ”Fuzzy
sets” in 1965. Fuzzy graph and several fuzzy graph concepts were introduced
by Rosenfeld [21] in 1975. Lately, fuzzy graph theory is having more and more
applications in real time modeling in which the level of information immanent
in the system changes.

Mordeson and Peng [17] defined the concept of complement of fuzzy graph
and studied some operations on fuzzy graphs. In [22], modified the definition
of complement of a fuzzy graph so that the complement of the complement is
the original fuzzy graph, which agrees with the classical graph case. Moreover
several properties of self-complementary fuzzy graphs and the complement of
some operations of fuzzy graphs that were introduced in [17] were studied. For
more on the previous notions and the following ones, one can see [1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22].

A fuzzy subset of a non-empty set V is a function σ : V → [0, 1] and a fuzzy
relation µ on σ is a fuzzy subset of V ×V . All throughout this paper, we assume
that V is finite, σ is reflexive and µ is symmetric.

Definition 1.1. [21] A fuzzy graph G : (σ, µ) where σ is a fuzzy subset of V
and µ is a fuzzy relation on σ such that µ(x, y) ≤ σ(x) ∧ σ(y) for all x, y ∈ V,



STRONG MODULAR PRODUCT AND COMPLETE FUZZY GRAPHS 99

where ∧ stands for minimum. The underlying crisp graph of G is denoted by
G∗ : (σ∗, µ∗) where σ∗ = sup p(σ) = {x ∈ V : σ(x) > 0} and µ∗ = sup p(µ) =
{(x, y) ∈ V × V : µ(x, y) > 0}.H = (σ′, µ′) is a fuzzy subgraph of G if there
exists X ⊆ V such that, σ′ : X → [0, 1] is a fuzzy subset and µ′ : X ×X → [0, 1]
is a fuzzy relation on σ′ such that µ(x, y) ≤ σ(x) ∧ σ(y) for all x, y ∈ X.

Definition 1.2 ([20]). A fuzzy graph G : (σ, µ) is complete if µ(x, y) = σ(x) ∧
σ(y) for all x, y ∈ V.

Next, we recall the following two results from [22].

Lemma 1.1. Let G : (σ, µ) be a self-complemetary fuzzy graph. Then∑
x,y∈V µ(x, y) = (1/2)

∑
x,y∈V (σ(x) ∧ σ(y))

Lemma 1.2. Let G : (σ, µ) be a fuzzy graph satisfying µ(x, y) = (1/2)(σ(x) ∧
σ(y)) for all x, y ∈ V.Then G is self-complemetary.

Definition 1.3 ([15]). Two fuzzy graphs G1 : (σ1, µ1) with crisp graph G∗
1 :

(V1, E1) and G2 : (σ2, µ2) with crisp graph G∗
2 : (V2, E2) are isomorphic if

there exists a bijection h : V1 → V2 such that σ1(x) = σ2(h(x)) and µ1(x, y) =
µ2(h(x), h(y)) for all x, y ∈ V1.

Lemma 1.3 ([18]). Any two isomorphic fuzzy graphs G1 : (σ1, µ1) and G2 :
(σ2, µ2) satisfy

∑
x∈V1

σ1(x) =
∑

x∈V2
σ2(x) and∑

x,y∈V1

µ1(x, y) =
∑

x,y∈V2

µ2(x, y).

Definition 1.4 ([5]). The density of a fuzzy graph G : (σ, µ) is

D(G) = 2(
∑

u,v∈V
µ(u, v))/(

∑
u,v∈V

(σ(u) ∧ σ(v))).

G is balanced if. D(H) ≤ D(G) for all fuzzy non-empty subgraphs H of G.

Theorem 1.1 ([5]). A complete fuzzy graph is balanced.

A new operation on fuzzy graphs is next recalled:

Definition 1.5 ([16]). The modular product of two fuzzy graphs G1 : (σ1, µ1)
with crisp graph G∗

1 : (V1, E1) and G2 : (σ2, µ2) with crisp graph G∗
2 : (V2, E2)

is defined to be the fuzzy graph G1 ⊚ G2 : (σ1 ⊚ σ2, µ1 ⊚ µ2) with crisp graph
G∗ : (V1 × V2, E) where

E = {(u1, v1)(u2, v2) : u1u2 ∈ E1, v1v2 ∈ E2},

(σ1⊚σ2)(u, v)=σ1(u)∧σ2(v), for all (u, v)∈V1×V2 and (µ1⊚µ2)((u1, v1)(u2, v2))
= µ1(u1u2) ∧ µ2(v1v2) when u1u2 ∈ E1, v1v2 ∈ E2, (µ1 ⊚ µ2)((u1, v1)(u2, v2)) =
σ1(u1) ∧ σ1(u2) ∧ σ2(v1) ∧ σ2(v2) when u1u2 /∈ E1, v1v2 /∈ E2.
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In [16], it was proved thet the modular product of two strong fuzzy graphs
is a strong fuzzy graph. Clearly, the modular product of two complete fuzzy
graphs need not be a complete fuzzy graph as (µ1 ⊚ µ2)((u1, v1)(u2, v2)) is not
defined above for the case u1 = u2 or v1 = v2.

In Section 2 of this paper, we provide an improvement of the modular prod-
uct of fuzzy graphs defined by [16], which we call strong modular product. We
give sufficient conditions for the strong modular product of two fuzzy graphs
to be complete and we show that if the strong modular product is complete,
then at least one factor is a complete fuzzy graph. Section 3 is divoted to give
necessary and sufficient conditions for the strong modular product of two fuzzy
balanced graphs to be balanced.

2. Strong modular product of fuzzy graphs

It clear that the modular product of two complete fuzzy graphs need not be
complete, see the example in Figure 4.1 in [16]. Next, we modify the above
definition so that the preceding property holds.

Definition 2.1. The strong modular product of two fuzzy graphs G1 : (σ1, µ1)
with crisp graph G∗

1 : (V1, E1) and G2 : (σ2, µ2) with crisp graph G∗
2 : (V2, E2)

is defined to be the fuzzy graph G1 ⊞ G2 : (σ1 ⊞ σ2, µ1 ⊞ µ2) with crisp graph
G∗ : (V1 × V2, E) where

E = {(u1, v1)(u2, v2) : u1u2 ∈ E1, v1v2 ∈ E2},

(σ1 ⊞ σ2)(u, v) = σ1(u) ∧ σ2(v), for all (u, v) ∈ V1 × V2 and

(µ1 ⊞ µ2)((u1, v1)(u2, v2))

=


µ1(u1u2) ∧ µ2(v1v2), u1u2 ∈ E1, v1v2 ∈ E2

σ1(u1) ∧ σ1(u2) ∧ σ2(v1) ∧ σ2(v2), u1u2 /∈ E1, v1v2 /∈ E2

σ1(u1) ∧ µ2(v1v2), u1 = u2, v1v2 ∈ E2

σ2(v1) ∧ µ1(u1u2), u1u2 ∈ E1, v1 = v2.

Next, we show that the above definition is well-defined.

Theorem 2.1. The strong modular product of two fuzzy graphs is a fuzzy graph.

Proof. Let G1 : (σ1, µ1) and G2 : (σ2, µ2) be two fuzzy graphs with underlying
graphs G∗

1 : (V1, E1) and G∗
2 : (V2, E2), respectively. Since Case 1 and Case 2

are proved in [16] and as Case 3 is similar to Case 4, we only prove Case 3.

Case 3. If u1 = u2, v1v2 ∈ E2, then as G2 is a fuzzy graph

(µ1 ⊞ µ2)((u1, v1)(u2, v2)) = σ1(u1) ∧ µ2(v1v2)

≤ σ1(u1) ∧ σ2(v1) ∧ σ2(v2).
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Thus

(µ1 ⊞ µ2)((u1, v1)(u2, v2)) ≤ σ1(u1) ∧ σ1(u2) ∧ σ2(v1) ∧ σ2(v2)

((σ1 ⊞ σ2)(u1, v1)) ∧ ((σ1 ⊞ σ2)(u2, v2)).

Next, we show that the strong modular product of two complete fuzzy graphs
are again a complete fuzzy graph.

Theorem 2.2. If G1 : (σ1, µ1) and G2 : (σ2, µ2) are complete fuzzy graphs, then
G1 ⊞G2 is a complete fuzzy graph.

Proof. If (u1, v1)(u2, v2) ∈ E, then we have the following cases:
Case 1. u1u2 ∈ E1, v1v2 ∈ E2.
Case 2. u1u2 /∈ E1, v1v2 /∈ E2.
Case 3. u1 = u2, v1v2 ∈ E2.
Case 4. u1u2 ∈ E1, v1 = v2.

Cases 1 and 2 follow from the proof of Theorem 4.2 in [16]. Case 3 and Case
4 are similar, so we only prove Case 3.
Case 3. Since G2 is complete,

(µ1 ⊞ µ2)((u1, v1)(u2, v2)) = σ1(u1) ∧ µ2(v1v2)

= σ1(u1) ∧ σ2(v1) ∧ σ2(v2)

= σ1(u1) ∧ σ1(u2) ∧ σ2(v1) ∧ σ2(v2)

= (σ1 ⊞ σ2)((u1, v1)) ∧ (σ1 ⊞ σ2)((u2, v2)).

Hence, G1 ⊞G2 is complete.

Corollary 2.1. If G1 : (σ1, µ1) and G2 : (σ2, µ2) are complete (strong) fuzzy
graphs, then G1 ⊞G2 is a strong fuzzy graph.

An interesting property of complement is given next.

Theorem 2.3. If G1 : (σ1, µ1) and G2 : (σ2, µ2) are complete fuzzy graphs, then
G1 ⊞G2 ≃ G1 ⊞G2.

Proof. Let G : (σ, µ) = G1 ⊞G2, µ = µ1 ⊞ µ2, G∗ = (V,E), G1 : (σ1, µ1),
G∗

1 = (V1, E1), G2 : (σ2, µ2), G∗
2 = (V2, E2) and G1 ⊞G2 : (σ1 ⊞σ2, µ1 ⊞µ2). We

only need to show µ1 ⊞ µ2 = µ1 ⊞ µ2. For any arc e joining nodes of V,we have
the following cases:
Case 1. If u1u2 ∈ E1, v1v2 ∈ E2, then as G is complete by Theorem 2.2, µ(e) = 0.
On the other hand, (µ1 ⊞ µ2)(e) = 0 since u1u2 /∈ E1 and v1v2 /∈ E2.
Case 2. If u1u2 /∈ E1, v1v2 /∈ E2, then is case is not possible to occur as both G1

and G2 are complete.
Case 3. e = (u, v1)(u, v2) where v1v2 ∈ E2.Then as G is complete by Theorem
2.2, µ(e) = 0. On the other hand, (µ1 ⊞ µ2)(e) = 0 since v1v2 /∈ E2.
Case 4. Similar proof to Case 3.

In all cases µ1 ⊞ µ2 = µ1 ⊞ µ2 and therefore, G1 ⊞G2 ≃ G1 ⊞G2.
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Next, we show that if the strong modular product of two fuzzy graphs is
complete, then at least one of the two fuzzy graphs must be complete.

Theorem 2.4. If G1 : (σ1, µ1) and G2 : (σ2, µ2) are fuzzy graphs such that
G1 ⊞G2 is complete, then at least G1 or G2 must be complete.

Proof. Suppose to the contrary that both G1 and G2 are not complete. Then
there exists at least one u1, u2 ∈ V1 and v1, v2 ∈ V2 such that µ1(u1u2) <
σ1(u1) ∧ σ1(u2)) and µ2(v1v2) < σ2(v1) ∧ σ2(v2)) then, we have the following
cases:

Case 1. If u1u2 ∈ E1, v1v2 ∈ E2, then (µ1 ⊞ µ2)((u1, v1)(u2, v2)) = µ1(u1u2) ∧
µ2(v1v2) and as G1 ⊞G2 is complete,

(µ1 ⊞ µ2)((u1, v1)(u2, v2)) = (σ1 ⊞ σ2)((u1, v1)) ∧ (σ1 ⊞ σ2)((u2, v2))

= σ1(u1) ∧ σ1(u2) ∧ σ2(v1) ∧ σ2(v2)

> µ1(u1u2) ∧ µ2(v1v2),

which is a contradiction.

Case 2. If u1u2 /∈ E1, v1v2 /∈ E2, then (µ1 ⊞ µ2)((u1, v1)(u2, v2)) = σ1(u1) ∧
σ1(u2) ∧ σ2(v1) ∧ σ2(v2) and as G1 ⊞G2 is complete,

(µ1 ⊞ µ2)((u1, v1)(u2, v2)) = (σ1 ⊞ σ2)((u1, v1)) ∧ (σ1 ⊞ σ2)((u2, v2))

= σ1(u1) ∧ σ1(u2) ∧ σ2(v1) ∧ σ2(v2)

= µ1(u1u2) ∧ µ2(v1v2),

which is a contradiction.

Case 3. If u1 = u2, v1v2 ∈ E2, then (µ1⊞µ2)((u1, v1)(u2, v2)) = σ1(u1)∧µ2(v1v2)
and as G1 ⊞G2 is complete,

(µ1 ⊞ µ2)((u1, v1)(u2, v2)) = (σ1 ⊞ σ2)((u1, v1)) ∧ (σ1 ⊞ σ2)((u2, v2))

= σ1(u1) ∧ σ2(v1) ∧ σ2(v2)

> µ1(u1u2) ∧ µ2(v1v2),

thus G1 ⊞G2 is not complete.

Case 4. If u1u2 ∈ E1, v1 = v2, the proof is similar to Case 3.

3. Blanced notion virsus strong modular product

We begin this section by proving the following lemma that we use to give nec-
essary and sufficient conditions for the strong modular product of two balanced
fuzzy graphs to be balanced.

Lemma 3.1. Let G1 and G2 be fuzzy graphs. Then D(Gi) ≤ D(G1 ⊞ G2) for
i = 1, 2 if and only if D(G1) = D(G2) = D(G1 ⊞G2).
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Proof. If D(Gi) ≤ D(G1 ⊞G2) for i = 1, 2, then

D(G1) = 2(
∑

u1,u2∈V1

µ1(u1u2))/(
∑

u1,u2∈V1

(σ1(u1) ∧ σ1(u2)))

≥ 2(
∑

u1,u2∈V1
v1,v2∈V2

µ1(u1u2)∧σ2(v1)∧σ2(v2))/(
∑

u1,u2∈V1
v1,v2∈V2

(σ1(u1)∧σ1(u2)∧σ2(v1)∧σ2(v2)))

= 2(
∑

u1,u2∈V1
v1,v2∈V2

µ1(u1u2) ∧ µ2(v1v2))/(
∑

u1,u2∈V1
v1,v2∈V2

(σ1(u1) ∧ σ1(u2) ∧ σ2(v1) ∧ σ2(v2)))

= 2(
∑

u1,u2∈V1
v1,v2∈V2

µ1 ⊞ µ2((u1, v1)(u2, v2))/(
∑

u1,u2∈V1
v1,v2∈V2

(σ1 ⊞ σ2((u1, v1)(u2, v2)))

= D(G1 ⊞G2).

Hence, in all cases D(G1) ≥ D(G1 ⊞ G2) and thus D(G1) = D(G1 ⊞ G2).
Similarly, D(G2) = D(G1⊞G2). Therefore, D(G1) = D(G2) = D(G1⊞G2).

Theorem 3.1. Let G1 and G2 be balanced fuzzy graphs. Then G1 ⊞ G2 is
balanced if and only if D(G1) = D(G2) = D(G1 ⊞G2).

Proof. If G1 ⊞ G2 is balanced, then D(Gi) ≤ D(G1 ⊞ G2) for i = 1, 2 and by
Lemma 3.1, D(G1) = D(G2) = D(G1 ⊞G2).

Conversely, if D(G1) = D(G2) = D(G1 ⊞G2) and H is a fuzzy subgraph of
G1 ⊞G2, then there exist fuzzy subgraphs H1 of G1 and H2 of G2. As G1 and
G2 are balanced and D(G1) = D(G2) = n1/r1, then D(H1) = a1/b1 ≤ n1/r1
and D(H2) = a2/b2 ≤ n1/r1. Thus a1r1+a2r1 ≤ b1n1+b2n1 and hence D(H) ≤
(a1 + a2)/(b1 + b2) ≤ n1/r1 = D(G1 ⊞G2). Therefore, G1 ⊞G2 is balanced.
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