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A note on the p-length of a p-soluble group
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Abstract. Suppose that the finite group G = AB is a mutually permutable product
of two p-soluble subgroups A and B. By use of several invariant parameters of A and
B, we present some bounds of the p-length of G. Some known results are improved.
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1. Introduction

All groups considered are finite. Let G be a group, we denote by π(G) the set
of all prime divisors of |G|. Let p ∈ π(G), by Gp, we mean a Sylow p-subgroup
of G. The other notations and terminologies used in this note are standard, as
in [1, 2].

The p-length of a p-soluble group is an important invariant parameter. Many
scholars have investigated on this invariant parameter, the readers can refer
to [3]-[6] for instances. Therefore, the celebrated Hall-Higman theorem has
established basic theorem on the p-length of a p-soluble group G, showing that
the p-length of G is bounded above by the nilpotent class and the minimal
number of generators of Gp and the p-rank of G [3].

In general, a product of two p-soluble subgroups need not be p-soluble. How-
ever, if the groupG is a mutually permutable product of two p-soluble subgroups,
then G is still a p-soluble group [7]. Recall that the product G = AB of the
subgroups A and B of a group G is called a mutually permutable product of A
and B if AU = UA for any subgroup U of B and BV = V B for any subgroup V
of B [7]. Cossey and Li in [6] investigated the p-length of a mutually permutable
product of two p-soluble groups and obtained the following result:

Theorem 1.1 ([6, Theorem 1.1]). Suppose that G = AB is a mutually per-
mutable product of two p-soluble subgroups A and B, where p is a prime in
π(G). If lp(A) ≤ k and lp(B) ≤ k, then lp(G) ≤ k + 1.

In the note, we continue the study on the p-length of a mutually permutable
product of two p-soluble groups. By use of several invariant parameters of A
and B, we will improve the above results as follows.

Theorem 1.2. Suppose that G = AB is a mutually permutable product of two
p-soluble subgroups A and B, where p is a prime in π(G). Then

(1) lp(G) ≤ max{c(Ap), c(Bp)};
(2) lp(G) ≤ max{d(Ap), d(Bp)};
(3) lp(G) ≤ max{lp(A), lp(B)}+ 1;
(4) lp(G) ≤ max{rp(A), rp(B)}+ 1.

Note that, max{lp(A), lp(B)} ≤ lp(G), we get the following corollary:

Corollary 1.1. Suppose that G = AB is a mutually permutable product of
two p-soluble subgroups A and B, where p is a prime in π(G). Then, either
lp(G) = max{lp(A), lp(B)} or lp(G) = max{lp(A), lp(B)}+ 1.

2. Preliminaries

Let π be a set of primes and letG be a group. As well-known, Oπ(G) is defined to
be the intersection of all normal subgroups N of G such that G/N is a π-group.
Hence, G/Oπ(G) is the maximal π-factor group of G ([8, IX, 1.1]). Following
[6], we invoke the following definition way of p-length of a p-soluble group.
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If p is a prime, the lower p-series of G is

G ≥ Op′(G) ≥ Op′,p(G) ≥ Op′,p,p′(G) ≥ · · · .

If G is p-soluble, the last term of the lower p-series is 1 and if the lower p-series
of G is

G = G0 ≥ G1 ≥ · · · ≥ Gs = 1,

then the p-length of G is the number of non-trivial p-groups in the set

{G/G1, G1/G2, . . . , Gs−1/Gs}.

Lemma 2.1 ([7, Theorem 4.1.15]). Let the group G be the product of the mu-
tually permutable subgroups A and B. If A and B are p-soluble, then G is
p-soluble.

Lemma 2.2 ([7, Lemma 4.1.10]). Let the group G be the product of the mutually
permutable subgroups A and B. If N is a normal subgroup of G, then G/N is
a mutually permutable product of AN/N and BN/N .

Lemma 2.3 ([7, Theorem 4.3.11]). Let the non-trivial group G be the product
of mutually permutable subgroups A and B. Then AGBG is not trivial.

Lemma 2.4 ([7, Lemma 4.3.3]). Let the group G be the product of the mutually
permutable subgroups A and B. Then:

(1) If N is a minimal normal subgroup of G, then {A ∩N,B ∩N} ⊆ {N, 1}.

(2) If N is a minimal normal subgroup of G contained in A and B ∩N = 1,
then N ≤ CG(A) or N ≤ CG(B). If furthermore N is not cyclic, then
N ≤ CG(B).

Lemma 2.5 ([7, Corollary 4.1.25]). Let the group G be the product of the mu-
tually permutable subgroups A and B. Then A′ and B′ are subnormal in G.

3. Proof of Theorem 1.2

Proof. It is clear that (3) implies (4) by Hall-Higman theorem on the p-length
of p-soluble groups. Hence, we only need to prove (1), (2) and (3).

Let G be a counter-example of minimal order. We proceed in steps.
Step 1. G is p-soluble.

This follows from Lemma 2.1.
Step 2. N = Op(G) is unique minimal normal and complemented in G and
N = CG(N).

Let N be a minimal normal subgroup of G. We consider G = G/N together
with A = AN/N and B = BN/N . It is clear that Ap = ApN/N and Bp =
BpN/N is respectively a Sylow p-subgroup of A and B. By Lemma 2.2, G is
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the mutually product of two p-soluble subgroups A and B, hence G satisfies the
hypotheses of the theorem. For (1), the choice of G implies that

lp(G) ≤ max{c(Ap), c(Bp)} ≤ max{c(Ap), c(Bp)}.

If N1 is minimal normal in G with N1 ̸= N , then we also have

lp(G/N1) ≤ max{c(Ap), c(Bp)}.

It follows that

lp(G) ≤ max{lp(G/N), lp(G/N1)} ≤ max{c(Ap), c(Bp)},

a contradiction. Therefore N is the unique minimal normal subgroup of G.
Moreover, if N ≤ Op′(G) or N ≤ Φ(G), then

lp(G) = lp(G) ≤ max{c(Ap), c(Bp)},

contradicting to the choice of G. Hence, Op′(G) = Φ(G) = 1 and N = Op(G),
Step 1 follows. Similarly, we can prove Step 1 for (2) and (3).
Step 3. N ≤ A ∩B.

Since AGBG ̸= 1 by Lemma 2.3, we may assume N ≤ A by Step 1. If N ̸≤ B,
then N ∩ B = 1 by Lemma 2.4(1). If N is cyclic, then N = CG(N) ∈ Sylp(G),
hence lp(G) = 1, a contradiction. Thus, N is not cyclic and N ≤ CG(B) by
Lemma 2.4(2). Furthermore, B ≤ CG(N) = N ≤ A and so G = AB = A,
Theorem 1.2 holds by Hall-Higman theorem. This shows N ≤ A ∩B.
Step 4. If N ≤ M ≤ G, then Op′(M) = 1.

Since Op′(M) ≤ CM (N) ≤ CG(N) = N , we have Op′(M) = 1.
Step 5. Finishing the proof.

For convenience, write G = G/N , A = A/N and B = B/N . We know that
G satisfies the hypotheses of the theorem. Now, we prove by distinguishing
three invariant parameters.

(1) By Step 2 and 3, Z(Ap) ≤ CA(N) = N , hence c(Ap) ≤ c(Ap) − 1.
Similarly, c(Bp) ≤ c(Bp)− 1. The minimality of G implies that

lp(G) ≤ max{c(Ap), c(Bp)} ≤ max{c(Ap)− 1, c(Bp)− 1}.

Thus, lp(G) ≤ max{c(Ap), c(Bp)}. This is the final contradiction.
(2) Since N is complemented in G, N ̸≤ Φ(Ap), i.e., N ∩ Φ(Ap) < N . Now,

that Ap is a p-group, we have Φ(Ap) = Φ(Ap)N/N and so

Ap/Φ(Ap) = (Ap/N)/(Φ(Ap)N/N) ∼= Ap/(Φ(Ap)N).

Furthermore,

|Ap/Φ(Ap)| = |Ap/(Φ(Ap)N)| = |Ap/Φ(Ap)|/|N/(N ∩ Φ(Ap))| < |Ap/Φ(Ap)|.

This implies that d(Ap) ≤ d(Ap)− 1. Similarly, d(Bp) ≤ d(Bp)− 1.
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The choice of G implies that

lp(G) ≤ max{d(Ap), d(Bp)} ≤ max{d(Ap)− 1, d(Bp)− 1}.

Thus, lp(G) ≤ max{d(Ap), d(Bp)}. This is the final contradiction.
(3) Firstly, we have

Claim 1. max{lp(A), lp(B)} > 1.
Suppose otherwise, max{lp(A), lp(B)} = 1. Then
(i) A = Ap ×Ap′ and B = Bp ×Bp′ .
Since lp(A) ≤ 1, by Step 4, we can write A = [Ap]Ap′ . Since [Ap, Ap′ ] ⊴

⟨Ap, Ap′⟩ = A and [Ap, Ap′ ] ≤ [A,A] = A′, we have [Ap, Ap′ ]⊴A′. Noticing that
A′ is subnormal in G by Lemma 2.5, [Ap, Ap′ ] is a subnormal p-subgroup of G.
Hence, [Ap, Ap′ ] ≤ Op(G) = N and consequently, A = Ap ×Ap′ .

Similarly, B = Bp ×Bp′ .
(ii) Both Ap and Bp are abelian groups.
By (i), (A)′ = (Ap)

′×(Bp)
′. Note that (A)′ is subnormal in G by Lemma 2.2

and 2.5, (Ap)
′ is a subnormal p-subgroup of G. Hence, (Ap)

′ ≤ Op(G) = 1, that
is, Ap is abelian.

Similarly, Bp is also abelian.
(iii) Finishing the proof of Claim 1.
In view of (ii) and the result of (1), lp(G) ≤ max{c(Ap), c(Bp)} ≤ 1. Hence,

lp(G) ≤ 2, a contradiction.
Now, we may assume that max{lp(A), lp(B)} = lp(A) > 1. Furthermore, we

have
Claim 2. 1 < Op(A

′) ≤ N .
Since lp(A) > 1, A′ ̸= 1. But Op′(A

′) ≤ Op′(A), hence Op′(A
′) = 1 by

Step 4. Because A′ is subnormal in G, Op(A
′) is subnormal in G. Thereby

1 < Op(A
′) ≤ N .

Claim 3. Let O be the last non-trivial term of the lower p-series of A. Then
O ≤ Op(A

′).
Since Op′(A) = 1, O is a p-group and O ≤ Ap. On the other hand, since

lp(A) > 1,

O ≤ Op′,p(A) = Op(Op′(A)) ≤ Op(A).

Consequently, O ≤ ApA
′ ∩Op(A)A′. Noticing that

A/A′ = ApA
′/A′ ×Op(A/A′) = ApA

′/A′ ×Op(A)A′/A′,

we have ApA
′ ∩Op(A)A′ = A′. Hence, O ≤ A′ and O ≤ Op(A

′).
Claim 4. max{lp(A), lp(B)} ≤ lp(A)− 1.

By Claim 2 and 3, we have O ≤ N . Clearly, lp(A) ≤ lp(A/O) ≤ lp(A) − 1.
Similarly, lp(B) ≤ lp(A) − 1 if lp(B) = lp(A). Of course, lp(B) ≤ lp(B) ≤
lp(A)− 1 if lp(B) < lp(A). Thus, Claim 4 follows.

Finally, since lp(G) ≤ max{lp(A), lp(B)}+ 1 ≤ lp(A), we obtain

lp(G) ≤ lp(A) + 1 = max{lp(A), lp(B)}+ 1.

This is the final contradiction and the proof is complete.
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