A note on the p-length of a p-soluble group

Huaquan Wei*

College of Mathematics and Information Science
Guangxi University
Nanning, 530004
China
weihuaquan@163.com

Jiao Li

College of Mathematics and Information Science
Guangxi University
Nanning, 530004
China
782311528@qq.com
Huilong Gu
College of Mathematics and Information Science
Guangxi University
Nanning, 530004
China
1107160072@qq.com

Yangming Li

Department of Mathematics
Guangdong University of Education
Guangzhou, 510310
China
liyangming@gdei.edu.cn
Liying Yang School of Mathematics and Statistics
Nanning Normal University
Nanning, 530299
China
yangliying0308@163.com

Abstract

Suppose that the finite group $G=A B$ is a mutually permutable product of two p-soluble subgroups A and B. By use of several invariant parameters of A and B, we present some bounds of the p-length of G. Some known results are improved.

Keywords: p-soluble, p-length, lower p-series, mutually permutable product.
*. Corresponding author

1. Introduction

All groups considered are finite. Let G be a group, we denote by $\pi(G)$ the set of all prime divisors of $|G|$. Let $p \in \pi(G)$, by G_{p}, we mean a Sylow p-subgroup of G. The other notations and terminologies used in this note are standard, as in $[1,2]$.

The p-length of a p-soluble group is an important invariant parameter. Many scholars have investigated on this invariant parameter, the readers can refer to [3]-[6] for instances. Therefore, the celebrated Hall-Higman theorem has established basic theorem on the p-length of a p-soluble group G, showing that the p-length of G is bounded above by the nilpotent class and the minimal number of generators of G_{p} and the p-rank of G [3].

In general, a product of two p-soluble subgroups need not be p-soluble. However, if the group G is a mutually permutable product of two p-soluble subgroups, then G is still a p-soluble group [7]. Recall that the product $G=A B$ of the subgroups A and B of a group G is called a mutually permutable product of A and B if $A U=U A$ for any subgroup U of B and $B V=V B$ for any subgroup V of $B[7]$. Cossey and Li in [6] investigated the p-length of a mutually permutable product of two p-soluble groups and obtained the following result:

Theorem 1.1 ([6, Theorem 1.1]). Suppose that $G=A B$ is a mutually permutable product of two p-soluble subgroups A and B, where p is a prime in $\pi(G)$. If $l_{p}(A) \leq k$ and $l_{p}(B) \leq k$, then $l_{p}(G) \leq k+1$.

In the note, we continue the study on the p-length of a mutually permutable product of two p-soluble groups. By use of several invariant parameters of A and B, we will improve the above results as follows.

Theorem 1.2. Suppose that $G=A B$ is a mutually permutable product of two p-soluble subgroups A and B, where p is a prime in $\pi(G)$. Then
(1) $l_{p}(G) \leq \max \left\{c\left(A_{p}\right), c\left(B_{p}\right)\right\}$;
(2) $l_{p}(G) \leq \max \left\{d\left(A_{p}\right), d\left(B_{p}\right)\right\}$;
(3) $l_{p}(G) \leq \max \left\{l_{p}(A), l_{p}(B)\right\}+1$;
(4) $l_{p}(G) \leq \max \left\{r_{p}(A), r_{p}(B)\right\}+1$.

Note that, $\max \left\{l_{p}(A), l_{p}(B)\right\} \leq l_{p}(G)$, we get the following corollary:
Corollary 1.1. Suppose that $G=A B$ is a mutually permutable product of two p-soluble subgroups A and B, where p is a prime in $\pi(G)$. Then, either $l_{p}(G)=\max \left\{l_{p}(A), l_{p}(B)\right\}$ or $l_{p}(G)=\max \left\{l_{p}(A), l_{p}(B)\right\}+1$.

2. Preliminaries

Let π be a set of primes and let G be a group. As well-known, $O^{\pi}(G)$ is defined to be the intersection of all normal subgroups N of G such that G / N is a π-group. Hence, $G / O^{\pi}(G)$ is the maximal π-factor group of G ([8, IX, 1.1]). Following [6], we invoke the following definition way of p-length of a p-soluble group.

If p is a prime, the lower p-series of G is

$$
G \geq O^{p^{\prime}}(G) \geq O^{p^{\prime}, p}(G) \geq O^{p^{\prime}, p, p^{\prime}}(G) \geq \cdots
$$

If G is p-soluble, the last term of the lower p-series is 1 and if the lower p-series of G is

$$
G=G_{0} \geq G_{1} \geq \cdots \geq G_{s}=1
$$

then the p-length of G is the number of non-trivial p-groups in the set

$$
\left\{G / G_{1}, G_{1} / G_{2}, \ldots, G_{s-1} / G_{s}\right\}
$$

Lemma 2.1 ([7, Theorem 4.1.15]). Let the group G be the product of the mutually permutable subgroups A and B. If A and B are p-soluble, then G is p-soluble.

Lemma 2.2 ([7, Lemma 4.1.10]). Let the group G be the product of the mutually permutable subgroups A and B. If N is a normal subgroup of G, then G / N is a mutually permutable product of $A N / N$ and $B N / N$.

Lemma 2.3 ([7, Theorem 4.3.11]). Let the non-trivial group G be the product of mutually permutable subgroups A and B. Then $A_{G} B_{G}$ is not trivial.

Lemma 2.4 ([7, Lemma 4.3.3]). Let the group G be the product of the mutually permutable subgroups A and B. Then:
(1) If N is a minimal normal subgroup of G, then $\{A \cap N, B \cap N\} \subseteq\{N, 1\}$.
(2) If N is a minimal normal subgroup of G contained in A and $B \cap N=1$, then $N \leq C_{G}(A)$ or $N \leq C_{G}(B)$. If furthermore N is not cyclic, then $N \leq C_{G}(B)$.

Lemma 2.5 ([7, Corollary 4.1.25]). Let the group G be the product of the mutually permutable subgroups A and B. Then A^{\prime} and B^{\prime} are subnormal in G.

3. Proof of Theorem 1.2

Proof. It is clear that (3) implies (4) by Hall-Higman theorem on the p-length of p-soluble groups. Hence, we only need to prove (1), (2) and (3).

Let G be a counter-example of minimal order. We proceed in steps.
Step 1. G is p-soluble.
This follows from Lemma 2.1.
Step 2. $N=O_{p}(G)$ is unique minimal normal and complemented in G and $N=C_{G}(N)$.

Let N be a minimal normal subgroup of G. We consider $\bar{G}=G / N$ together with $\bar{A}=A N / N$ and $\bar{B}=B N / N$. It is clear that $\bar{A}_{p}=A_{p} N / N$ and $\bar{B}_{\underline{p}}=$ $B_{p} N / N$ is respectively a Sylow p-subgroup of \bar{A} and \bar{B}. By Lemma $2.2, \bar{G}$ is
the mutually product of two p-soluble subgroups \bar{A} and \bar{B}, hence \bar{G} satisfies the hypotheses of the theorem. For (1), the choice of G implies that

$$
l_{p}(\bar{G}) \leq \max \left\{c\left(\bar{A}_{p}\right), c\left(\bar{B}_{p}\right)\right\} \leq \max \left\{c\left(A_{p}\right), c\left(B_{p}\right)\right\}
$$

If N_{1} is minimal normal in G with $N_{1} \neq N$, then we also have

$$
l_{p}\left(G / N_{1}\right) \leq \max \left\{c\left(A_{p}\right), c\left(B_{p}\right)\right\}
$$

It follows that

$$
l_{p}(G) \leq \max \left\{l_{p}(G / N), l_{p}\left(G / N_{1}\right)\right\} \leq \max \left\{c\left(A_{p}\right), c\left(B_{p}\right)\right\},
$$

a contradiction. Therefore N is the unique minimal normal subgroup of G. Moreover, if $N \leq O_{p^{\prime}}(G)$ or $N \leq \Phi(G)$, then

$$
l_{p}(G)=l_{p}(\bar{G}) \leq \max \left\{c\left(A_{p}\right), c\left(B_{p}\right)\right\}
$$

contradicting to the choice of G. Hence, $O_{p^{\prime}}(G)=\Phi(G)=1$ and $N=O_{p}(G)$, Step 1 follows. Similarly, we can prove Step 1 for (2) and (3).
Step 3. $N \leq A \cap B$.
Since $A_{G} B_{G} \neq 1$ by Lemma 2.3, we may assume $N \leq A$ by Step 1 . If $N \not \leq B$, then $N \cap B=1$ by Lemma 2.4(1). If N is cyclic, then $N=C_{G}(N) \in \operatorname{Syl}_{p}(G)$, hence $l_{p}(G)=1$, a contradiction. Thus, N is not cyclic and $N \leq C_{G}(B)$ by Lemma 2.4(2). Furthermore, $B \leq C_{G}(N)=N \leq A$ and so $G=A B=A$, Theorem 1.2 holds by Hall-Higman theorem. This shows $N \leq A \cap B$.
Step 4. If $N \leq M \leq G$, then $O_{p^{\prime}}(M)=1$.
Since $O_{p^{\prime}}(M) \leq C_{M}(N) \leq C_{G}(N)=N$, we have $O_{p^{\prime}}(M)=1$.
Step 5. Finishing the proof.
For convenience, write $\bar{G}=G / N, \bar{A}=A / N$ and $\bar{B}=B / N$. We know that \bar{G} satisfies the hypotheses of the theorem. Now, we prove by distinguishing three invariant parameters.
(1) By Step 2 and 3, $Z\left(A_{p}\right) \leq C_{A}(N)=N$, hence $c\left(\bar{A}_{p}\right) \leq c\left(A_{p}\right)-1$. Similarly, $c\left(\bar{B}_{p}\right) \leq c\left(B_{p}\right)-1$. The minimality of G implies that

$$
l_{p}(\bar{G}) \leq \max \left\{c\left(\bar{A}_{p}\right), c\left(\bar{B}_{p}\right)\right\} \leq \max \left\{c\left(A_{p}\right)-1, c\left(B_{p}\right)-1\right\} .
$$

Thus, $l_{p}(G) \leq \max \left\{c\left(A_{p}\right), c\left(B_{p}\right)\right\}$. This is the final contradiction.
(2) Since N is complemented in $G, N \nsubseteq \Phi\left(A_{p}\right)$, i.e., $N \cap \Phi\left(A_{p}\right)<N$. Now, that A_{p} is a p-group, we have $\Phi\left(\bar{A}_{p}\right)=\Phi\left(A_{p}\right) N / N$ and so

$$
\bar{A}_{p} / \Phi\left(\bar{A}_{p}\right)=\left(A_{p} / N\right) /\left(\Phi\left(A_{p}\right) N / N\right) \cong A_{p} /\left(\Phi\left(A_{p}\right) N\right)
$$

Furthermore,

$$
\left|\bar{A}_{p} / \Phi\left(\bar{A}_{p}\right)\right|=\left|A_{p} /\left(\Phi\left(A_{p}\right) N\right)\right|=\left|A_{p} / \Phi\left(A_{p}\right)\right| /\left|N /\left(N \cap \Phi\left(A_{p}\right)\right)\right|<\left|A_{p} / \Phi\left(A_{p}\right)\right| .
$$

This implies that $d\left(\bar{A}_{p}\right) \leq d\left(A_{p}\right)-1$. Similarly, $d\left(\bar{B}_{p}\right) \leq d\left(B_{p}\right)-1$.

The choice of G implies that

$$
l_{p}(\bar{G}) \leq \max \left\{d\left(\bar{A}_{p}\right), d\left(\bar{B}_{p}\right)\right\} \leq \max \left\{d\left(A_{p}\right)-1, d\left(B_{p}\right)-1\right\} .
$$

Thus, $l_{p}(G) \leq \max \left\{d\left(A_{p}\right), d\left(B_{p}\right)\right\}$. This is the final contradiction.
(3) Firstly, we have
$C l a i m ~ 1 . \max \left\{l_{p}(A), l_{p}(B)\right\}>1$.
Suppose otherwise, $\max \left\{l_{p}(A), l_{p}(B)\right\}=1$. Then
(i) $\bar{A}=\bar{A}_{p} \times \bar{A}_{p^{\prime}}$ and $\bar{B}=\bar{B}_{p} \times \bar{B}_{p^{\prime}}$.

Since $l_{p}(A) \leq 1$, by Step 4 , we can write $A=\left[A_{p}\right] A_{p^{\prime}}$. Since $\left[A_{p}, A_{p^{\prime}}\right] \unlhd$ $\left\langle A_{p}, A_{p^{\prime}}\right\rangle=A$ and $\left[A_{p}, A_{p^{\prime}}\right] \leq[A, A]=A^{\prime}$, we have $\left[A_{p}, A_{p^{\prime}}\right] \unlhd A^{\prime}$. Noticing that A^{\prime} is subnormal in G by Lemma 2.5, $\left[A_{p}, A_{p^{\prime}}\right]$ is a subnormal p-subgroup of G.
Hence, $\left[A_{p}, A_{p^{\prime}}\right] \leq O_{p}(G)=N$ and consequently, $\bar{A}=\bar{A}_{p} \times \bar{A}_{p^{\prime}}$.
Similarly, $\bar{B}=\bar{B}_{p} \times \bar{B}_{p^{\prime}}$.
(ii) Both \bar{A}_{p} and \bar{B}_{p} are abelian groups.

By (i), $(\bar{A})^{\prime}=\left(\bar{A}_{p}\right)^{\prime} \times\left(\bar{B}_{p}\right)^{\prime}$. Note that $(\bar{A})^{\prime}$ is subnormal in \bar{G} by Lemma 2.2 and 2.5, $\left(\bar{A}_{p}\right)^{\prime}$ is a subnormal p-subgroup of \bar{G}. Hence, $\left(\bar{A}_{p}\right)^{\prime} \leq O_{p}(\bar{G})=1$, that is, \bar{A}_{p} is abelian.

Similarly, \bar{B}_{p} is also abelian.
(iii) Finishing the proof of Claim 1.

In view of (ii) and the result of (1), $l_{p}(\bar{G}) \leq \max \left\{c\left(\bar{A}_{p}\right), c\left(\bar{B}_{p}\right)\right\} \leq 1$. Hence, $l_{p}(G) \leq 2$, a contradiction.

Now, we may assume that $\max \left\{l_{p}(A), l_{p}(B)\right\}=l_{p}(A)>1$. Furthermore, we have
Claim 2. $1<O_{p}\left(A^{\prime}\right) \leq N$.
Since $l_{p}(A)>1, A^{\prime} \neq 1$. But $O_{p^{\prime}}\left(A^{\prime}\right) \leq O_{p^{\prime}}(A)$, hence $O_{p^{\prime}}\left(A^{\prime}\right)=1$ by Step 4. Because A^{\prime} is subnormal in $G, O_{p}\left(A^{\prime}\right)$ is subnormal in G. Thereby $1<O_{p}\left(A^{\prime}\right) \leq N$.
Claim 3. Let O be the last non-trivial term of the lower p-series of A. Then $O \leq O_{p}\left(A^{\prime}\right)$.

Since $O_{p^{\prime}}(A)=1, O$ is a p-group and $O \leq A_{p}$. On the other hand, since $l_{p}(A)>1$,

$$
O \leq O^{p^{\prime}, p}(A)=O^{p}\left(O^{p^{\prime}}(A)\right) \leq O^{p}(A) .
$$

Consequently, $O \leq A_{p} A^{\prime} \cap O^{p}(A) A^{\prime}$. Noticing that

$$
A / A^{\prime}=A_{p} A^{\prime} / A^{\prime} \times O^{p}\left(A / A^{\prime}\right)=A_{p} A^{\prime} / A^{\prime} \times O^{p}(A) A^{\prime} / A^{\prime},
$$

we have $A_{p} A^{\prime} \cap O^{p}(A) A^{\prime}=A^{\prime}$. Hence, $O \leq A^{\prime}$ and $O \leq O_{p}\left(A^{\prime}\right)$.
Claim 4. $\max \left\{l_{p}(\bar{A}), l_{p}(\bar{B})\right\} \leq l_{p}(A)-1$.
By Claim 2 and 3, we have $O \leq N$. Clearly, $l_{p}(\bar{A}) \leq l_{p}(A / O) \leq l_{p}(A)-1$. Similarly, $l_{p}(\bar{B}) \leq l_{p}(A)-1$ if $l_{p}(B)=l_{p}(A)$. Of course, $l_{p}(\bar{B}) \leq l_{p}(B) \leq$ $l_{p}(A)-1$ if $l_{p}(B)<l_{p}(A)$. Thus, Claim 4 follows.

Finally, since $l_{p}(\bar{G}) \leq \max \left\{l_{p}(\bar{A}), l_{p}(\bar{B})\right\}+1 \leq l_{p}(A)$, we obtain

$$
l_{p}(G) \leq l_{p}(A)+1=\max \left\{l_{p}(A), l_{p}(B)\right\}+1 .
$$

This is the final contradiction and the proof is complete.

Acknowledgement

Projects supported by NSF of China (12061011) and NSF of Guangxi (2020GXNSFDA238014, 2021GXNSFAA220105).

References

[1] D. Gorenstein, Finite groups, Chelsea Pub. Co., New York, 1968.
[2] B. Huppert, Endiche Gruppen I, Springer-Verlag, New York, 1967.
[3] P. Hall, G. Higman, On the p-length of p-soluble groups and reduction theorems for Burnsid's problem, Proc. Lond Math. Soc., 3 (1956), 1-42.
[4] G. Qian, Y. Wang, On the conjugate class sizes and character degrees of finite groups, J. Algebra Appl., 13 (2014), 1-8.
[5] J. Cossey, Y. Li, On the structrue of a mutually permutable product of finite groups, Acta Math. Hungar., 154 (2018), 525-529.
[6] J. Cossey, Y. Li, On the p-length of the mutually permutable product of two p-soluble groups, Arch. Math., 110 (2018), 533-537.
[7] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of finite groups, Walter de Gruyter, Berlin-New York, 2010.
[8] B. Huppert, N. Blackburn, Finite group II, Springer-Verlag, Berlin-Heidelberg-New York, 1982.

Accepted: Aug 3, 2020

