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Abstract. The split extension G = 5%:((3 x 2Ly(25)):23) is a maximal subgroup
of the sporadic Monster group M of order 58500000 = 2°.32.56.13. The technique of
Fischer-Clifford matrices has been applied to numerous examples of split and non-split
extensions where the kernels are either elementary abelian 2 or 3-groups but very few
examples exist where the kernel is an elementary abelian 5-group. In this paper, the
Fischer-Clifford matrices technique is applied to the group G = 5%:((3 x 2L5(25)):22),

where the kernel 5% of the extension is an elementary abelian 5-group.
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1. Introduction

The sporadic Monster group M has a conjugacy class of maximal 5-local sub-
groups of the form 5%:((3 x 2L5(25)):22) [6]. Obtaining a permutation represen-
tation on 625 points for G=5%:((3x2L2(25)):22) from the online ATLAS [23], the
group G is generated by using the algebra computational system MAGMA [5].
The normal subgroup N = 5% and subgroup G = (3 x 2L5(25)):22 = SL(25):53
of G are constructed by MAGMA as permutation groups on 625 points. Using
the MAGMA commands, "M:=GModule(G, N); and "M:Maximal;”, the group
G =< g1,g2 > is constructed as a matrix group of degree 4 over GF(5) with
generators g1 and go such that o(g1) = 2, o(g2) = 39 and o(g192) = 8 (see,
Figure 1).

1010 0100
lo100 41 4 2
N=100 401’2 o001

02 0 4 34 20

Figure 1: Generators of G

Considering N = Vj(5) as the vector space of dimension 4 over GF(5),
on which the matrix group G =< g1, g2 > acts absolutely irreducibly, it was
found with aid of GAP [8] that G has two orbits on N of lengths 1 and 624
with corresponding point stabilizers P; = G and P, = 52:S3. By Brauer’s
theorem (see Theorem 5.1.5 in [12]), the action of G on Irr(NNV) also has two
orbits of lengths 1 and 624 with corresponding inertia factor groups Hy = G
and Hy = 5%:S3. It is worth noting that the vector space N and its dual
space N* =Irr(N) are isomorphic as 4-dimensional modules over GF'(5) for G.
Having obtained G as a 4-dimensional matrix group over the finite field GF(5)
and treating N as the vector space V4(5) we can apply Fischer-Clifford theory
(see, for example, [7] and [14]) to the split extension G to construct its ordinary
character table. The Fischer-Clifford matrices technique is powerful if the kernel
of a suitable split extension group is elementary abelian as it is the case with the
group G. A GAP routine found in [21] which is based on coset analysis technique
found in [11] and [14] is used to compute the conjugacy classes of G. This method
is very efficient when the kernel of a split extension is an elementary-abelian p-
group. The importance of computing conjugacy classes of G from a coset Ng
is that the centralizer orders of these classes play a role in the computation
of the entries of a Fischer-Clifford matrix M (g), where g is a conjugacy class
representative of G. In the paper [10], Fischer-Clifford technique was applied to
a non-split extension G = 5% L3(5), which is a maximal subgroup of the Lyons
sporadic simple group Ly. Besides our group G , G is one of the few extension
groups in the literature with the kernel being an elementary abelian 5-group,
where the method of Fischer-Clifford matrices has been applied to.

In the sections that follow, an outline of the Fischer-Clifford matrices tech-
nique is going to be given. The conjugacy classes and Fischer-Clifford matrices
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of G are also computed using appropriate GAP routines. In addition, the or-
dinary character table of G is constructed and the fusion of conjugacy classes
of G into those of the Monster M is determined. For an update on recent de-
velopments around Fischer-Clifford matrices, interested readers are referred to
the papers [1], [2], [15] [16], [17], [18] and [19]. Most of the computations in
this paper are carried out with computer algebra systems MAGMA and GAP.
Notation from the ATLAS [6] is mostly followed.

2. Theory of Fischer-Clifford matrices

Since the ordinary character table of G = 5%:((3 x 2Ly(25)):22) will be con-
structed by the technique of Fischer-Clifford matrices, an outline of this tech-
nique is given for a split extension G = N:G, where N is an elementary abelian
p-group, see for example, [14] or [22].

Let G = N:G be a split extension of N by G, where N is an elementary
abelian p-group. The subgroup H = N:H = {x €GO = 9} of G is defined as
the inertia group of § € Irr(N) in G, with inertia factor H = H/N. Note that a
lifting g € G of g € G into G under the natural homomorphism 7:G — G is just
g itself, since G < G. Let X (g) = {x1, 22, , Ty} be a set of representatives
of the conjugacy classes of G from the coset Ng whose images under the natural
homomorphism 7 are in the conjugacy class [g] of G where z; = g. Now let
61 = 1,02, ,0; be representatives of the orbits of G on Irr(NN). Since N is
elementary abelian, we have by Mackey’s Theorem (see Theorem 5.1.15 in [12])
that each 0;, 1 < i < t, extends to a v; € Irr(H;), i.e. ¥; |y = 0;. By Theorem
5.1.7, Remark 5.1.8 and Theorem 5.1.19 in [12], an ordinary irreducible character
x = ()Y of G consists of ¥ € Irr(H;) which is induced to G, where N is
contained in the kernel ker(3) of a lifting 3 € Irr(H;) of 8 € Irr(H;) into H;.
Therefore,

t t

Ier(G) = | J{(¢iB)C|B € Ire(TT;), N € kex(B)} = [ J{(:B)7|3 € Trx(Hy)}.

i=1 i=1

Hence, the set Irr(G) are partitioned into ¢ blocks B; with each block B; corre-
sponding to an inertia subgroup H; of G. Observe that |Irr(G)| = |Irr(Hy)| +
o+ [Irr(Hy)|.

We take H1= G and H; = G. Choose y1,¥s, .., Y, to be representatives of
the conjugacy classes [yx|, k = 1,...,r, of H; that fuse to [g] in G. We define
R(g) = {(,ye)|1 < i < t,H;N[g] # 0,1 < k < r} and we observe that yy
runs over representatives of the conjugacy classes [yx| of H; which fuse into [g]
of G. We define y;, € H; such that y;, ranges over all representatives of the
conjugacy classes of H; which map to y, under the homomorphism H; — H;
whose kernel is V.
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Lemma 2.1. With notation as above,

WiB) () = Y [Z”C %(yzk)] B(yr)-

yr:(4,yx) ER(g

Proof. See [22]. O

Then, the Fischer-Clifford matrix M(g) = (agi yk)) is defined as (a{i yk)) =

0 |‘CC (z;)l m wl(ylk) ), with columns indexed by X (g) and rows indexed by R(g)

and Where Zl is the summation over all [ for which y;, ~ z; in G. So, we can
write Lemma 2.1 as

@B (z) = > al, B

Yr:(1,yx) ER(9)

The Fischer-Clifford M (g) (see, Figure 2) is partitioned row-wise into blocks
M;(g), where each block corresponds to an inertia group H;. We write |C(z;)|,
for each z; € X(g), at the top of the columns of M(g) and at the bottom we

|N| ‘\chg))” On the left of each row we

write m; € N, where we define m; =

write |Cp, (yk)|, where the conjugacy classes [yi], & = 1,2,...,7, of an inertia
factor H; fuse into the conjugacy class [g] of G.

|Cz(z1)] |Cq(z2)| -+ |Cq(zc(q))l
|Ca(g)l ay,g) atrg a(i’),
Cral | abyy  ahyy o aih,
ICry (y2)| |z Aoy agf]y)z)
1 2 c(9)
M(g)=Cr @Il 0y GG Ay
9 |C ( )| 1 2 - c(g)
H;\Y2 Ai,y) Ai,y) a(i,yz)
Co)l | alyy @y o il
ICr (w2)| | At ) oy aft(i;)
m ma e Me(g)

Figure 2: The Fischer-Clifford Matrix M (g)
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In practice it is difficult to compute the elements y;, or the ordinary ir-
reducible character tables of the inertia groups H;, since the sets Irr(H;) of
ordinary irreducible characters of the H;’s are in general much larger and more
complicated to compute than the one for G. Instead of using the above for-
mal definition of a Fischer-Clifford matrix M(g), the arithmetical properties of
M (g) found in [14] are used to compute the entries of M(g). The matrix M(g)
is square where the number of rows is equal to the number of conjugacy classes
of the inertia factors H;’s, 1 < ¢ < ¢, which fuse into the class [¢g] in G and the
number of columns is equal to the number c(g) of conjugacy classes of G which
is obtained from the coset Ng. Then, the partial character table of G on the
classes {71, Ta, "+, Tc(g)} is given by

C1(g) Mi(g)
Ca2(g) Ma(g)

Cilg) Milg)

with each block M;(g) of M(g) (see Figure 2) corresponding to an inertia group
H; and C;(g) consists of the columns of the ordinary character table of H; which
correspond to the conjugacy classes of H; that fuse into the class [g] of G. We
obtain the characters of G by multiplying the relevant columns of the ordinary
irreducible characters of H; by the rows of M (g).

3. The conjugacy classes of G

In this section, a GAP routine (labelled as Programme A in [21]), which is
based on the method of coset analysis (see [11], [13] or [14]), is used to compute
the conjugacy classes of G. This GAP routine is written for a split extension
S = p™:Q of an elementary abelian p-group p™ by a linear matrix group @ of
dimension n over the field GF(p). The group p" (regarded as a vector space
Vi (p) of degree n over the finite field GF(p) (p is a prime)) is a @-module where
upon the matrix group ) acts naturally. A coset p"q is considered for each
conjugacy class [g] representative ¢ in @ and then consider the action of the
stabilizer C, = p™:Cg(q) = {x € S|z(p™q)z~! = p"q} of the coset p"q in S by
conjugation on the elements of p"q. Since Cy is split extension we will first act
p™ on p"q to form k orbits Q1, Qa, ..., Qk, with each orbit @; containing |p"|/k
elements. Under the action of the centralizer Cg(q) of ¢ in @, f; of the k orbits
Q; fuse together to form an orbit O;. The orbit O; contains the elements from
the coset p"q which belong to a conjugacy class [z;] of S with class representative
xj. Note that ) f; = k. The order of the centralizer |Cg(x;)| of the class
klCq(9)]
i

representative x; is then computed by |Cg(x;)| = . In this manner, the

conjugacy classes of S, with class representatives X (q) = {1, 22, ..., 2o} (see
Section 2) coming from the coset p"q, are obtained.
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Using similar techniques as in [14], the permutation character x(G|5*) of
G = (3 x 2L(25)):22 on the conjugacy classes of N = 5% is computed as

2
X(GI5*) = > If = laa + 13cd + 25b + 26dd + 52bbdejkimno.
=1

Note that x(G|5%) is the sum of the identity characters I]C;';, i = 1,2, of the
point stabilizers P; of the orbits of G on N, which are induced to G. Also,
x(G|5%) is written in terms of the ordinary irreducible characters of G. For an
element g in a conjugacy class [g] of G, it is required that x(G|5%)(g) = 57, for
some n € {0,1,2,3,4}. The value x(G|5%)(g) gives the number of elements of
N which is fixed by an element g € G and it is also the number of orbits of N
on a coset Ng.

In Section 1, the group G = (3 x 2L5(25)):29 =< g1, g2 > was computed as a
4-dimensional matrix group over the field GF(5) and with N = 5% represented as
a vector space V(5) of dimension 4 over GF'(5), we now proceed to compute the
conjugacy classes for G as described above. The permutation character x(G|5%)
is evaluated on each class representative g € G to determine the number k£ =
x(G|5%)(g) of orbits of N on Ng. Programme A in [21] written in GAP is then
used to calculate the number f; of these k orbits which come together as an orbit

O; under the action of Cg(g). With the values of k and the f;’s obtained, the
order of the centralizer |C#(d;g)| = Hc%j(g)' of a class representative d;g € O;,
where d; € N and g € G, is computed (see Table 1). Altogether 70 conjugacy
classes are obtained for G. Using the GAP routine, Programme B in [21],
which is based on Theorem 2.7 and Remark 2.8 in [14], the order o(d;g) of a
representative d;jg in the orbit Oj, is computed. Let (d; )°9) =we N. Ifw=
1n, then o(d;g) = o(g). Otherwise for w # 15 we have o(d;g) = 50(g), since N
is an elementary abelian 5-group. Hence the order for each class representative
djg in a conjugacy class [d;g] of G coming from a coset Ng is determined and
is found in Table 1. From Programme A and Programme B in [21] the p-power

maps, p a prime, are computed for the elements in each conjugacy class [d;g]

of G and are listed in Table 1. The values of the parameter, m; = Ji LN|, which
are useful in determining the entries of a Fischer-Clifford matrix M(g) are also
listed in Table 1. We identify d;g with x; used in Section 2 and in the beginning
of Section 3.
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Table 1: The Conjugacy Classes of G

lglc| k| fj|mg|  d; w  |[djglg||Cald;g)l 2 3 5 13— M
1A (625 1 | 1 {(0,0,0,0){(0,0,0,0)] 1A [58500000 1A

6241624/(0,0,0,1)(0,0,0,1)| 54 | 93750 1A | 5B
54 | 1| 11625/(0,0,0,0)/(0,0,0,0)| 24 | 93600 |14 2B
3B 25| 1 25/(0,0,0,0)((0,0,0,0)] 2B | 6000 |14 2B

24 [600/(0,0,0,1)[(1,2,3,2)| 104 | 250 |54 2B |10E
34 | 1] 11625/(0,0,0,0)(0,0,0,0)] 34 | 46800 14 3B
3B | 1| 1625/(0,0,0,0)(0,0,0,0) 3B | 144 14 3C
3C [25[ 1 1251(0,0,0,0)/(0,0,0,0) 3C | 1800 14 3C

24 [600((0,1,2,2)|(1,2,4,4)| 154 | 75 5A3C  |15D
4A |11 625(0,0,0,0)/(0,0,0,0) 44 | 144 |24 iD
4B | 1| 1625/(0,0,0,0)(0,0,0,0) 4B | 240 |24 iD
54 [25] 1 125(0,0,0,0)/(0,0,0,0) 5B | 7500 14 | 5B

12(300((0,0,2,4)(0,0,0,0)| 5C | 625 1A | 5B

12300/(0, 1,0,0[(0,0,0,0)| 5D | 625 14 | 5B
5B 25| 1 125(0,0,0,0)/(0,0,0,0) 5E | 7500 1A |54

6 [150/(0,0,0,4)[(0,0,0,0)| 5F | 1250 1A | 5B

6 [150/(0,0,0,2)(0,0,0,0)| 5G | 1250 14 | 5B

6 [150/(0,1,0,0)|(0,0,0,0)| 5H | 1250 1A | 5B

6 [150/(0,1,0,3)(0,0,0,0)| 5I | 1250 14 | 5B
64 | 1|1 625/(0,0,0,0(0,0,0,0)| 64 | 46800 |34 24 6B
6B | 1|1 1625/(0,0,0,0)(0,0,0,0) 6B | 72 |3B 24 6F
6C | 1|1 1625/(0,0,0,0)(0,0,0,0)] 6C | 144 |3C 24 6F
6D | 1| 1 [625/(0,0,0,0)[(0,0,0,0) 6D | 12 |3B 2B 6F
84 [ 1] 11625(0,0,0,0)[(0,0,0,0) 8A | 72 |4B o
8B [ 1] 1625/(0,0,0,0)[(0,0,0,0)] 8B | 8 |4B 8F
10A| 1 | 1 [625/(0,0,0,0)((0,0,0,0)| 10B 300 5B 2A 10D
10B] 1| 1[625/(0,0,0,0)[(0,0,0,0) 10C | 300 [5E 24 |10B
10C] 5 | 1 [125/(0,0,0,0)((0,0,0,0) 10D | 100 |5E 2B |10B

2 [250/(0,0,0,1)|(0,0,0,0)| 10E | 50 |5H 2B |10E

2 [250/(0,0,0,2)/(0,0,0,0 10F | 50 |51 2B |10E
10D| 5 | 1 [125/(0,0,0,0)((0,0,0,0)| 10G | 100 |5E 2B |10B

2 [250[(0,0,2,2)[(0,0,0,0) 105 | 50 |5¢ 2B |10E

2 250/(0,0,0,3)/(0,0,0,0| 10I | 50 |5F 2B |10E
124] 1 [ 1 [625(0,0,0,0)[(0,0,0,0) 124 | 72 |64 44 127
12B| 1| 1 [625/(0,0,0,0[(0,0,0,0)| 12B | 72 |64 4B 12F
1201 1| 1 [625/(0,0,0,0)((0,0,0,0)] 12C | 72 |6C 4B 127
12D 1 [ 1 [625/(0,0,0,0)[(0,0,0,0) 12D | 72 |6C 4B 127
12E| 1 | 1 [625/(0,0,0,0)[(0,0,0,0) 12E | 12 |68 4B 127
134 1| 1 [625/(0,0,0,0)/(0,0,0,0)] 134 | 78 1A 138
13B] 1| 1[625/(0,0,0,0)[(0,0,0,0)] 135 | 78 14[13B
13C] 1| 1[625/(0,0,0,0)[(0,0,0,0)] 13C | 78 14[13B
154] 1| 1 [625/(0,0,0,0)/(0,0,0,0)| 158 | 150 5B3A | 150
15B] 1| 1 [625/(0,0,0,0)/(0,0,0,0)| 15C | 150 5E3A | 158
204] 1| 1 1625/(0,0,0,0/(0,0,0,0)| 204 | 20 [10B 44 |20E
20B| 1| 1 1625/(0,0,0,0(0,0,0,0)| 20B | 20 [10B 44 |20E
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Table 1. The Conjugacy Classes of G (continued)

lglc |kfiimi|  d; w  |diglg|Caldig)l] 2 3 5 13— M
244 [1]1]625/(0,0,0,0/(0,0,0,0)| 244 | 72 |12B 8B 12F
24B1]1[625(0,0,0,0)[(0,0,0,0) 24B | 72 |12B 8B 24]
24 [1/1]625/(0,0,0,0(0,0,0,0)| 24C | 72 [12D 8B 24]
24D|1]1/625/(0,0,0,0(0,0,0,0)| 24D | 72 [12D 8B 247
24E[1]1[625(0,0,0,0[(0,0,0,0) 24E | 72 |12C 8B 24.]
24F[1]1]625/(0,0,0,0/(0,0,0,0)| 24F | 72 |12C 8B 24.]
24G [1/1]625/(0,0,0,0(0,0,0,0)| 24G | 72 |12E 8B 24]
24H(1]1/625/(0,0,0,0/(0,0,0,0)| 24H | 72 |12E 8B 247
264[1]1625/(0,0,0,0[(0,0,0,0)| 264 | 78 |13C 24268
2651/1]625/(0,0,0,0)[(0,0,0,0)| 26B | 78 |134 24268
26C [1/1]625/(0,0,0,0)[(0,0,0,0)| 26C | 78 |13B 24268
304[1]1625((0,0,0,0)/(0,0,0,0) 304 | 150 |15A10B6A |30A
30B(1]1(625/(0,0,0,0)[(0,0,0,0)| 308 | 150 |15B10C6A |30D
394 1/1]625/(0,0,0,0)[(0,0,0,0)| 394 | 78 13C 3A4]39C
30511]625/(0,0,0,0)[(0,0,0,0)| 39B | 78 13C 34[39D
39C1]11625/(0,0,0,0[(0,0,0,0) 39C | 78 134 34]39C
39D[1]11625/(0,0,0,0[(0,0,0,0)[ 39D | 78 134 3439D
39E11]625/(0,0,0,0)[(0,0,0,0)| 39E | 78 133 3A4]39C
39F [1/1]625/(0,0,0,0)[(0,0,0,0)| 39F | 78 138 3A439D
78A1|1625/(0,0,0,0)|(0,0,0,0)| 7T8A 78 39E 26C  6A|78B
78B]1|1|625((0,0,0,0)((0,0,0,0)| 78B 78 39F 26C  6A|78C
78C1/11625](0,0,0,0)[(0,0,0,0) 78C | 78 394264  6A|78B
78D|1]1(625/(0,0,0,0)[(0,0,0,0)| 78D | 78 |39B 264  6A|78C
78E[1]1625/(0,0,0,0)[(0,0,0,0)| 78E | 78 |39C 26B 64| 8B
78F|1|1625((0,0,0,0)((0,0,0,0)| 7T8F 78 39D 26B  6A|78C

4. Inertia factor groups of G

We have already seen in the Introduction of this paper, that the orbit stabilizers
(the so-called inertia factors) of the action of G on Irr(N) are two groups of the
form H; = G and Hy = 52:S5. The inertia factor Hy =< oy, as > is generated
from elements «; € 2B and ay € 10C (see Figure 3) in the conjugacy classes
2B and 10C of G.

The fusion maps of the conjugacy classes of Hy into G are shown in Table 2
and will be used in the construction of the Fischer-Clifford matrices and ordinary
character table of G.
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1000 1000
(o100 |43 24
MTT 120400 204 0

020 4 431 2

Figure 3: Generators of Ho

Table 2: The fusion of Hsy into G

(A, — [9]3x2L0(25)):25 | [P — [9](3x205(25)):25
14 1A 5FE 5B

2A 2B 5F 5B

3A 3C 10A 10C

5A 5A 10B 10D

5B 5A 10C 10C

5C 5B 10D 10D

5D 5B

5. The Fischer-matrices of G

In this section, the Fischer-Clifford matrices of the group G are going to be
obtained by using a GAP routine, Programme D in [3] and [4]. This routine
gives a possible candidate for a Fischer-Clifford matrix M (g) and then the prop-
erties of Fischer-Clifford matrices (see [2], [14]) are used to rearrange the rows
and columns in order to get the unique matrix M(g) corresponding to a class
representative g € GG. A brief outline of the theory behind the development of
Programme D, as found in [9] and [14], is given first.

We restrict our discussion to a split extension S = p™:Q, with p” an elemen-
tary abelian p-group. For a class representative ¢ € (), it can be shown that
the map ¢g:p" — p", defined by ¢,(7) = ngn ¢!, is an endomorphism of
p". The image I = Im(¢,) and kernel ker(¢,) are Cy-sub-modules of p", where
Cq = p":Cq(q) is the stabilizer of the coset p"gq. The actions of p™ by conjuga-
tion on p”q and that of I by left multiplication result in the same number k of
orbits. It follows that the action of C; on the k orbits of p" on p"q is the same
as the action of Cy on the module p"/I = ker(¢,). Therefore, we can identify
the k orbits of the action of I on p"q with the k elements of p" /I. Since p™ is an
elementary abelian p-group, I and ker(¢,) are also elementary abelian p-groups
and it follows that the index of I in p” is [p™:I] = k. Instead of acting C,; on the
k orbits, the centralizer Cg(q) of ¢ in @ is used. With the above discussion and
notation and more details in [9], the following theorem is formulated.

Theorem 5.1. A Fischer-Clifford matriz M(q) of a split extension S = p™:Q,
corresponding to a class representative ¢ € @, is a matrix of orbit sums of
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Cy acting on the rows of the ordinary character table of p" /I with duplicating
columns discarded.

Corollary 5.1. If ¢ = 1¢g, then I = Im(¢q) = 1,n and the Fischer-Clifford
matriz M(1q) is the matriz of orbit sums of Cq = S acting on the rows of the
ordinary character table of p™ /1 = p™ with duplicating columns discarded.

The following GAP routine, which is based on the above theoretical discus-
sion, is taken from Programme D in [3] and can compute a candidate FM for a
Fischer-Clifford matrix M (q) of S = p™:Q.

C:=List(ConjugacyClasses(G),Representative);; M:=[];;
g:=Cl[i];; for n in N do

Add(M, n*g*Inverse(n)*Inverse(g));; od;
M:=AsGroup(M);; cent:=Centralizer(G, g);
L:=Irr(N);; IM:=[];; for i in [1..Size(I)] do

if IsSubgroup(Kernel(I[i]), M) then Add(IM,I[i]);
fi; od; 00:=Orbits(cent,IM);; FM:=[];;

for i in [1..Size(00)] do
Append(FM,[AsList(Sum(ooli]))]);od;
M1:=TransposedMat(FM);;
M2:=AsDuplicateFreeList(M1);;
FM:=TransposedMat(M2);; Display(FM)

As an example, consider the conjugacy class 5B of G. By making use of Theorem
5.2.4 and property (e) in [12], M (5B) has the following form with corresponding
weights attached to the rows and columns,

IC5(BE)|  [Ca(5F)| |Ca(G)|  [Ca(5H)| |Ca(51)]

7500 1250 1250 1250 1250
IO, (5B)|= 300 1 1 1 1 1
|Ch,(5C)|= 50 6 g h i j
|Cm,(5D)|= 50 6 l m n 0
|CH,(5E)|= 50 6 q r s t
|CH,(5F)|= 50 6 v w z y
m; 25 150 150 150 150

To determine the unknown entries M (5B), the above GAP routine gives the
candidate FM,
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1 1 1 1
A* A B* B
A A* B B*
B* B A A*
B B* A* A
where A =1—+/5and B = (-3 — /5)/2.

M(5B) =

OO O

From the p-power maps of G in Table 1, we have that (10I)? = 5F, (10H)? =
5G, (10E)? = 5H and (10F)? = 5I. Thus, for any x € Irr(G), the congruent
relations x(5F) = x(10I) (mod 2), x(5G) = x(10H) (mod 2), x(5H) = x(10F)
(mod 2) and x(51) = x(10F') (mod 2) must be satisfied. Checking the validity of
these relations for the parts of the ordinary character tables of G corresponding
to M(10C), M(10D) and the candidate F'M for M(5B), the rows of FM are
rearranged to find the desired Fischer-Clifford matrix M (5B) of G (see Figure 4).

11 1 1
A* A B* B
B B* A" A
A A* B B~
B* B A A"

=

3

w

SN—

I
oo oo R

Figure 4: Fischer-Clifford matrix M (5B)

Only the Fischer-matrices M (5B), M(10C) and M (10D) were computed
with the aid of the above GAP routine. The rest of the Fischer-Clifford ma-
trices of G were computed manually. The above GAP routine comes in very
handy when some entries of the Fischer-Clifford matrices are algebraic integers
which are not integers. If there are considerately many inertia factors H; for the
action of a split extension S = p™:@Q on Irr(p™), the Fischer-Clifford matrices
can become very large. Consequently, to compute the desired Fischer-Clifford
matrices of .S, it is necessary also to use other techniques such as restriction of
ordinary characters of the parent group of S to the ordinary irreducible charac-
ters of S together with the GAP routine. However, when the group S becomes
too large, the computational power to use the GAP routine becomes difficult.
We have then to resort to other methods, if possible, to compute the Fischer-
Clifford matrices. The Fischer-Clifford matrices of G have sizes ranging from 1
to 5 and are contained in Table 3.
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Table 3: The Fischer-Clifford Matrices of G

M(g) M(g)
1 1 1 1
M4 = (624 —1) M@B) = (24 —1)
L1 1 1 1
M(3C):<24 71) M(BA) = (12 -3 2
12 2 -3
1 1 1 1 1
6 A* A B* B 1 1 1
MGBB)=|6 B B* A* A M(0Cc)=|(2 Cc cC*
6 A * B B* 2 C* C
6 B* B A A*
1 1 1
M(oD)= (2 ¢Cc cC* M(gs) = (1), Vg; ¢ {14,2B,3C,54,5B,10C,10D}
2 C* C

where A=1—+/5, B=(-3-+5)/2,C = (-1 —-+5)/2

6. The character table of G and fusion into the Monster M

With all the necessary information obtained in the previous sections, the ordi-
nary character table of G can now be constructed by the technique of Fischer-
Clifford matrices as discussed in Section 2. The character table (see Table 4) is
a 70 x 70 C—valued matrix partitioned row-wise into two blocks A1 = {x;|1 <
i <57} and Ag = {x:[58 < i < 70}, where x; € Irr(G) = U?_;A;. Note that
each block corresponds to an inertia group H; = 5*:H;. Checks for consistency
and accuracy of the character table obtained have been carried out with the
GAP routine, Programme C [20].

Unique p-power maps for the elements of G are obtained for our Table 4
using Programme C, which coincide with the p-power maps in Table 1. Using the
power maps of G and M, the permutation character x(M|G) of M on the classes
of G which was computed directly by GAP, we obtained partial fusion from the
classes of G into M. To complete the fusion map from G to M, the technique of
set intersections [14] was used to restrict ordinary irreducible characters of M of
small degrees to G. For example, the character 196883a € Irr(M) will restrict
to G as (196883a)g = 13c+ 24a+ 26¢ce f + 52acjk + 624a + 4(624b) + 5(1248a) +
5(1872a) + 7(1872b) + 5(1872¢) + 7(1872d) + 5(1872¢) + 7(1872f) + 5(1872¢g) +
7(1872h) + 13(3744a) + 13(3744b). The fusion map of the classes of G into the
classes of M is found in the last column of Table 1.
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Table 4: The Character Table of G
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where A

D=
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Table 4: The Character Table of G (continued)

[g[c [6A]6B[6C[6D[SA[SB[I0A[10B

10C

1

1
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Aal
—
Aal
—
Aal
1 [

e m T T ee
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COO O OO OO O OoOOoO
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COOD OO O OO O OOo0o0o

COOD OO O OO O OOo0o0o

2] 6A[6B[6C[6D|8A|8B|10B|10C|10D 10E IO0F |[10G 10H 10I|12A[12B[12C|12D[12E

X70

(=2}
©
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X60
X61
X62
X63
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X65
X66
Xe67
X68

o)
)
=

X58

—E(5) + E()? + E(5)*,

5, H=

=1+

—E(5)? + E()*+ E(5)*,J = -3E(4)

_\/57 G

I

where F
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Table 4: The Character Table of G (continued)
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M=

where K
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Table 4: The Character Table of G (continued)

[9]c [26A126B[26C[30A[30B[39A[39B[39C[39D[39E[39F [7T8A[78B[78C[78D [7T8E [ 78F
[2[z[26A26B[26C[30A [30B [39A [39B[39C 39D [39E [39F [7T8A [78B [78C| 78D [ 78E | 78F

ON A MAXIMAL SUBGROUP G = 5%:((3x2L2(25)):22) ...
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—E(13) — E(13)° — E(13)® — E(13)*2,

—FE(39) — E(39)° — E(39)® — E(39)°,
—E(39)" — E(39)%° — E(39)*2 — E(39)*

—E(13)* — E(13)° — E(13)" — E(13)°, L

—E(13)*> - E(13)* - B(13)'° — E(13)'!, O
—E(39)? — E(39)'° — E(39)' — E(39)'%,Q

M

where K
P
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