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Abstract. The recently introduced regular topology for the function space C(X,Y )
has been explored up to some metrizability and various countability and completeness
properties. The main aim of this paper is to explore the regular topology on the func-
tion space C(X,Y ) in which we study submetrizability and extend various properties
equivalent to the metrizability of the space Cr(X,Y ). We also study number of maps
corresponding to the space Cr(X,Y ) and prove that the regular topology on the space
C(X,Y ) is strong when X is taken discrete. Furthermore, we study various separation
axioms on the space Cr(X,Y ), where we prove that the function space Cr(X) is normal
by taking X to be countable, compactly generated compact space and prove certain
equivalent conditions to various separation axioms on the space Cr(X,Y ).
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1. Introduction

The function space C(X,Y ) symbolizes the space of continuous functions from
a space X to a space Y . This space has been topologized in numerous ways
and those topologies include the innate topologies such as point-open topol-
ogy, compact-open topology and uniform topology. However, more stronger
topologies than that of the uniform topology such as the fine topology (also
known as m-topology) and the graph topology have also been studied. The fine
topology on C(X) = C(X,R) along with the topological properties was stud-
ied by Hewitt [4]. Moreover, the basis elements for fine topology on C(X,Y )
where X is a Tychonoff space and (Y, d) a metric space are of the fashion:
B(f, ϵ) = {g ∈ C(X,Y )|d(f(x), g(x)) < ϵ(x),∀x ∈ X}, where f ∈ C(X,Y ) and
ϵ is a positive unit of the ring C(X). Later, the topological properties corre-
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sponding to this topology have also been discussed in [11]. The space C(X,Y )
equipped with fine topology is proved to be submetrizable in [11].

Iberklied et al. in [15] introduced a more stronger topology than the fine
topology on the space C(X) and named it as the regular topology or the r-
topology. This topology was defined in a manner that the positive unit in the
basis elements of fine topology is replaced by a positive regular element of the
ring C(X). That is the basis elements for the regular topology on the space C(X)
are of the fashion: R(f, r) = {g ∈ C(X) : |f(x) − g(x)| < r(x),∀x ∈ coz(r)},
where f ∈ C(X), r is a positive regular element (non-zero divisor) of the ring
C(X) and coz(r) = {x ∈ X : r(x) ̸= 0}. The space C(X) equipped with the
regular topology is represented as Cr(X). Afterwards, Azarpanah et al. in [5]
investigated compactness, connectedness and countability of this topology on
the space C(X). However, no study has been done on the submetrizability,
separation axioms with respect to the regular topology on C(X) and no map
has been studied corresponding to the regular topology on the space C(X).

Later, Jindal et al. [1] explored this regular topology on a more general space
C(X,Y ), where X is Tychonoff and Y is a metric space with non-trivial path.
They used the same idea as before to define the basis element for the regular
topology on C(X,Y ) as : R(f, r) = {g ∈ C(X,Y )|d(f(x), g(x)) < r(x), ∀x ∈
coz(r)}, where where f ∈ C(X,Y ), r is a positive regular element (non-zero
divisor) of the ring C(X). The space C(X,Y ) endowed with regular topology is
represented as Cr(X,Y ). Moreover, they studied various topological properties
like metrizability, countability and several completeness properties. Despite all,
the submetrizability was not studied on the space Cr(X,Y ), no separation axiom
has been investigated for the space Cr(X,Y ) and no map with respect to this
topology was studied. However, the submetrizability property has been studied
for various function space topologies in [12], [14], [2].

The main concern of our work is to investigate submetrizability for the func-
tion space Cr(X,Y ), to investigate certain separation axioms and various kinds
of maps on the space Cr(X,Y ), where X is a Tychonoff space and Y a metric
space with a non-trivial path. In the first section, we demonstrate that the
space Cr(X,Y ) is submetrizabe along with some equivalent conditions to its
submetrizability. Moreover, we stretch the listicle of equivalent properties to its
metrizability by replacing the metric space Y with a normed linear space with
supremum norm. With this, we also see how by taking Y as a normed linear
space makes the function space Cr(X,Y ) into a topological group.

In the second section, we study various maps such as composition function,
induced map and embedding with respect to the regular topology on C(X,Y ).
Specifically, we show how one function space can be embedded into other and
derive a necessary condition when the regular topology on C(X,Y ) can be cat-
egorized as a strong topology.

Finally, in last portion we examine several separation axioms for the space
Cr(X,Y ) such as Hausdorffness and regularity and provide some equivalent
characterizations with respect to other function space topologies.
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Moreover, the conventions that we use throughout this paper are : The space
X will always represent a Hausdorff completely regular space ( we will acknnowl-
edge if it has an extra structure). The set of positive regular elements(non-zero
divisors) of the ring C(X) is symbolized by r+(X) and the multiplicative units of
the same ring are symbolized by U+(X). The function space C(X) and C(X,Y )
equipped with the regular topology are represented as Cr(X) and Cr(X,Y ), re-
spectively. The operation ≤ is used to represent the strength of two comparative
topologies, which means the one on LHS is weaker than the one on RHS.

2. Pre-requisites

Definition 2.1.

1. Let g ∈ C(X), then Z(g) = {x ∈ X : g(x) = 0} denotes the zero set of g
and coz(g) = {x ∈ X : g(x) ̸= 0}, is the set-theoretic complement of Z(g).

2. Topologically, the regular elements of the ring C(X) are characterized as
: Let g ∈ C(X), then it is said to be the regular element of C(X) if and
only if IntX(Z(g)) = ϕ if and only if coz(g) is dense subset of X.

3. A space Z is said to be pseudocompact if f(Z) is bounded subset of R, ∀
f ∈ C(X), that is, for every f ∈ C(X) there exists a natural number N
for which |f(z)| ≤ N ∀ z ∈ Z.

Definition 2.2. In [15], an almost P -space is defined as the space where each
nonempty Gδ-set has a nonempty interior. Moreover, in terms of elements of
the ring C(X), a space X is said to be an almost P -space if the regular elements
coincide with the multiplicative units of ring C(X).

Theorem 2.1 (Theorem 2.1, [1]). A space X is said to be an almost P -space
if it satisfies anyone of the following conditions :

1. Every non-empty zero set of X has a non-empty interior.

2. Every non-empty Gδ-set of X has a non-empty interior.

3. Every zero set in X is a regular-closed set.

4. Every Gδ-set has an interior dense in itself.

Theorem 2.2 (Theorem 1.8, [15]). For a space X, the following are equivalent:

1. Cr(X) = Cm(X).

2. X is an almost P -space.

3. r+(X) = U+(X).

Theorem 2.3 (Theorem 1.9, [15]). For a space X, the following are equivalent:

1. Cr(X) = Cu(X)

2. X is pseudocompact, almost P -space.
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3. Submetrizability

In this section, we are going to investigate when the space Cr(X,Y ) is sub-
metrizable. Moreover, we discuss how the submetrizability of space Cr(X) can
be characterized in terms of other weaker properties.

Definition 3.1. A completely regular Hausdorff space (X, τ) is called submetriz-
able if it admits a weaker metrizable topology, equivalently, if there exists a con-
tinuous injection f : X → Y , where Y is a metric space.

Theorem 3.1. For a space X and a Tychonoff space Y , the space Cr(X,Y ) is
Tychonoff.

Proof. Suppose Y is a Tychonoff space, implies Y is uniformizable. Conse-
quently, Cr(X,Y ) is uniformizable [1]. Which means Cr(X,Y ) is Tychonoff.

Theorem 3.2. For a space X and a metric space (Y, d), the space Cr(X,Y ) is
always submetrizable.

Proof. As we know that the regular topology on C(X,Y ) is stronger than the
fine topology on it [1]. Consequently, we can write Cd(X,Y ) ≤ Cr(X,Y ), and
since Cd(X,Y ) is always metrizable (Corollary 2.1, [11]). Therefore, the space
Cr(X,Y ) is submetrizable.

Definition 3.2 (Definition 2.2, [11]). A topological space Y is called a space of
countable pseudocharacter if every point in Y is a Gδ-set (countable intersection
of open sets) in Y . Such spaces are also called as E0-spaces. Moreover, in a
submetrizable space, every point is a Gδ-set. So, the submetrizable spaces are
E0-spaces. The study regarding E0-spaces and submetrizable spaces can be found
in [3] and [6], respectively.

Corollary 3.1. The space Cr(X,Y ) is of countable pseudocharacter.

Remark 3.1 (Remark 5.2 in [12]).

1. If a space is havingGδ-diagonal, that is for a spaceX, if the set {(x, x) : x ∈
X} is a Gδ-set in the product space X×X, then each element of X is a Gδ-
set. Note that every metrizable space has a zero-set diagonal which implies
it has a regular Gδ-diagonal implies it has a Gδ-diagonal. Consequently,
every submetrizable space has a zero-set diagonal.

2. In submetrizable spaces, all compact sets, pseudocompact sets, countably
compact sets and singleton sets are Gδ-sets.

Next, we see various properties which are equivalent to the submetrizability
of space Cr(X). The above remark leads us to the following theorem:

Theorem 3.3. For a space X, we have the following equivalent properties:
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1. Cr(X) is submetrizable.

2. Cr(X) has a zero set diagonal.

3. Cr(X) has a regular Gδ-diagonal.

4. Cr(X) has a Gδ-diagonal.

5. Each singleton set in C(X) is Gδ in Cr(X).

6. {0X} is a Gδ in Cr(X).

7. X is separable

8. Cp(X) is submetrizable.

Proof. Since (1) ⇒ (2) ⇒ (3) ⇒ (4) follows from the above discussion. (4) ⇒
(5) ⇒ (6) are immediate.
(6) ⇒ (7) Suppose {0X} is Gδ in Cr(X), then there exists a countable family N
of open sets in Cr(X) so that {0X} =

⋂
N.

Now, assume that N has elements of the form B(f1, r1), · · · ∩ B(fk, rk) ∩
B(0X , rm), · · · ∩B(0X , rn), where fi ∈ C(X), rj ∈ r+(X), 0X is a constant func-
tion and 1 < i < k and 1 < j < n.

Now, for each U = B(f1, r1), · · ·∩B(fk, rk)∩B(0X , rm), · · ·∩B(0X , rn) ∈ N,
fix xj ∈ coz(rj) and put H(U) = {y1, · · · ym, x1, · · · , xn}. Let A = {H(U) : U ∈
N}. Clearly, A is countable. Suppose Cl(A) ̸= X, so ∃ x0 ∈ X − Cl(A). Since
X is a completely regular space so ∃ f ∈ C(X) such that f(x0) = 1, f(y) =
0∀y ∈ cl(A). This implies f ∈ U for each U ∈ N. So, f = 0X , but f(x0) = 1.
Thus, cl(A) = X. Hence, X is separable.

(7) ⇔ (8) is well known.
(8) ⇒ (1) Since Cp(X) ≤ Cr(X).

In the next result, we stretch the list of equivalent characterizations of metriz-
ability of Cr(X,Y ). Infact, we see how X being pseudocompact, almost P -space
acts also as the necessary and sufficient condition for the space Cr(X,Y ) to be
countably tight, radial and pseudoradial.

Theorem 3.4. For a space X and a metric space (Y, d) with a non-trivial path,
we have the following equivalent conditions:

1. X is pseudocompact, almost P -space.

2. Cd(X,Y ) = Cr(X,Y ).

3. Cr(X,Y ) is metrizable.

4. Cr(X,Y ) is first countable.

5. Cr(X,Y ) is of pointwise countable type.
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6. Cr(X,Y ) is an r-space.

7. Cr(X,Y ) is an M -space.

8. Cr(X,Y ) is an p-space.

9. Cr(X,Y ) is an q-space.

10. Cr(X,Y ) is a Frechet space.

11. Cr(X,Y ) is a Sequential space.

12. Cr(X,Y ) is a k-space.

13. Cr(X,Y ) is countably tight.

14. Cr(X,Y ) is radial.

15. Cr(X,Y ) is pseudoradial.

Proof. The equivalent conditions from (1) upto (9) are true as proved in (The-
orem 2.7, [1]).

And since (4) ⇒ (10) ⇒ (11) ⇒ (12) are well known.
(12) ⇒ (13) It supports because a regular k-space having points Gδ is countably
tight. However, let’s prove it by contradiction. Suppose a regular k-space Z
with points Gδ is not countably tight, then there exists a subset S of Z in such
manner that the set H = {P̄ : P ⊆ S and P is countable } ⊊ S̄. Since H
contains S and H is not closed. Therefore, there exists a compact subset C of Z
in such a way that H ∩ C is not closed in C. In addition, every compact space
where singleton sets are Gδ is first countable. Thus, there exists a sequence (xn)
in H ∩ C converging to some x ∈ C\H.

Now, ∀ n ∈ N , ∃ a countable Pn ⊆ S so that xn ∈ P̄n. Hence, x ∈
⋃

n∈N Pn.
Since

⋃
n∈N Pn is countable in S, x ∈ H. Which is a contradiction.

Now, (13) ⇒ (1) Suppose X is not an almost P -space. Then, we can find a
non-empty zero set say S in X which has empty interior. Let r ∈ C(X) such
that Z(r) = S. Since Z(r) = Z(|r|), then we can assume r ≥ 0. Consequently,
r ∈ r+(X). As Cr(X,Y ) is countably tight, so we can consider a countable
subset {gn : n ∈ N}.

Now, choose e ∈ Z(r). Since Y contains a non-trivial path, so we can find
t0 ∈ Y \ {gn(e) : n ∈ N}. Let g0 be a constant function in Cr(X,Y ) taking
values t0. Then, R(g0, r) is a non-empty open set in Cr(X,Y ) that does not
intersect {gn : n ∈ N}. Which is not true. Thus, X is an almost P -space.

Hence, by (Theorem 2.2, [1]), Cf (X,Y ) = Cr(X,Y ). Thus, Cf (X,Y ) is also
countably tight. But, the (Theorem 3.3, [8]) implies that X is pseudocompact.
Which finishes the proof (13) ⇒ (1).

Clearly, (10) ⇒ (14) ⇒ (15). We show that (15) ⇒ (13) by contradiction.
Consider a nonclosed subset N of Cr(X,Y ). Then, there exists a cardinal k
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and a k-sequence in N , say (gσ)σ<k in such a way that the sequence converges
to some g ∈ N . We lay claim to the fact that there is an ℵ0-subsequence that
converges to g. If this is shown, it will declare that Cr(X,Y ) is a sequential
space.

For every natural number n, we can choose an ordinal σn < k so that
σn > σn−1 and for every σn < τ < k, gτ ∈ Bg(g, 1/n). The sequence (σn)
converges to k. Otherwise there is an ordinal τ < k such that σn < τ for each n,
hence g = gτ ∈ N ; a contradiction. Next, for any r ∈ r+(X), there is an ordinal
σ such that for every σ < τ < k, we have gτ ∈ Bg(g, r). Since (σn) converges to
k, there is an n such that σ < σm < k, ∀m ≥ n. Hence, gσm ∈ Bg(g, r) for each
m ≥ n. Thus, gσm∀m ≥ n converges to g.

Example 3.1. Let X = [0, ω1) and Y = R, the the space Cr([0, ω1)) is sub-
metrizable. Since the space [0, ω1) is countably compact [Example 2.2, [11] ] im-
plies X is pseudocompact. The space Cf ([0, ω1)) is metrizable. Also the space
[0, ω1) is not an almost P -space. Therefore, we have Cf ([0, ω1)) ̸= Cr([0, ω1)).
Hence, the space Cr([0, ω1)) is submetrizable.

Example 3.2. For a real line R, let βR denotes its Stone-Cech compactification.
LetX = βR−R, thenX is an almost P -space [10] and since R is locally compact,
so it is open in βR, and βR−R is therefore compact, thus pseudocompact. Then,
we have Cd(βR−R) = Cr(βR−R), implies Cr(βR−R) is metrizable and hence
submetrizable.

In the upcoming result, we see how by taking Y as a normed linear space with
supremum norm, one can further stretch the list of characterizations equivalent
to metrizability of the space Cr(X,Y ). Before that we require the below results
to prove the main theorem.

Theorem 3.5. For a space X and a normed linear space (Y, ∥.∥∞) with supre-
mum norm, the function space Cr(X,Y ) is a topological group under pointwise
addition.

Proof. Clearly, under pointwise addition, Cr(X,Y ) is a group.
Now, it is sufficient to prove that the group operations are continuous.

Suppose s : Cr(X,Y ) × Cr(X,Y ) → Cr(X,Y ) be defined as s(g1, g2) = g1 +
g2,∀g1, g2 ∈ C(X,Y ). Consider a basic neighborhood B(g1 + g2, r) of g1 + g2
in Cr(X,Y ), where r is the regular element of ring C(X). Take ϵ1 = r(x)/3 =
ϵ2, x ∈ coz(r), and observe the neighborhood B(g1, ϵ1) × B(g2, ϵ2) of (g1, g2)
in Cr(X,Y ) × Cr(X,Y ). Suppose (h1, h2) ∈ B(g1, ϵ1) × B(g2, ϵ2). Then, for
x ∈ coz(r),

∥(g1 + g2)(x)− (h1 + h2)(x)∥ ≤ ∥g1(x)− h1(x)∥+ ∥g2(x)− h2(x)∥
< ϵ1(x) + ϵ2(x) < r(x)

Then, s(B(g1, ϵ1)×B(g2, ϵ2)) ⊆ B(g1 + g2, r). Therefore, s is continuous.
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Now, let I : Cr(X,Y ) → Cr(X,Y ) defined by I(f) = −f for any f ∈
C(X,Y ), where (−f)(x) = −f(x) ∈ Y . Observe the neighborhood B(−f, r) of
−f . Therefore, I(B(f, r)) = B(−f, r). Thus, I is continuous. Hence, Cr(X,Y )
is a topological group.

Since we have shown that the function space Cr(X,Y ) is topological group,
for a space X and a normed linear space (Y, ∥.∥∞). Thus, it is a homogeneous
space [11]. However, a space A is termed to be a homogeneous space if for
each pair of points a, b ∈ A, there exists a homeomorphism of A onto itself that
carries a to b. Further, to prove next result, we first require the following two
lemmas:

Lemma 3.1 (Lemma 2.1, [11]). Let D be a dense subset of a space X and x ∈ D.
Then, x has a countable local π-base in D if and only if x has a countable local
π-base in X.

Lemma 3.2 (Lemma 2.3, [11]). Let D be a dense subset of a space X and C
be a compact subset D. Then, C has countable character in D if and only if C
has countable character in X.

Theorem 3.6. For a space X and a normed linear space (Y, ∥.∥∞), the space
Cr(X,Y ) has a countable π-character if and only if Cr(X,Y ) has a dense sub-
space having countable π-character.

Proof. Consider a dense subspace C of Cr(X,Y ) having a countable π-character.
Take f ∈ C to be arbitrary. Because f has a countable local π-base in C, then
by the (Lemma 3.1) f has a countable local π-base in Cr(X,Y ). Therefore,
there exists a sequence {On : n ∈ N} of open sets in Cr(X,Y ) in such a man-
ner that whenever O is an open set carrying f , On ⊆ O for some n. Take an
arbitrary g ∈ Cr(X,Y ). As Cr(X,Y ) is a homogeneous space, thus there exists
a homeomorphism h : Cr(X,Y ) → Cr(X,Y ) defined by h(f) = g. Therefore,
{h(On) : n ∈ N} is a sequence of open sets in Cr(X,Y ). Let P be an open set
with g ∈ P . Therefore, f ∈ h−1(P ) and there exists n such that On ⊆ f−1(P ).
As a consequence, g has a countable local π-base in Cr(X,Y ). Hence, Cr(X,Y )
has a countable π-character. Clearly, the converse follows.

Theorem 3.7. For a space X and a normed linear space (Y, ∥.∥∞), the space
Cr(X,Y ) is of pointwise countable type if and only if Cr(X,Y ) has a dense
subspace of pointwise countable type.

Proof. Consider a dense subspace C of Cr(X,Y ) that is of pointwise countable
type. Let f ∈ C and g ∈ C(X,Y ). Since Cr(X,Y ) is homogeneous, so there
exists a homeomorphism H : Cr(X,Y ) → Cr(X,Y ) so that H(f) = g. Since C
is a dense subspace of Cr(X,Y ), so there exists a compact subset, say K so that
f ∈ K and is of pointwise countable character in C. Thus, by above (Lemma
3.2), K has countable character in Cr(X,Y ). Therefore, H(K) is a compact
subset of Cr(X,Y ) having countable character in Cr(X,Y ), and g ∈ H(K).
Hence, Cr(X,Y ) is of pointwise countable type. The converse is immediate.
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Theorem 3.8. For a space X and a normed linear space (Y, ∥.∥∞), we have
the following equivalences :

1. X is pseudocompact, almost P -space.

2. Cd(X,Y ) = Cr(X,Y ).

3. Cr(X,Y ) is metrizable.

4. Cr(X,Y ) is of pointwise countable type.

5. Cr(X,Y ) has a dense subset which is of pointwise countable type.

6. Cr(X,Y ) is countably tight.

7. Cr(X,Y ) is first countable.

8. Cr(X,Y ) has a countable π-character.

9. Cr(X,Y ) has a dense subspace of countable π-character.

10. Cr(X,Y ) is normed linear space.

11. Cr(X,Y ) is topological vector space.

Proof. The equivalences (1) ⇔ (2) ⇔ (3) ⇔ (4) are true (Theorem 2.7, [1]).
(4) ⇔ (5) is proved in above (Theorem 3.7).
(1) ⇔ (6) ⇔ (7) are true as proved in (Theorem 3.4).
(7) ⇒ (8). Since Cr(X,Y ) is a topological group and a topological group is

first countable if and only if it has countable π-character.
(8) ⇔ (9) is proved in above (Theorem 3.6).
(1) ⇒ (10) SupposeX is pseudocompact and almost P -space then Cr(X,Y ) =

Cd(X,Y ) (Theorem 2.7, [1]). But when X is pseudocompact, then Cd(X,Y ) is
a normed linear space under the supremum norm ||.||∞ defined by ∥f∥∞ =
sup{∥f(x)∥ : x ∈ X}. Thus, the space Cr(X,Y ) is a normed linear space.

(10) ⇒ (11) is immediate.
(11) ⇒ (1) Suppose X is not an almost P -space, then there exists a non-

empty zero set say A which has empty interior in X. Let s ∈ C(X) be in such
a way that Z(s) = A. As Z(s) = Z(|s|), thus s ∈ r+(X). Without the loss
of generality, we can assume s in such a way that there ∄ any δ > 0 so that
δ < s(x), ∀x ∈ coz(s). Consider a non-zero element y0 and define fy0 : X → Y as
fy0(x) = y0,∀x ∈ X. We prove that the scaler multiplication is not continuous
at (0, fy0) ∈ R × Cr(X,Y ). Consider a basic neighborhood B(0X , s) of 0X in
Cr(X,Y ) where 0X(x) = 0,∀x ∈ X.

Now, consider a basic neighborhood (−ϵ, ϵ) × B(fy0 , r) of (0, fy0) in R ×
Cr(X,Y ), where ϵ > 0 and r ∈ r+(X). Then, for any non-zero α ∈ (−ϵ, ϵ), αfy0
does not belong to B(0X , s),∀x ∈ coz(s). Because then ||αfy0(x)∥ = |α|∥y0|| <
s(x), ∀x ∈ coz(s). But this contradicts our choice of s ∈ r+(X). So, if X is not
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an almost P -space, then Cr(X,Y ) is not a topological vector space. In other
words, Cr(X,Y ) being topological vector space implies X is an almost P -space.

But X being almost P -space implies that Cr(X,Y ) = Cf (X,Y ) (Theorem
2.2, [1]). Therefore, Cf (X,Y ) is a topological vector space. However, (Theorem
2.2, [11]) shows that Cf (X,Y ) is topological vector space if and only if X is
pseudocompact. This finishes the proof that (11) ⇒ (1).

4. Some special maps

In this section, we will be discussing various maps that can be drawn over or
from the space Cr(X,Y ) which includes composition function, induced map
and embedding. In function spaces, the function i : Y → C(X,Y ) defined as
i(t) = ct, where ct is a constant map is an injection [7]. However, in particular,
the function i : R → C(X,R) defined as i(t) = ct, where ct ∀ t ∈ R is a constant
map is an injection [7].

Definition 4.1 (Composition function). Suppose X, Y and R are spaces, a
composition function ϕ : Cr(X,Y )×Cr(Y,R) → Cr(X,R) is defined by ϕ(f, g) =
g ◦ f , f ∈ Cr(X,Y ), g ∈ Cr(Y,R)

Definition 4.2 (Induced map). Suppose g ∈ Cr(Y,R), then an induced map
g∗ : Cr(X,Y ) → Cr(X,R) is defined by g∗(f) = ϕ(f, g) = g ◦ f , f ∈ Cr(X,Y ).
In particular, for g ∈ Cr(X,Y ), then an induced map for the function space
C(X) is defined as g∗ : Cr(Y ) → Cr(X) with g∗(f) = ϕ(f, g) = g◦f , f ∈ Cr(Y ).

An induced map is formed by fixing one of the components of composition
function. Note that the induced maps preserve composition as : (g◦f)∗ = g∗◦f∗.

Theorem 4.1. Let g ∈ Cr(Y,R), then g is one-to-one if and only if g∗ : Cr(X,Y )
→ Cr(X,R) is one-to-one.

Proof. Let g is one-to-one. To prove g∗ : Cr(X,Y ) → Cr(X,R) is one-to-one.
Let’s consider f1, f2 ∈ Cr(X,Y ) and let g∗(f1) = g∗(f2). This implies ϕ(f1, g) =
ϕ(f2, g). Which implies g ◦ f1 = g ◦ f2. Then, g(f1) = g(f2). Implies f1 = f2.
Therefore, g∗ : Cr(X,Y ) → Cr(X,R) is one-to-one.

Conversely, let g∗ is one-to-one. To prove g ∈ C(Y,R) is one-to-one. For this,
consider x1, x2 ∈ Y and let g(x1) = g(x2). This implies g∗(g(x1)) = g∗(g(x2)).
Which implies ϕ(g(x1), g) = ϕ(g(x2), g). Then, ϕ(g, g) = ϕ(g, g). Then, we can
write g−1(g(x1)) = g−1(g(x2)). Implies x1 = x2. Therefore, g is one-to-one.

Theorem 4.2. Let g ∈ Cr(Y,R) and g∗ : Cr(X,Y ) → Cr(X,R) is onto then g
is onto.

Proof. Let g∗ is onto, then by definition there exists f1 ∈ C(X,R) such that
f1 = g∗(g1), ∀ g1 ∈ C(X,Y ). This implies f1 = ϕ(g1, g), which implies f1 =
g ◦ g1. Then, f1 = g(g1). Thus, g is onto.
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Definition 4.3. A function f from a non-empty set A to a topological space B
is said to be an almost onto map if f(A) is dense in B.

Theorem 4.3 (Theorem 2.2.6 (a), [7]). Let g ∈ C(X,Y ), then the induced map
g∗ : C(Y ) → C(X) is one-one if and only if g is almost onto.

Theorem 4.4. For a Tychonoff space X and a metric space (Y, d), and let
g ∈ Cr(Y,R), then the induced map g∗ : Cr(X,Y ) → Cr(X,R) defined as g∗(f) =
ϕ(f, g) = g ◦ f , f ∈ Cr(X,Y ) is continuous.

Proof. Let B(f, r) be a basic open subset of Cr(X), where r is a non-negative
regular element of the ring C(X) and B(f, r) = {h ∈ C(X) : |f(x) − h(x)| <
r(x), ∀x ∈ coz(r)}.

Now, we will show that g−1
∗ [B(f, r)] is open in Cr(X,Y ). So, for this, let

h ∈ g−1
∗ [B(f, r)] and we will show it is an interior point of g−1

∗ [B(f, r)].

For every x ∈ coz(r), we know from the definition that

|g(h(x))− f(x)| < r(x) ⇒ g(h(x)) ∈ Br(x)(f(x))

Since Br(x)(f(x) is open, we can thus find another regular element ŕ ∈ C(X) so
that

(1) Bŕ(x)(g(h(x))) ⊆ Br(x)(f(x))

Then, as g is continuous so by the continuity of g at x, ∃ δ a non-negative regular
element of ring C(X) such that

(2) ∀y ∈ coz(δ) : dY (h(x), y) < δ(x) ⇒ g(y) ∈ Bŕ(x)(g(h(x)))

Now, if h́ ∈ B(h, δ), from (2) we can conclude that

∀x ∈ coz(ŕ) : g(h́(x)) ∈ Bŕ(x)(g(h(x)))

Thus, from (1) it is evident that g∗(h́)∈B(f, r). Therefore, B(h, δ)⊆g−1
∗ [B(f, r)]

as required.

Corollary 4.1. For a space X, let g ∈ Cr(X,Y ) for some space Y , then the
induced map g∗ : Cr(Y ) → Cr(X) is continuous.

Theorem 4.5. For a space X and a metric space (Y, d), the map ϕ : Y →
Cr(X,Y ) where ϕ(y) = ȳ and ȳ is a constant map in Cr(X,Y ), is an embedding.

Proof. Since, ϕ is one-one and the basis elements for regular topology on
C(X,Y ) are of the form B(f, r) where f ∈ C(X,Y ) , r is a non-negative regular
element of the ring C(X), and

B(f, r) = {g ∈ C(X,Y ) : d(f(x), g(x)) < r(x), ∀x ∈ coz(r)}
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Now, as ϕ maps y ∈ Y to ϕ(y) ∈ Cr(X,Y ) defined by ϕ(y)(x) = ȳ(x)∀x ∈ X
is continuous.

Suppose yn → y0 in (Y, d), it is enough to show sequential continuity, as
Y is a first countable space. Then, it is clear that ϕ(yn) → ϕ(y0) such that if
B(ϕ(y0), r) is a basic neighborhood of ϕ(y0) then by convergence, there is some
N such that n ≥ N implies d(yn, y0) < r(x),∀x ∈ coz(r). Then, also n ≥ N
implies ϕ(yn) ∈ B(ϕ(y0), r).

Thus, ϕ is an embedding and we have ϕ[B(y, r)] ∩ ϕ[Y ] = B(ϕ(y), r) ∩ ϕ[Y ]
so ϕ maps open sets to open sets in ϕ(y).

Corollary 4.2. For a space X and a real line R, the map ϕ : R → Cr(X) where
ϕ(y) = ȳ and ȳ is a constant map in Cr(X) is an embedding.

Now, we provide a scenario in which a function space can be embedded into
another function space with regular topology.

Theorem 4.6. Suppose that the space Y is a continuous image of the space X.
Then, Cr(Y ) can be embedded into Cr(X).

Proof. Let s : X → Y be a continuous surjection, i.e. s is a continuous function
from X onto Y . Define the map ψ : Cr(Y ) → Cr(X) by ψ(f) = f ◦ s for all
f ∈ Cr(Y ). We show that ψ is a homeomorphism from Cr(Y ) into Cr(X).

First we show ψ is a one-to-one map. Let f, g ∈ Cr(Y ) with f ̸= g such
that ψ(f) ̸= ψ(g). Then, there exists y ∈ Y : f(y) ̸= g(y). Choose some
x ∈ X : s(x) = y. Which means f ◦ s ̸= g ◦ s. Implies that f(s(x)) ̸= g(s(x)) ⇒
f(y) ̸= g(y).

Next, we show that ψ is continuous. Let f ∈ Cr(Y ) and B(g, ri) = {q ∈
Cr(X) : |q(xi) − g(xi)| < ri(xi), xi ∈ Coz(ri)}, where xi ∈ X and ri ∈ r+(X).
Next, for each i, f(s(xi)) ∈ B(g, ri).

Now, consider R(h, li) = {p ∈ Cr(Y ) : |p(s(xi)) − h(s(xi))| < li(xi), xi ∈
Coz(li)}. Clearly f ∈ R(h, l). It follows that ψR(h, li) ⊂ B(g, ri). Since for
each p ∈ R(h, li), it is clear that ψ(p) = p ◦ s ∈ B(g, ri).

Now, we prove that ψ−1 : ψ(Cr(Y )) → Cr(Y ) is continuous. Let ψ(f) =
f ◦ s ∈ ψ(Cr(Y )), f ∈ Cr(Y ). Let G be an open set with ψ−1(f ◦ s) = f ∈ G
such that G(g, ri) = {p ∈ Cr(Y ) : |g(yi)− p(yi)| < ri(yi), yi ∈ Coz(ri)}. Choose
x1, x2, . . . xm such that s(xi) = yi∀i. We have f(s(xi)) ∈ G(g, ri)∀i. Define
an open set H(h, li) = {q ∈ ψ(Cr(Y )) ⊂ Cr(X), ∀i such that |h(xi) − q(xi)| <
li(xi)}. Clearly, f ◦ s ∈ H. Note that ψ−1(H) ⊂ G. To see this, let p ◦ s ∈ H,
where p ∈ Cr(Y ). Implies p(s(xi)) = p(yi). It follows that ψ

−1 is continuous.

Now, we define restriction map. Suppose A is a subset of B, then the
restriction map is defined as : πA : C(B) → C(A) as πA(f) = f|A.

Theorem 4.7. For an arbitrary subspace Y of a space X, the map πY : Cr(X) →
Cr(Y ) is continuous.
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Proof. Let B(f, r) = {g ∈ C(Y ) : |f(y) − g(y)| < r(y), y ∈ coz(r)} be an
open set in Cr(Y ). We need to prove that π−1

Y (B(f, r)) is open in Cr(X).
We have π−1

Y (B(f, r)) = {g ∈ C(X) : |πY (g)(y) − f(y)| < r(y), y ∈ coz(r)}
= {g ∈ C(X) : |g|Y (y)− f(y)| < r(y)} which is open in Cr(X). Hence, the map
πY : Cr(X) → Cr(Y ) is continuous.

Theorem 4.8. The map πY : Cr(X) → Cr(Y ) is one-to-one if and only if Y is
dense in X.

Proof. Suppose Y is dense in X, we will show that πY : Cr(X) → Cr(Y ) is
one-to-one. Let f, g ∈ Cr(X). Then, due to the continuity of these functions
and Ȳ = X, it implies that if f ̸= g then f|Y ̸= g|Y ⇒ πY (f) ̸= πY (g). Hence,
πY is one-to-one.

Conversely, suppose that πY is one-to-one. We will show that Y is dense in
X by contradiction. Assume that Y is not dense in X and let f, g ∈ Cr(X).
Then, f ̸= g does not imply that f|Y ̸= g|Y . Thus, we can have f|Y = g|Y ⇒
πY (f) = πY (g), which is a contradiction to πY being one-to-one. Hence, Y is
dense in X.

Theorem 4.9. For a dense subspace Y of a space X, the map πY : Cr(X) →
Cr(Y ) is an embedding.

Proof. Since the map πY is one-to-one and continuous. Then, we only need to
prove that it is an open map onto πY (Cr(X)). For this let B(f, r) be an open
set in Cr(X).

Now, we will show that πY (B(f, r)) = B(f|Y , r) ∩ πY (Cr(X)). Let h ∈
πY (B(f, r)), then by definition |h(y) − πY (f)(y)| < r(y), y ∈ coz(r) ⇒ |h(y) −
f|Y (y)| < r(y). This implies h ∈ B(f|Y )∩πY (Cr(X)). Therefore, πY (B(f, r)) ⊂
B(f|Y , r) ∩ πY (Cr(X)).

Next, let h ∈ B(fY , r)∩πY (Cr(X)). Then, |h(y)−f|Y (y)| < r(y), y ∈ coz(r)
⇒ |h(y) − πY (f)(y)| < r(y). Therefore, h ∈ πY (B(f, r)) and thus B(f|Y , r) ∩
πY (Cr(X)) ⊂ πY (B(f, r)). Hence, πY is an embedding and πY (Cr(X)) can be
treated as a subspace of Cr(Y ).

Theorem 4.10. For a space X, if Y is a subspace of X and πY : Cr(X) →
Cr(Y ) is defined as πY (f) = f|Y . Then, Cr(Y ) = πY (Cr(X)).

Proof. Since πY (Cr(X)) ⊂ Cr(Y ), we will show that Cr(Y ) ⊂ πY (Cr(X)). So,
for this, let g ∈ Cr(Y ) and B(g, r) be a basic neighborhood of g in Cr(Y ). Define
a function f : X → R as:

f(x) =

{
0, x ∈ X coz(r),

g(y), x ∈ coz(r).

Consequently, f ∈ Cr(X) and πY (f) ∈ B(g, r). Thus, Cr(Y ) ⊂ πY (Cr(X)).
Hence, Cr(Y ) = πY (Cr(X)).
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In the next result, we show that the regular topology on the space C(X,Y )
is strong based on the result that was investigated in [9] as : A topology on
C(X,Y ) is said to be strong if and only if it makes the evaluation map e : C(X,Y )
×X → Y as (f, x) 7→ f(x) continuous.

Theorem 4.11. For a discrete space X and a metric space (Y, d), the regular
topology on C(X,Y ) is strong.

Proof. To prove that the regular topology on C(X,Y ) is strong, it is sufficient
to prove that the evaluation map e : Cr(X,Y )×X → Y defined as (f, x) 7→ f(x)
is continuous.

Given a point (f, x) in Cr(X,Y ) × X and an open set B(f(x), ϵ), ϵ > 0
about the image point e(f, x) = f(x), we wish to find an open set about (f, x)
that e maps into B(f(x), ϵ). Let B(f, r) be an open set in Cr(X,Y ) such that
B(f, r) = {g ∈ C(X,Y ) : d(f(x), g(x)) < r(x), x ∈ coz(r)}. Since coz(r) is
dense in X and X has a discrete topology, then for all x ∈ X, there exists a
neighborhood of x. As a consequence, there exists an open set say U in X such
that B(f, r)×U is open in Cr(X,Y )×X that maps (f, x) to f(x) in Y . Thus,
if (g, a) ∈ B(f, r)× U , then e(g, a) = g(a).

5. Separation axioms

In this section, we are going to discuss about various separation axioms corre-
sponding to the function space Cr(X,Y ) such as Hausdorffness, regularity and
normality.

Theorem 5.1. For a space X, if Y is T0 or T1, then the space Cr(X,Y ) is T0
or T1, respectively.

Proof. Suppose Y is T0 or T1. Then, the space Y X is T0 or T1, respectively in
the Tychonoff topology. Since Cp(X,Y ) is a subspace of Y X , implies Cp(X,Y ) is
T0 or T1. As Cp(X,Y ) ≤ Cr(X,Y ) and hence Cr(X,Y ) is T0 or T1, respectively.

Theorem 5.2. For a space X, if Y is Hausdorff, then the space Cr(X,Y ) is
also Hausdorff.

Proof. Suppose Y is Hausdorff, then the space Y X is Hausdorff in the Tychonoff
topology. Since Cp(X,Y ) is a subspace of Y X , implies Cp(X,Y ) is Hausdorff.
As Cp(X,Y ) ≤ Cr(X,Y ) , hence Cr(X,Y ) is Hausdorff.

Theorem 5.3. For a space X, if Y is a completely regular space, then the space
Cr(X,Y ) is also completely regular.

Proof. Since every uniformizable space is completely regular. However, we can
prove it as : Suppose Y is completely regular, then the space Y X is completely
regular in the Tychonoff topology. Since Cp(X,Y ) is a subspace of Y X , implies
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Cp(X,Y ) is completely regular. As Cp(X,Y ) ≤ Cr(X,Y ), hence Cr(X,Y ) is
completely regular.

Theorem 5.4. For a space X, if Y is a regular space, then the space Cr(X,Y )
is also regular.

Proof. Suppose Y is regular, then the space Y X is regular in the Tychonoff
topology. Since Cp(X,Y ) is a subspace of Y X , implies Cp(X,Y ) is regular. As
Cp(X,Y ) ≤ Cr(X,Y ) and hence Cr(X,Y ) is regular.

Theorem 5.5. For a pseudocompact and almost P -space X and a metric space
(Y, d), the space Cr(X,Y ) is normal.

Proof. Since the space Cr(X,Y ) is metrizable if and only if X is pseudocom-
pact and almost P -space. Also we know that all metrizable spaces are normal
(Theorem 3.20, [13]). Hence, the space Cr(X,Y ) is normal.

Theorem 5.6. For a countable, compactly generated, compact space X, the
space Cr(X) is normal.

Proof. Suppose X is a compactly generated compact space, then Ck(X) =
Cr(X) and thus Cr(X) is closed in RX . Since X is countable, and we know
that RX is normal if and only if X is countable. Thus, we get RX is normal.
However, Cr(X) being closed subset of RX is also normal.

Corollary 5.1. For a discrete space X, the space Cr(X) is normal if and only
if X is countable.

Theorem 5.7. For a pseudocompact and almost P -space X and a metric space
(Y, d), the space Cr(X,Y ) is completely normal.

Proof. Since the space Cr(X,Y ) is metrizable if and only ifX is pseudocompact
and almost P -space. Also, metrizable spaces are completely normal (Chapter
4, [13]). Hence, the space Cr(X,Y ) is completely normal.

Theorem 5.8. For a pseudocompact and almost P -space X, the space Cr(X,Y )
is perfectly normal Hausdorff.

Proof. Since the space Cr(X,Y ) is metrizable if and only ifX is pseudocompact
and almost P -space. As we know that all metrizable spaces are perfectly normal
Hausdorff. Hence, the proof.

Corollary 5.2. For a pseudocompact and almost P -space, the space Cr(X,Y )
is completely normal Hausdorff.

Proof. All perfectly normal Hausdorff spaces are completely normal Hausdorff.
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Theorem 5.9. For Tychonoff spaces X and Y , the space Cr(X,Y ) is regular
Hausdorff and completely Hausdorff.

Proof. Since the space Cr(X,Y ) is a Tychonoff space, so as every Tychonoff
space is regular Hausdorff and completely Hausdorff. Which proves the theorem.

Theorem 5.10. For a space X and a metric space (Y, d), the following are
equivalent:

1. Y is T1 (respectively T0);

2. Cp(X,Y ) is T1 (respectively T0);

3. Ck(X,Y ) is T1 (respectively T0);

4. Cf (X,Y ) is T1 (respectively T0);

5. Cr(X,Y ) is T1 (respectively T0).

Proof. If Y is T0, T1, then Y X with Tychonoff topology is T0, T1, respec-
tively. Since Cp(X,Y ) is a subspace of Y X is T0, T1, respectively. Moreover,
Cp(X,Y ) ≤ Ck(X,Y ) ≤ Cf (X,Y ) ≤ Cr(X,Y ), then Ck(X,Y ), Cf (X,Y ) and
Cr(X,Y ) are T0, T1, respectively.

(2) ⇒ (3) ⇒ (4) ⇒ (5) are immediate.
(5) ⇒ (1) Now, if Cr(X,Y ) is T0 or T1. Since ϕ : Y → Cr(X,Y ) is an

embedding, and therefore Y can be treated as subspace. Consequently, Y is T0,
T1, respectively.

Theorem 5.11. For a space X and a metric space (Y, d), the following are
equivalent:

1. Y is T2 (respectively T3, T3(1/2));

2. Cp(X,Y ) is T2 (respectively T3, T3(1/2));

3. Ck(X,Y ) is T2 (respectively T3, T3(1/2));

4. Cr(X,Y ) is T2 (respectively T3, T3(1/2)).

Proof. If Y is T2 (respectively, T3, T3(1/2)), then Y
X with Tychonoff topology is

T2 (respectively, T3, T3(1/2)). Since Cp(X,Y ) is a subspace of Y X is T2 (respec-
tively, T3, T3(1/2)). Moreover, Cp(X,Y ) ≤ Ck(X,Y ) ≤ Cr(X,Y ), then Ck(X,Y )
and Cr(X,Y ) are T2 (respectively, T3, T3(1/2)).

(2) ⇒ (3) is immediate.
(3) ⇒ (4) Suppose Ck(X,Y ) is T2 (respectively, T3, T3(1/2)). Since Ck(X,Y ) ≤

Cr(X,Y ), then Cr(X,Y ) is T2 (respectively, T3, T3(1/2)).
(4) ⇒ (1) Now, if Cr(X,Y ) is T2 (respectively, T3, T3(1/2)). Since ϕ : Y →

Cr(X,Y ) is an embedding, and therefore Y can be treated as subspace. Conse-
quently, Y is T2 (respectively, T3, T3(1/2)).
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