On a maximal subgroup $\overline{G} = 5^4: ((3 \times 2L_2(25)):2_2)$ of the Monster M

David Mwanzia Musyoka

Department of Mathematics and Actuarial Science Kenyatta University PO Box 43844-00100, Nairobi Kenya davidmusyoka21@yahoo.com

Lydia Nyambura Njuguna

Department of Mathematics and Actuarial Science Kenyatta University PO Box 43844-00100, Nairobi Kenya njuguna.lydia@ku.ac.ke lydiahnjuguna@yahoo.com

Abraham Love Prins*

Department of Mathematics and Applied Mathematics Faculty of Science Nelson Mandela University PO Box 77000, Gqeberha, 6031 South Africa abraham.prins@mandela.ac.za abrahamprinsie@yahoo.com

Lucy Chikamai

Department of Mathematics and Actuarial Science Kibabii University PO Box 1699-50200, Bungoma Kenya chikamail@kibu.ac.ke lucychikamai@gmail.com

Abstract. The split extension $\overline{G} = 5^4:((3 \times 2L_2(25)):2_2)$ is a maximal subgroup of the sporadic Monster group M of order $58500000 = 2^5.3^2.5^6.13$. The technique of Fischer-Clifford matrices has been applied to numerous examples of split and non-split extensions where the kernels are either elementary abelian 2 or 3-groups but very few examples exist where the kernel is an elementary abelian 5-group. In this paper, the Fischer-Clifford matrices technique is applied to the group $\overline{G} = 5^4:((3 \times 2L_2(25)):2_2)$, where the kernel 5^4 of the extension is an elementary abelian 5-group.

Keywords: coset analysis, Fischer-Clifford matrices, split extension, inertia factor, character table, fusion map, restriction of characters.

^{*.} Corresponding author

1. Introduction

The sporadic Monster group \mathbb{M} has a conjugacy class of maximal 5-local subgroups of the form $5^4:((3 \times 2L_2(25)):2_2)$ [6]. Obtaining a permutation representation on 625 points for $\overline{G}=5^4:((3 \times 2L_2(25)):2_2)$ from the online ATLAS [23], the group \overline{G} is generated by using the algebra computational system MAGMA [5]. The normal subgroup $N = 5^4$ and subgroup $G = (3 \times 2L_2(25)):2_2 \cong SL_2(25):S_3$ of \overline{G} are constructed by MAGMA as permutation groups on 625 points. Using the MAGMA commands, "M:=GModule(\overline{G}, N); and "M:Maximal;", the group $G = \langle g_1, g_2 \rangle$ is constructed as a matrix group of degree 4 over GF(5) with generators g_1 and g_2 such that $o(g_1) = 2$, $o(g_2) = 39$ and $o(g_1g_2) = 8$ (see, Figure 1).

$$g_1 = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 2 & 0 & 4 \end{pmatrix}, g_2 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 4 & 1 & 4 & 2 \\ 0 & 0 & 0 & 1 \\ 3 & 4 & 2 & 0 \end{pmatrix}$$

Figure 1: Generators of G

Considering $N = V_4(5)$ as the vector space of dimension 4 over GF(5), on which the matrix group $G = \langle g_1, g_2 \rangle$ acts absolutely irreducibly, it was found with aid of GAP [8] that G has two orbits on N of lengths 1 and 624 with corresponding point stabilizers $P_1 = G$ and $P_2 = 5^2:S_3$. By Brauer's theorem (see Theorem 5.1.5 in [12]), the action of G on Irr(N) also has two orbits of lengths 1 and 624 with corresponding inertia factor groups $H_1 = G$ and $H_2 = 5^2 : S_3$. It is worth noting that the vector space N and its dual space $N^* = \operatorname{Irr}(N)$ are isomorphic as 4-dimensional modules over GF(5) for G. Having obtained G as a 4-dimensional matrix group over the finite field GF(5)and treating N as the vector space $V_4(5)$ we can apply Fischer-Clifford theory (see, for example, [7] and [14]) to the split extension G to construct its ordinary character table. The Fischer-Clifford matrices technique is powerful if the kernel of a suitable split extension group is elementary abelian as it is the case with the group G. A GAP routine found in [21] which is based on coset analysis technique found in [11] and [14] is used to compute the conjugacy classes of G. This method is very efficient when the kernel of a split extension is an elementary-abelian pgroup. The importance of computing conjugacy classes of \overline{G} from a coset Nq is that the centralizer orders of these classes play a role in the computation of the entries of a Fischer-Clifford matrix M(g), where g is a conjugacy class representative of G. In the paper [10], Fischer-Clifford technique was applied to a non-split extension $\overline{G_1} = 5^3 L_3(5)$, which is a maximal subgroup of the Lyons sporadic simple group $\mathbb{L}y$. Besides our group \overline{G} , $\overline{G_1}$ is one of the few extension groups in the literature with the kernel being an elementary abelian 5-group, where the method of Fischer-Clifford matrices has been applied to.

In the sections that follow, an outline of the Fischer-Clifford matrices technique is going to be given. The conjugacy classes and Fischer-Clifford matrices of \overline{G} are also computed using appropriate GAP routines. In addition, the ordinary character table of \overline{G} is constructed and the fusion of conjugacy classes of \overline{G} into those of the Monster M is determined. For an update on recent developments around Fischer-Clifford matrices, interested readers are referred to the papers [1], [2], [15] [16], [17], [18] and [19]. Most of the computations in this paper are carried out with computer algebra systems MAGMA and GAP. Notation from the ATLAS [6] is mostly followed.

2. Theory of Fischer-Clifford matrices

Since the ordinary character table of $\overline{G} = 5^4:((3 \times 2L_2(25)):2_2)$ will be constructed by the technique of Fischer-Clifford matrices, an outline of this technique is given for a split extension $\overline{G} = N:G$, where N is an elementary abelian p-group, see for example, [14] or [22].

Let $\overline{G} = N:G$ be a split extension of N by G, where N is an elementary abelian p-group. The subgroup $\overline{H} = N:H = \{x \in \overline{G} | \theta^x = \theta\}$ of \overline{G} is defined as the inertia group of $\theta \in \operatorname{Irr}(N)$ in \overline{G} , with inertia factor $H = \overline{H}/N$. Note that a lifting $\overline{g} \in \overline{G}$ of $g \in G$ into \overline{G} under the natural homomorphism $\eta:\overline{G} \longrightarrow G$ is just g itself, since $G \leq \overline{G}$. Let $X(g) = \{x_1, x_2, \cdots, x_{c(g)}\}$ be a set of representatives of the conjugacy classes of \overline{G} from the coset Ng whose images under the natural homomorphism η are in the conjugacy class [g] of G where $x_1 = g$. Now let $\theta_1 = 1_N, \theta_2, \cdots, \theta_t$ be representatives of the orbits of \overline{G} on $\operatorname{Irr}(N)$. Since N is elementary abelian, we have by Mackey's Theorem (see Theorem 5.1.15 in [12]) that each $\theta_i, 1 \leq i \leq t$, extends to a $\psi_i \in \operatorname{Irr}(\overline{H_i})$, i.e. $\psi_i \downarrow_N = \theta_i$. By Theorem 5.1.7, Remark 5.1.8 and Theorem 5.1.19 in [12], an ordinary irreducible character $\chi = (\psi_i \overline{\beta})^{\overline{G}}$ of \overline{G} consists of $\psi_i \overline{\beta} \in \operatorname{Irr}(\overline{H_i})$ which is induced to \overline{G} , where N is contained in the kernel $\ker(\overline{\beta})$ of a lifting $\overline{\beta} \in \operatorname{Irr}(\overline{H_i})$ of $\beta \in \operatorname{Irr}(H_i)$ into $\overline{H_i}$. Therefore,

$$\operatorname{Irr}(\overline{G}) = \bigcup_{i=1}^{t} \{ (\psi_i \overline{\beta})^{\overline{G}} | \overline{\beta} \in \operatorname{Irr}(\overline{H_i}), N \subseteq \ker(\overline{\beta}) \} = \bigcup_{i=1}^{t} \{ (\psi_i \overline{\beta})^{\overline{G}} | \beta \in \operatorname{Irr}(H_i) \}.$$

Hence, the set $\operatorname{Irr}(\overline{G})$ are partitioned into t blocks B_i with each block B_i corresponding to an inertia subgroup $\overline{H_i}$ of \overline{G} . Observe that $|\operatorname{Irr}(\overline{G})| = |\operatorname{Irr}(H_1)| + \dots + |\operatorname{Irr}(H_t)|$.

We take $\overline{H_1} = \overline{G}$ and $H_1 = G$. Choose $y_1, y_2, ..., y_r$ to be representatives of the conjugacy classes $[y_k]$, k = 1, ..., r, of H_i that fuse to [g] in G. We define $R(g) = \{(i, y_k) \mid 1 \leq i \leq t, H_i \cap [g] \neq \emptyset, 1 \leq k \leq r\}$ and we observe that y_k runs over representatives of the conjugacy classes $[y_k]$ of H_i which fuse into [g]of G. We define $y_{l_k} \in \overline{H_i}$ such that y_{l_k} ranges over all representatives of the conjugacy classes of $\overline{H_i}$ which map to y_k under the homomorphism $\overline{H_i} \longrightarrow H_i$ whose kernel is N. Lemma 2.1. With notation as above,

$$(\psi_i\overline{\beta})^{\overline{G}}(x_j) = \sum_{y_k:(i,y_k)\in R(g)} \left[\sum_{l}' \frac{|C_{\overline{G}}(x_j)|}{|C_{\overline{H_i}}(y_{l_k})|} \psi_i(y_{l_k}) \right] \beta(y_k).$$

Proof. See [22].

Then, the Fischer-Clifford matrix $M(g) = (a_{(i,y_k)}^j)$ is defined as $(a_{(i,y_k)}^j) = (\sum_{l}^{\prime} \frac{|C_{\overline{G}}(x_j)|}{|C_{\overline{H_i}}(y_{l_k})|} \psi_i(y_{l_k}))$, with columns indexed by X(g) and rows indexed by R(g) and where \sum_{l}^{\prime} is the summation over all l for which $y_{l_k} \sim x_j$ in \overline{G} . So, we can write Lemma 2.1 as

$$(\psi_i\overline{\beta})^{\overline{G}}(x_j) = \sum_{y_k:(i,y_k)\in R(g)} a^j_{(i,y_k)}\beta(y_k).$$

The Fischer-Clifford M(g) (see, Figure 2) is partitioned row-wise into blocks $M_i(g)$, where each block corresponds to an inertia group \overline{H}_i . We write $|C_{\overline{G}}(x_j)|$, for each $x_j \in X(g)$, at the top of the columns of M(g) and at the bottom we write $m_j \in \mathbb{N}$, where we define $m_j = |N| \frac{|C_G(g)|}{|C_{\overline{G}}(x_j)|}$. On the left of each row we write $|C_{H_i}(y_k)|$, where the conjugacy classes $[y_k]$, k = 1, 2, ..., r, of an inertia factor H_i fuse into the conjugacy class [g] of G.

		$ C_{\overline{G}}(x_1) $	$ C_{\overline{G}}(x_2) $	• • •	$ C_{\overline{G}}(x_{c(g)}) $
	$ C_G(g) $	$a^{1}_{(1,g)}$	$a^2_{(1,g)}$		$a_{(1,g)}^{c(g)}$
	$ C_{H_2}(y_1) $	$a^{1}_{(2,y_1)}$	$a^2_{(2,y_1)}$	• • •	$a^{c(g)}_{(2,y_1)}$
	$ C_{H_2}(y_2) $	$a^{1}_{(2,y_2)}$	$a^2_{(2,y_2)}$	• • •	$a^{c(g)}_{(2,y_2)}$
	:	:	:	:	÷
M(a)	$ C_{H_i}(y_1) $	$a^{1}_{(i,y_{1})}$	$a_{(i,y_1)}^2$		$a^{c(g)}_{(i,y_1)}$
M(g) =	$ C_{H_i}(y_2) $	$a^1_{(i,y_2)}$	$a_{(i,y_2)}^2$	• • •	$a_{(i,y_2)}^{c(g)}$
	•	•	•	:	÷
	$ C_{H_t}(y_1) $	$a^{1}_{(t,y_{1})}$	$a_{(t,y_1)}^2$		$a^{c(g)}_{(t,y_1)}$
	$ C_{H_t}(y_2) $	$a^{1}_{(t,y_{2})}$	$a_{(t,y_2)}^2$	• • •	$a_{(t,y_2)}^{c(g)}$
	:	÷	:	:	÷
		m_1	m_2		$m_{c(g)}$

Figure 2: The Fischer-Clifford Matrix M(g)

In practice it is difficult to compute the elements y_{l_k} or the ordinary irreducible character tables of the inertia groups \overline{H}_i , since the sets $\operatorname{Irr}(\overline{H}_i)$ of ordinary irreducible characters of the \overline{H}_i 's are in general much larger and more complicated to compute than the one for \overline{G} . Instead of using the above formal definition of a Fischer-Clifford matrix M(g), the arithmetical properties of M(g) found in [14] are used to compute the entries of M(g). The matrix M(g) is square where the number of rows is equal to the number of conjugacy classes of the inertia factors H_i 's, $1 \leq i \leq t$, which fuse into the class [g] in G and the number of columns is equal to the number c(g) of conjugacy classes of \overline{G} which is obtained from the coset $N\overline{g}$. Then, the partial character table of \overline{G} on the classes $\{x_1, x_2, \dots, x_{c(g)}\}$ is given by

$$\begin{bmatrix} C_1(g) M_1(g) \\ C_2(g) M_2(g) \\ \vdots \\ C_t(g) M_t(g) \end{bmatrix}$$

with each block $M_i(g)$ of M(g) (see Figure 2) corresponding to an inertia group \overline{H}_i and $C_i(g)$ consists of the columns of the ordinary character table of H_i which correspond to the conjugacy classes of H_i that fuse into the class [g] of G. We obtain the characters of \overline{G} by multiplying the relevant columns of the ordinary irreducible characters of H_i by the rows of M(g).

3. The conjugacy classes of \overline{G}

In this section, a GAP routine (labelled as Programme A in [21]), which is based on the method of coset analysis (see [11], [13] or [14]), is used to compute the conjugacy classes of \overline{G} . This GAP routine is written for a split extension $S = p^n Q$ of an elementary abelian p-group p^n by a linear matrix group Q of dimension n over the field GF(p). The group p^n (regarded as a vector space $V_n(p)$ of degree n over the finite field GF(p) (p is a prime)) is a Q-module where upon the matrix group Q acts naturally. A coset $p^n q$ is considered for each conjugacy class [q] representative q in Q and then consider the action of the stabilizer $C_q = p^n : C_Q(q) = \{x \in S | x(p^n q) x^{-1} = p^n q\}$ of the coset $p^n q$ in S by conjugation on the elements of $p^n q$. Since C_q is split extension we will first act p^n on $p^n q$ to form k orbits $Q_1, Q_2, ..., Q_k$, with each orbit Q_i containing $|p^n|/k$ elements. Under the action of the centralizer $C_Q(q)$ of q in Q, f_i of the k orbits Q_i fuse together to form an orbit O_j . The orbit O_j contains the elements from the coset $p^n q$ which belong to a conjugacy class $[x_i]$ of S with class representative x_j . Note that $\sum f_j = k$. The order of the centralizer $|C_S(x_j)|$ of the class representative x_j is then computed by $|C_S(x_j)| = \frac{k|C_Q(q)|}{f_j}$. In this manner, the conjugacy classes of S, with class representatives $X(q) = \{x_1, x_2, ..., x_{c(q)}\}$ (see Section 2) coming from the coset $p^n q$, are obtained.

Using similar techniques as in [14], the permutation character $\chi(G|5^4)$ of $G = (3 \times 2L_2(25)):2_2$ on the conjugacy classes of $N = 5^4$ is computed as

$$\chi(G|5^4) = \sum_{i=1}^{2} I_{P_i}^G = 1aa + 13cd + 25b + 26dd + 52bbdejklmno.$$

Note that $\chi(G|5^4)$ is the sum of the identity characters $I_{P_i}^G$, i = 1, 2, of the point stabilizers P_i of the orbits of G on N, which are induced to G. Also, $\chi(G|5^4)$ is written in terms of the ordinary irreducible characters of G. For an element g in a conjugacy class [g] of G, it is required that $\chi(G|5^4)(g) = 5^n$, for some $n \in \{0, 1, 2, 3, 4\}$. The value $\chi(G|5^4)(g)$ gives the number of elements of N which is fixed by an element $g \in G$ and it is also the number of orbits of N on a coset Ng.

In Section 1, the group $G = (3 \times 2L_2(25)): 2_2 = \langle g_1, g_2 \rangle$ was computed as a 4-dimensional matrix group over the field GF(5) and with $N = 5^4$ represented as a vector space $V_4(5)$ of dimension 4 over GF(5), we now proceed to compute the conjugacy classes for \overline{G} as described above. The permutation character $\chi(G|5^4)$ is evaluated on each class representative $g \in G$ to determine the number k = $\chi(G|5^4)(g)$ of orbits of N on Ng. Programme A in [21] written in GAP is then used to calculate the number f_j of these k orbits which come together as an orbit O_j under the action of $C_G(g)$. With the values of k and the f_j 's obtained, the order of the centralizer $|C_{\overline{G}}(d_jg)| = \frac{k|C_G(g)|}{f_j}$ of a class representative $d_jg \in O_j$, where $d_j \in N$ and $g \in G$, is computed (see Table 1). Altogether 70 conjugacy classes are obtained for G. Using the GAP routine, Programme B in [21], which is based on Theorem 2.7 and Remark 2.8 in [14], the order $o(d_ig)$ of a representative $d_i g$ in the orbit O_i , is computed. Let $(d_i g)^{o(g)} = w \in N$. If w = 1_N , then $o(d_jg) = o(g)$. Otherwise for $w \neq 1_N$ we have $o(d_jg) = 5o(g)$, since N is an elementary abelian 5-group. Hence the order for each class representative $d_i g$ in a conjugacy class $[d_i g]$ of \overline{G} coming from a coset Ng is determined and is found in Table 1. From Programme A and Programme B in [21] the p-power maps, p a prime, are computed for the elements in each conjugacy class $[d_{ig}]$ of \overline{G} and are listed in Table 1. The values of the parameter, $m_j = \frac{f_j |N|}{k}$, which are useful in determining the entries of a Fischer-Clifford matrix M(g) are also listed in Table 1. We identify $d_j g$ with x_j used in Section 2 and in the beginning of Section 3.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					Table I	·	The Conj	ugacy	Classes UI	G				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$[g]_G$	k	f_j	m_j	d_j		w	$[d_jg]_{\overline{G}}$	$ C_{\overline{G}}(d_jg) $	2	3	5	13	$\mapsto \mathbb{M}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1A	625	1	1	(0, 0, 0, 0)))	(0, 0, 0, 0)	1A	58500000					1A
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			624	624	(0, 0, 0, 1))	(0, 0, 0, 1)	5A	93750			1A		5B
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2A	1	1	625	(0, 0, 0, 0)))	(0, 0, 0, 0)	2A	93600	1A				2B
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2B	25	1	25	(0, 0, 0, 0)))	(0, 0, 0, 0)	2B	6000	1A				2B
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			24	600	(0, 0, 0, 1)	(1, 2, 3, 2)	10A	250	5A		2B		10E
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3A	1	1	625	(0, 0, 0, 0)))	(0, 0, 0, 0)	3A	46800		1A			3B
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3B	1	1	625	(0, 0, 0, 0)))	(0, 0, 0, 0)	3B	144		1A			3C
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3C	25	1	25	(0, 0, 0, 0)))	(0, 0, 0, 0)	3C	1800		1A			3C
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			24	600	(0, 1, 2, 2)	2)	(1, 2, 4, 4)	15A	75		5A	3C		15D
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4A	1	1	625	(0, 0, 0, 0)))	(0, 0, 0, 0)	4A	144	2A				4D
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4B	1	1	625	(0, 0, 0, 0)))	(0, 0, 0, 0)	4B	240	2A				4D
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5A	25	1	25	(0, 0, 0, 0)))	(0, 0, 0, 0)	5B	7500			1A		5B
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			12	300	(0, 0, 2, 4))	(0, 0, 0, 0)	5C	625			1A		5B
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			12	300	(0, 1, 0, 0)))	(0, 0, 0, 0)	5D	625			1A		5B
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5B	25	1	25	(0, 0, 0, 0)))	(0, 0, 0, 0)	5E	7500			1A		5A
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			6	150	(0, 0, 0, 4))	(0, 0, 0, 0)	5F	1250			1A		5B
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			6	150	(0, 0, 0, 2)	2)	(0, 0, 0, 0)	5G	1250			1A		5B
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			6	150	(0, 1, 0, 0)))	(0, 0, 0, 0)	5H	1250			1A		5B
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			6	150	(0, 1, 0, 3)	5)	(0, 0, 0, 0)	5I	1250			1A		5B
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6A	1	1	625	(0, 0, 0, 0)))	(0, 0, 0, 0)	6A	46800	3A	2A			6B
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6B	1	1	625	(0, 0, 0, 0)))	(0, 0, 0, 0)	6B	72	3B	2A			6F
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6C	1	1	625	(0, 0, 0, 0)))	(0, 0, 0, 0)	6C	144	3C	2A			6F
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6D	1	1	625	(0, 0, 0, 0)))	(0, 0, 0, 0)	6D	12	3B	2B			6F
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8A	1	1	625	(0, 0, 0, 0)))	(0, 0, 0, 0)	8A	72	4B				8F
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8B	1	1	625	(0, 0, 0, 0)))	(0, 0, 0, 0)	8B	8	4B				8F
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10A	1	1	625	(0, 0, 0, 0)))	(0, 0, 0, 0)	10B	300	5B		2A		10D
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10B	1	1	625	(0, 0, 0, 0)))	(0, 0, 0, 0)	10C	300	5E		2A		10B
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10C	5	1	125	(0, 0, 0, 0)))	(0, 0, 0, 0)	10 <i>D</i>	100	5E		2B		10B
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			2	250	(0, 0, 0, 1)	.)	(0, 0, 0, 0)	10E	50	5H		2B		10E
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2	250	(0, 0, 0, 2)	2)	(0, 0, 0, 0)	10F	50	5I		2B		10E
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10D	5	1	125	(0, 0, 0, 0)))	(0, 0, 0, 0)	10G	100	5E		2B		10B
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			2	250	(0, 0, 2, 2)	2)	(0, 0, 0, 0)	10H	50	5G		2B		10E
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2	250	(0, 0, 0, 3)	5)	(0, 0, 0, 0)	10I	50	5F		2B		10E
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12A	1	1	625	(0, 0, 0, 0)))	(0, 0, 0, 0)	12A	72	6A	4A			12J
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12B	1	1	625	(0, 0, 0, 0)))	(0, 0, 0, 0)	12B	72	6A	4B			12F
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12C	1	1	625	(0, 0, 0, 0)))	(0, 0, 0, 0)	12C	72	6C	4B			12J
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12D	1	1	625	(0, 0, 0, 0)))	(0, 0, 0, 0)	12D	72	6C	4B			12J
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12E	1	1	625	(0, 0, 0, 0)))	(0, 0, 0, 0)	12E	12	6B	4B			12J
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	13A	1	1	625	(0, 0, 0, 0)))	(0, 0, 0, 0)	13A	78				1A	13B
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	13B	1	1	625	(0, 0, 0, 0)))	(0, 0, 0, 0)	13 <i>B</i>	78				1A	13B
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13C	1	1	625	(0, 0, 0, 0)	ý)	(0, 0, 0, 0)	13C	78				1A	13B
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15A	1	1	625	(0, 0, 0, 0)))	(0, 0, 0, 0)	15B	150		5B	3A		15C
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	15B	1	1	625	(0, 0, 0, 0)))	(0, 0, 0, 0)	15C	150		5E	3A		15B
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	20A	1	1	625	(0, 0, 0, 0)))	(0, 0, 0, 0)	20A	20	10B		4A		20E
	20B	1	1	625	(0, 0, 0, 0)))	(0, 0, 0, 0)	20B	20	10B		4A		20E

Table 1: The Conjugacy Classes of \bar{G}

$[g]_G$	k	f_j	m_j	d_j	w	$[d_jg]_{\overline{G}}$	$ C_{\overline{G}}(d_jg) $	2	3	5 13	$\mapsto \mathbb{M}$
24A	1	1	625	(0, 0, 0, 0)	(0, 0, 0, 0)	24A	72	12B	8B		12F
24B	1	1	625	(0, 0, 0, 0)	(0, 0, 0, 0)	24B	72	12B	8B		24J
24C	1	1	625	(0, 0, 0, 0)	(0, 0, 0, 0)	24C	72	12D	8B		24J
24D	1	1	625	(0, 0, 0, 0)	(0, 0, 0, 0)	24D	72	12D	8B		24J
24E	1	1	625	(0,0,0,0)	(0,0,0,0)	24E	72	12C	8B		24J
24F	1	1	625	(0,0,0,0)	(0,0,0,0)	24F	72	12C	8B		24J
24G	1	1	625	(0,0,0,0)	(0,0,0,0)	24G	72	12E	8B		24J
24H	1	1	625	(0,0,0,0)	(0,0,0,0)	24H	72	12E	8B		24J
26A	1	1	625	(0,0,0,0)	(0,0,0,0)	26A	78	13C		2A	26B
26B	1	1	625	(0,0,0,0)	(0,0,0,0)	26B	78	13A		2A	26B
26C	1	1	625	(0,0,0,0)	(0,0,0,0)	26C	78	13B		2A	26B
30A	1	1	625	(0,0,0,0)	(0,0,0,0)	30A	150	15A	10B	6A	30A
30B	1	1	625	(0,0,0,0)	(0,0,0,0)	30B	150	15B	10C	6A	30D
39A	1	1	625	(0,0,0,0)	(0,0,0,0)	39A	78		13C	3A	39C
39B	1	1	625	(0,0,0,0)	(0,0,0,0)	39B	78		13C	3A	39D
39C	1	1	625	(0,0,0,0)	(0,0,0,0)	39C	78		13A	3A	39C
39D	1	1	625	(0,0,0,0)	(0,0,0,0)	39D	78		13A	3A	39D
39E	1	1	625	(0,0,0,0)	(0,0,0,0)	39E	78		13B	3A	39C
39F	1	1	625	(0,0,0,0)	(0,0,0,0)	39F	78		13B	3A	39D
78A	1	1	625	(0,0,0,0)	(0,0,0,0)	78A	78	39E	26C	6A	78B
78B	1	1	625	$(0,0,0,\overline{0})$	$(0,0,0,\overline{0})$	78B	78	39F	26C	6A	78C
78C	1	1	625	$(0,0,0,\overline{0})$	$(0,0,0,\overline{0})$	78C	78	39A	26A	6A	78B
78D	1	1	625	$(0,0,0,\overline{0})$	$(0,0,0,\overline{0})$	78D	78	39B	26A	6A	78C
78E	1	1	625	$(\overline{0,0,0,0})$	$(\overline{0,0,0,0})$	78E	78	39C	26B	6A	78B
78F	1	1	625	$(\overline{0,0,0,0})$	$(0, 0, 0, \overline{0})$	78F	78	39D	26B	6A	78C

Table 1. The Conjugacy Classes of \overline{G} (continued)

4. Inertia factor groups of \overline{G}

We have already seen in the Introduction of this paper, that the orbit stabilizers (the so-called inertia factors) of the action of G on Irr(N) are two groups of the form $H_1 = G$ and $H_2 = 5^2:S_3$. The inertia factor $H_2 = < \alpha_1, \alpha_2 >$ is generated from elements $\alpha_1 \in 2B$ and $\alpha_2 \in 10C$ (see Figure 3) in the conjugacy classes 2B and 10C of G.

The fusion maps of the conjugacy classes of H_2 into G are shown in Table 2 and will be used in the construction of the Fischer-Clifford matrices and ordinary character table of \overline{G} .

$$\alpha_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 0 & 4 & 0 \\ 0 & 2 & 0 & 4 \end{pmatrix}, \ \alpha_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 4 & 3 & 2 & 4 \\ 2 & 0 & 4 & 0 \\ 4 & 3 & 1 & 2 \end{pmatrix}$$

Figure 3: Generators of H_2

	Table 2: The fus	ion of H_2	$_2$ into G
$[h]_{H_2}$ –	$\rightarrow [g]_{(3 \times 2L_2(25)):2_2}$	$[h]_{H_2}$ –	$\rightarrow [g]_{(3 \times 2L_2(25)):2_2}$
1A	1A	5E	5B
2A	2B	5F	5B
3A	3C	10A	10C
5A	5A	10B	10D
5B	5A	10C	10C
5C	5B	10D	10D
5D	5B		

5. The Fischer-matrices of \overline{G}

In this section, the Fischer-Clifford matrices of the group \overline{G} are going to be obtained by using a GAP routine, Programme D in [3] and [4]. This routine gives a possible candidate for a Fischer-Clifford matrix M(g) and then the properties of Fischer-Clifford matrices (see [2], [14]) are used to rearrange the rows and columns in order to get the unique matrix M(g) corresponding to a class representative $g \in G$. A brief outline of the theory behind the development of Programme D, as found in [9] and [14], is given first.

We restrict our discussion to a split extension $S = p^n:Q$, with p^n an elementary abelian *p*-group. For a class representative $q \in Q$, it can be shown that the map $\phi_q:p^n \longrightarrow p^n$, defined by $\phi_q(\overline{n}) = \overline{n}q\overline{n}^{-1}q^{-1}$, is an endomorphism of p^n . The image $\mathbb{I} = \operatorname{Im}(\phi_q)$ and kernel $\ker(\phi_q)$ are C_q -sub-modules of p^n , where $C_q = p^n:C_Q(q)$ is the stabilizer of the coset p^nq . The actions of p^n by conjugation on p^nq and that of \mathbb{I} by left multiplication result in the same number k of orbits. It follows that the action of C_q on the k orbits of p^n on p^nq is the same as the action of C_q on the module $p^n/\mathbb{I} \cong \ker(\phi_q)$. Therefore, we can identify the k orbits of the action of \mathbb{I} on p^nq with the k elements of p^n/\mathbb{I} . Since p^n is an elementary abelian p-group, \mathbb{I} and $\ker(\phi_q)$ are also elementary abelian p-groups and it follows that the index of \mathbb{I} in p^n is $[p^n:\mathbb{I}] = k$. Instead of acting C_q on the k orbits, the centralizer $C_Q(q)$ of q in Q is used. With the above discussion and notation and more details in [9], the following theorem is formulated.

Theorem 5.1. A Fischer-Clifford matrix M(q) of a split extension $S = p^n:Q$, corresponding to a class representative $q \in Q$, is a matrix of orbit sums of

 C_q acting on the rows of the ordinary character table of p^n/\mathbb{I} with duplicating columns discarded.

Corollary 5.1. If $q = 1_Q$, then $\mathbb{I} = Im(\phi_q) = 1_{p^n}$ and the Fischer-Clifford matrix $M(1_Q)$ is the matrix of orbit sums of $C_q = S$ acting on the rows of the ordinary character table of $p^n/\mathbb{I} = p^n$ with duplicating columns discarded.

The following GAP routine, which is based on the above theoretical discussion, is taken from Programme D in [3] and can compute a candidate FM for a Fischer-Clifford matrix M(q) of $S = p^n : Q$.

C:=List(ConjugacyClasses(G),Representative);; M:=[];; g:=C[i];; for n in N do

Add(M, n*g*Inverse(n)*Inverse(g));; od;

M:=AsGroup(M);; cent:=Centralizer(G, g);

I:=Irr(N);; IM:=[];; for i in [1..Size(I)] do

if IsSubgroup(Kernel(I[i]), M) then Add(IM,I[i]);

fi; od; oo:=Orbits(cent,IM);; FM:=[];;

for i in [1..Size(oo)] do

Append(FM,[AsList(Sum(oo[i]))]);od;

M1:=TransposedMat(FM);;

M2:=AsDuplicateFreeList(M1);;

FM:=TransposedMat(M2);; Display(FM)

As an example, consider the conjugacy class 5B of G. By making use of Theorem 5.2.4 and property (e) in [12], M(5B) has the following form with corresponding weights attached to the rows and columns,

		$ C_{\overline{G}}(5E) $	$ C_{\overline{G}}(5F) $	$ C_{\overline{G}}(5G) $	$ C_{\overline{G}}(5H) $	$ C_{\overline{G}}(5I) $
		$\overline{7}500$	1250	1250	1250	1250
$ C_{H_1}(5B) =$	300	/ 1	1	1	1	1
$ C_{H_2}(5C) =$	50	6	g	h	i	j
$ C_{H_2}(5D) =$	50	6	l	m	n	<i>o</i> .
$ C_{H_2}(5E) =$	50	6	q	r	s	t
$ C_{H_2}(5F) =$	50	6	v	w	x	y /
	m_{j}	25	150	150	150	150

To determine the unknown entries M(5B), the above GAP routine gives the candidate FM,

$$M(5B) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 6 & A^* & A & B^* & B \\ 6 & A & A^* & B & B^* \\ 6 & B^* & B & A & A^* \\ 6 & B & B^* & A^* & A \end{pmatrix}$$

where $A = 1 - \sqrt{5}$ and $B = (-3 - \sqrt{5})/2$.

From the *p*-power maps of \overline{G} in Table 1, we have that $(10I)^2 = 5F$, $(10H)^2 = 5G$, $(10E)^2 = 5H$ and $(10F)^2 = 5I$. Thus, for any $\chi \in \operatorname{Irr}(\overline{G})$, the congruent relations $\chi(5F) \equiv \chi(10I) \pmod{2}$, $\chi(5G) \equiv \chi(10H) \pmod{2}$, $\chi(5H) \equiv \chi(10E) \pmod{2}$ and $\chi(5I) \equiv \chi(10F) \pmod{2}$ must be satisfied. Checking the validity of these relations for the parts of the ordinary character tables of \overline{G} corresponding to M(10C), M(10D) and the candidate FM for M(5B), the rows of FM are rearranged to find the desired Fischer-Clifford matrix M(5B) of \overline{G} (see Figure 4).

$$M(5B) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 6 & A^* & A & B^* & B \\ 6 & B & B^* & A^* & A \\ 6 & A & A^* & B & B^* \\ 6 & B^* & B & A & A^* \end{pmatrix}$$

Figure 4: Fischer-Clifford matrix M(5B)

Only the Fischer-matrices M(5B), M(10C) and M(10D) were computed with the aid of the above GAP routine. The rest of the Fischer-Clifford matrices of \overline{G} were computed manually. The above GAP routine comes in very handy when some entries of the Fischer-Clifford matrices are algebraic integers which are not integers. If there are considerately many inertia factors H_i for the action of a split extension $S = p^n : Q$ on $\operatorname{Irr}(p^n)$, the Fischer-Clifford matrices can become very large. Consequently, to compute the desired Fischer-Clifford matrices of S, it is necessary also to use other techniques such as restriction of ordinary characters of the parent group of S to the ordinary irreducible characters of S together with the GAP routine. However, when the group S becomes too large, the computational power to use the GAP routine becomes difficult. We have then to resort to other methods, if possible, to compute the Fischer-Clifford matrices. The Fischer-Clifford matrices of \overline{G} have sizes ranging from 1 to 5 and are contained in Table 3.

Table 3: The Fise	cher-Clifford Matrices of G
M(g)	M(g)
$M(1A) = \begin{pmatrix} 1 & 1\\ 624 & -1 \end{pmatrix}$	$M(2B) = \begin{pmatrix} 1 & 1\\ 24 & -1 \end{pmatrix}$
$M(3C) = \begin{pmatrix} 1 & 1\\ 24 & -1 \end{pmatrix}$	$M(5A) = \begin{pmatrix} 1 & 1 & 1\\ 12 & -3 & 2\\ 12 & 2 & -3 \end{pmatrix}$
$M(5B) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 6 & A^* & A & B^* & B \\ 6 & B & B^* & A^* & A \\ 6 & A & A^* & B & B^* \\ 6 & B^* & B & A & A^* \end{pmatrix}$	$M(10C) = \begin{pmatrix} 1 & 1 & 1 \\ 2 & C & C^* \\ 2 & C^* & C \end{pmatrix}$
$M(10D) = \begin{pmatrix} 1 & 1 & 1\\ 2 & C & C^*\\ 2 & C^* & C \end{pmatrix}$	$M(g_i) = (1), \forall g_i \notin \{1A, 2B, 3C, 5A, 5B, 10C, 10D\}$
where $A = 1 - \sqrt{5}$, $B =$	$=(-3-\sqrt{5})/2, C=(-1-\sqrt{5})/2$

6. The character table of \overline{G} and fusion into the Monster M

With all the necessary information obtained in the previous sections, the ordinary character table of \overline{G} can now be constructed by the technique of Fischer-Clifford matrices as discussed in Section 2. The character table (see Table 4) is a 70 × 70 \mathbb{C} -valued matrix partitioned row-wise into two blocks $\Delta_1 = \{\chi_i | 1 \leq 1 \}$ $i \leq 57$ and $\triangle_2 = \{\chi_i | 58 \leq i \leq 70\}$, where $\chi_i \in \operatorname{Irr}(\overline{G}) = \bigcup_{i=1}^2 \triangle_i$. Note that each block corresponds to an inertia group $\overline{H}_i = 5^4 : H_i$. Checks for consistency and accuracy of the character table obtained have been carried out with the GAP routine, Programme C [20].

Unique *p*-power maps for the elements of \overline{G} are obtained for our Table 4 using Programme C, which coincide with the *p*-power maps in Table 1. Using the power maps of G and M, the permutation character $\chi(\mathbb{M}|G)$ of M on the classes of \overline{G} which was computed directly by GAP, we obtained partial fusion from the classes of G into M. To complete the fusion map from G to M, the technique of set intersections [14] was used to restrict ordinary irreducible characters of M of small degrees to \overline{G} . For example, the character $196883a \in \operatorname{Irr}(\mathbb{M})$ will restrict to \overline{G} as $(196883a)_{\overline{G}} = 13c + 24a + 26cef + 52acjk + 624a + 4(624b) + 5(1248a) + 624a + 624a + 624b) + 5(1248a) + 624a + 624a + 624b + 5(1248a) + 624a + 624a + 624b) + 5(1248a) + 624a + 624a + 624b + 5(1248a) + 624a + 6(124a) + 6(124a)$ 5(1872a) + 7(1872b) + 5(1872c) + 7(1872d) + 5(1872e) + 7(1872f) + 5(1872g) + 6(1872g) + 5(1872g) + 5(1872g)7(1872h) + 13(3744a) + 13(3744b). The fusion map of the classes of \overline{G} into the classes of \mathbb{M} is found in the last column of Table 1.

$[a]_{C}$	1A		2A	2	$\frac{100}{2B}$	3A	$3\overline{B}$	3	$\frac{11010}{C}$	4A	$4\mathbf{B}$		$\frac{51}{5A}$				5B		
$x \overline{c}$	1A	5A	2A	2B	10A	3A	3B	3C	15A	4A	4B	5B	5C	5D	5E	5F	5G	5H	5I
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} 5\text{A} \\ 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2$	$\begin{array}{c} 2A\\ \hline 2A\\ \hline 1\\ 1\\ 1\\ -12\\ -12\\ -12\\ -12\\ -12\\ -12\\ $	$\begin{array}{c} 2\\ \hline 2B\\ \hline 1\\ -1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{array}{c} 2B \\ \hline 10A \\ \hline 1 \\ \hline -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} 3A\\ \hline 4A\\ \hline 2A\\ \hline 2B\\ \hline 2B\\ \hline 2C\\ 2C\\ 2C\\ 2C\\ 2C\\ 2C\\ 2C\\ 2C\\ 2C\\ 2C\\$	$\begin{array}{c c} 3B\\ \hline 3B\\ \hline 3B\\ \hline 1\\ 1\\ 2\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{array}{c c} 3 \\ \hline 3 \\ \hline 3 \\ \hline 3 \\ \hline 1 \\ \hline 1 \\ 1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0$	$\begin{array}{c} \hline \mathbf{C} \\ \hline \mathbf{15A} \\ \hline \mathbf{15A} \\ \hline 1 \\ 1$	$\begin{array}{c} 4A \\ \hline 4A \\ \hline 4A \\ \hline 1 \\ \hline 1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c c} \hline & & \\ \hline \\ \hline$	$\begin{array}{c} 5B\\ \hline 1\\ 1\\ 2\\ 3\\ -3\\ 2\\ 2\\ -2\\ 3\\ 3\\ -6\\ 4\\ 0\\ 0\\ 6\\ -4\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	$\begin{array}{c} \overline{5A} \\ \overline{5C} \\ 1 \\ 1 \\ 2 \\ 3 \\ -3 \\ 2 \\ 2 \\ 2 \\ -2 \\ 3 \\ 3 \\ -6 \\ 4 \\ 0 \\ 0 \\ 6 \\ -4 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 5E \\ \hline 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ -3 \\ 3 \\ -2 \\ -2 $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 5H\\ 1\\ 1\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 2\\ 2\\ 3\\ 3\\ 3\\ 2\\ 2\\ 3\\ 3\\ 4\\ 6\\ 0\\ 0\\ 4\\ 6\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\$	$\begin{array}{c} 5\mathrm{I} \\ 1\\ 1\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\$
$\chi_{30}^{\chi_{30}}$ $\chi_{38}^{\chi_{39}}$ $\chi_{40}^{\chi_{41}}$ $\chi_{42}^{\chi_{42}}$ $\chi_{43}^{\chi_{43}}$ $\chi_{44}^{\chi_{45}}$ $\chi_{46}^{\chi_{47}}$ $\chi_{48}^{\chi_{49}}$ $\chi_{50}^{\chi_{51}}$ $\chi_{52}^{\chi_{53}}$ $\chi_{54}^{\chi_{55}}$	$\begin{array}{c} 188\\ 488\\ 488\\ 488\\ 5522$ 5522 552	$\begin{array}{c} 188\\ 488\\ 488\\ 488\\ 552\\ 552\\ 552\\ 552\\ 552\\ 552\\ 552\\ 5$	$ \begin{array}{c} 108 \\ 488 \\ 488 \\ 480 \\ 552 \\ 552 \\ 552 \\ 552 \\ 552 \\ 552 \\ 552 \\ 552 \\ 552 \\ 552 \\ 555 $			-24 -24 -24 -24 -24 -24 -25 -26	000024442222444222222	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -2 \\ 4 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -1 \\ 1 \\ 1 \\ 1 \end{array} $	000000-1242-2112222-21111111111111111111		$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -4 \\ 0 \\ -4 \\ 4 \\ 4 \\ 0 \\ 0 \\ 0 \\ -4 \\ -4$	122222222222222222222222222222222222222	122222022222222222222222222222222222222	122222022222222222222222222222222222222	122222022222222222222222222222222222222	-222222222222222222222222222222222222	122222222222222222222222222222222222222	222222222222222222222222222222222222	-22 - 22 - 22 - 22 - 22 - 22 - 22 - 22
$\frac{\chi_{57}}{\chi_{57}}$	52	52	-52	0	0	-26	-2	1	1	0	0	2	2	2	2	2	2	2	2
$\chi_{58} \ \chi_{59}$	624	-1 -1		-24^{-24}_{-24}	-1			$\frac{24}{24}$	-1 -1			$\begin{vmatrix} 24\\ 24\\ 49 \end{vmatrix}$	-1 -1	-1 -1	$\begin{vmatrix} 24\\ 24\\ 49 \end{vmatrix}$	-1 -1	-1 -1	-1 -1	-1 -1
χ_{60} χ_{61}	$1248 \\ 1872$	-2 -3	0	-24	1		0	$-24 \\ 0$	1			$\frac{48}{12}$	-2 A	-2 *A	48 -18	-2 C	$\frac{-2}{C}$	$\frac{-2}{D}$	-2 D
χ_{62}	1872	-3	Õ	-24	1	Ũ	Ũ	Ũ	Ő	0	Ũ	12	*A	A	-18	$\tilde{\mathbf{D}}$	$\overline{\overline{D}}$	Ċ	Ċ
χ_{63}	1872	-3	0	-24	1	0	0	0	0	$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$		12	A	*A	-18	$\overline{\underline{C}}$	C	$\frac{D}{C}$	D
χ_{64}	1872	-3 _3	0	-24 24	1 _1			0	0			12	^π Α Δ	Α *Δ	-18 _18	D C	$\frac{D}{C}$	$\frac{C}{D}$	C D
χ_{66}	1872	-3 -3	0	$\frac{24}{24}$	-1 -1	0	0	0	0			$12 \\ 12$	*A	A	-18	D	$\frac{O}{D}$	C	$\frac{D}{C}$
χ_{67}	1872	-3	ŏ	24	-1	0	$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$	ŏ	0	0	0	12	A	*Å	-18	$\frac{2}{\overline{C}}$	Ĉ	$\widetilde{\mathrm{D}}$	$\widetilde{\mathbf{D}}$
χ_{68}	1872	-3	0	24	-1	0	0	0	0	0	0	12	*A	A	-18	$\overline{\mathrm{D}}$	\mathbf{D}	\overline{C}	°. €
χ_{69}	3744	-6			0			0	0			-36	В *р	*В р	$\begin{vmatrix} 24 \\ 24 \end{vmatrix}$	Е *ъ	Е *т	*E F	*E
χ_{70}	0144	-0	U		0	U	U	0	0			-30	- D	D	<u> </u> 24	· Ľ	· Ľ	Ŀ	<u> </u>

Table 4: The Character Table of \overline{G}

where $A = \frac{-1-5\sqrt{5}}{2}$, $B = \frac{3+5\sqrt{5}}{2}$, $C = -7E(5) - 2E(5)^2 + 3E(5)^3 + 3E(5)^4$, $D = 3E(5) - 7E(5)^2 + 3E(5)^3 - 2E(5)^4$, $E = -1 - 5\sqrt{5}$

Table 4: The Character Table of \overline{G} (continued)

where
$$F = -\sqrt{5}$$
, $G = 1 + \sqrt{5}$, $H = -E(5) + E(5)^2 + E(5)^4$,

$$I = -E(5)^{2} + E(5)^{3} + E(5)^{4}, J = -3E(4)$$

$[g]_G$	13A	13B	13C	15A	15B	20A	20B	24A	24B	24C	24D	24E	24F	24G	24H
$ [x]_{\overline{G}} $	13A	13B	13C	15A	15B	20A	20B	24A	24B	24C	24D	24E	24F	24G	24H
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1		-1	-1	1	1	1	1	1	1	1	1
χ_3	2	2	2	-1	-1			-1	-1	-1	-1	-1	1-	2	
χ_4	-1	-1	-1	-3			-1N N			0					
$\begin{array}{c} \chi_5 \\ \chi_c \end{array}$		-1	-1	-3	-3	0	10	l 0	l 0	0 0	l ő	0 0	l N	Ň	l N
$\begin{vmatrix} \lambda 0 \\ \gamma_7 \end{vmatrix}$	-1	-1	-1	$\tilde{2}$	-3	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
$\ \hat{\chi}_8^{\prime} \ $	Ō	Ō	Ō	-2	<u>3</u>	Ŏ	Ŏ	-1	-Ĭ	-1	-1	-Ĭ	-ĭ	-1	-1
χ_9	0	0	0	3	-2	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
χ_{10}			0	3	-2		1	-1	-1	-1	-1	-1	-1	-1	-1
χ_{11}				-2	J		U N	-1	-1	-1	1-1	-1	1-1	-1	-1
χ_{12}	$-\frac{2}{2}$	$-\frac{2}{2}$	_2	2	-4	l N	Ň	l 0	Ň	Ŭ Ŭ		Ŭ Ŭ	l N	Ň	l 0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-1	-1	-1	l õ	ŏ	ŏ	ŏ	Ĭ	Ĭ	ĭ	Ĭ	Ĭ	Ĭ	ĭ	Ĭ
$\chi_{15}^{\chi_{15}}$	-1	-1	-1	0	0	0	0	1	1	1	1	1	1	1	1
χ_{16}	0	0	0	-3	$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$		0	1	1	1	1	1	1	-2	-2
χ_{17}			0		-3		0							-2	-2
χ_{18}			U N			- <u>1</u>	-1		U U			U U		Ŭ	
χ_{19}	ŏ	l õ	ŏ				1	$\frac{1}{2}$	$\frac{1}{2}$	-1	-1	-1	-1	-1	-1
$\ \chi_{21}^{\chi_{20}} \ $	ŏ	ŏ	ŏ	1	1	1	1	-2	-2	1	1	1	1	1	1
$\ \tilde{\chi}_{22}^{21}$	0	Ō	Ō	1	1	-1	-1	-2	-2	1	1	1	1	1	1
χ_{23}		0	0	1	1	-1	-1		2	-1	-1	-1	-1	-1	-1
χ_{24}	K	M	L	-2	-2										
$\ \chi_{25} $		I I I		-2	-2										
χ_{26}	K	M	L	-2	-2		Ŭ Ň		0 0	0				0 0	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ĺ	K	м	-2	$-\frac{2}{2}$	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
$\chi_{29}^{\chi_{20}}$	M	Ĺ	K	-2	-2	Ŏ	Ŏ	Ŏ	Ŏ	ŏ	ŏ	Ŏ	ŏ	Ŏ	Ŏ
$\chi_{30}^{\chi_{20}}$	K	M	L	1	1	0	0	0	0	0	0	0	0	0	0
χ_{31}	L	Ķ	M	1	1		0	0	0	0	0	0		0	0
χ_{32}	M	Ļ	K				0		0	0		0		0	0
χ_{33}			K T							0		0			
χ_{34}	L	K	M				Ŭ Ň		0 0	0				0 0	
χ_{26}	ĸ	M	Ľ	1	1	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
χ_{37}	Ĺ	K	M	1	1	Ŏ	Ŏ	Ŏ	Ŏ	ŏ	ŏ	Ŏ	Ŏ	Ŏ	Ŏ
χ_{38}	M	L	K	1	1	0	0	0	0	0	0	0	0	0	0
χ_{39}	M	L	K	1	1	0	0	0	0	0	0	0	0	0	0
χ_{40}	K	M	L	1	1		0		0	0		0		0	0
χ_{41}							U N		0	0		0		9	
χ_{42}	-2	-2	-2	_1	-1	l ŏ	ŏ	-1	-1	-1	1 -1	1-1	1-1	ő	ő
$\begin{vmatrix} \chi_{43} \\ \chi_{44} \end{vmatrix}$	ŏ	ŏ	ŏ	$\frac{1}{2}$	$\frac{1}{2}$	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
χ_{45}	- 0	0	Ō	2	2	0	0	0	Ō	Ō	0	Ō	0	Ō	0
χ_{46}			0	-1	-1		0	$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$	2	-1	-1	-1	-1	2	$\frac{2}{2}$
χ_{47}			0					-2 D	-2 D					-2	-2
χ_{48}			Ö				Ŭ Ň		-n R	-R	$\begin{vmatrix} -n \\ R \end{vmatrix}$	-R	-n R	0 0	
$\begin{vmatrix} \chi_{49} \\ \chi_{50} \end{vmatrix}$	ŏ	ŏ	ŏ	$\frac{1}{2}$	$\begin{bmatrix} -1 \\ 2 \end{bmatrix}$	l ŏ	ŏ	0	0	S	-S	S	-S	Š	-S
χ_{51}	Ŏ	Ŏ	ŏ	$\overline{2}$	$\overline{2}$	Ŏ	Ŏ	Ŏ	Ŏ	$-\tilde{S}$	Ĩ	$-\tilde{S}$	Ĩ	$-\tilde{S}$	Š
χ_{52}	0	0	0	-1	-1	0	0	0	0	J	J	-J	-J	0	0
χ_{53}	0	0	0	-1	-1	0	0	0	0	-J	– J	J	J	0	0
χ_{54}	0	0	0	-1	-1	0	0	R	-R	Т	-T	T	$ -\overline{T}$	S	-S
χ_{55}	0	0	0	-1	-1	0	0	-R	R	-T	T	-T	$ \overline{T} $	-S	S
χ_{56}	0	0	0	-1	-1	0	0	R	-R	-T	$ $ \overline{T}	-T	Г	-S	S
$\left\ \begin{array}{c} \chi_{57} \\ \chi_{57} \end{array} \right\ $	ŏ	ŏ	ŏ	-1	-1	l ŏ	Ő	-R	R	Ť	$ -\hat{T}$	Ť	-T	ŝ	-S
<u>γ</u> εο			0	0	0		0	0	0	0		0		0	
$\ \chi_{59}^{\chi_{59}}$	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
χ_{60}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{61}			0				U Q			0					
$\ \chi_{62} $										0					
$\begin{vmatrix} \lambda 63 \\ \gamma_{64} \end{vmatrix}$	l ŏ	l ŏ	Ŏ	l ŏ	l ŏ	l õ	l õ	l õ	l Ő	Ő	l ñ	l Ő	0	L Õ	l õ
$\ \chi_{65}^{\chi_{65}}$	Ŏ	Ŏ	ŏ	Ŏ	Ŏ	Ŏ	Ŏ	Ŭ	Ŏ	Ŏ	Ŭ	Ŏ	Ŏ	Ŏ	Ŭ
χ_{66}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{67}			0				0		0	0		0		0	
χ_{68}			0												
$\left\ \begin{array}{c} \chi_{69} \\ \chi_{70} \end{array} \right\ $			0				0		0	0		0			
												$\frac{1}{1}$			

Table 4: The Character Table of \overline{G} (continued)

where $\mathbf{K} = -E(13)^4 - E(13)^6 - E(13)^7 - E(13)^9$, $\mathbf{L} = -E(13) - E(13)^5 - E(13)^8 - E(13)^{12}$, $\mathbf{M} = -E(13)^2 - E(13)^3 - E(13)^{10} - E(13)^{11}$, $\mathbf{R} = -\sqrt{6}i$, $\mathbf{S} = -\sqrt{6}$, $\mathbf{T} = E(24) - E(24)^{17}$

$\begin{bmatrix} g \end{bmatrix}_G \\ x \end{bmatrix}_{\overline{G}}$	26A 26A	26B 26B	26C 26C	30A 30A	30B 30B	39A 39A	39B 39B	39C 39C	39D 39D	39E 39E	39F 39F	78A 78A	78B 78B	78C 78C	78D 78D	78E 78E	78F 78F
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 26A\\ 26A\\ 1\\ 1\\ 2\\ 1\\ 1\\ 1\\ 1\\ 1\\ 0\\ 0\\ 0\\ 0\\ 2\\ 2\\ 2\\ 1\\ -1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{array}{c} 26B\\ 26B\\ 1\\ 1\\ 1\\ 2\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	$\begin{array}{c} 26C\\ \hline 26C\\ \hline 11211111000002221-100000000000000000000$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 30B\\ \hline 30B\\ \hline 1\\ -1\\ -2\\ -2\\ 3\\ 3\\ -2\\ -2\\ 3\\ 3\\ -2\\ -2\\ 3\\ -2\\ 3\\ -2\\ 3\\ -2\\ 3\\ -2\\ -2\\ 3\\ -2\\ -2\\ 2\\ 2\\ 2\\ -1\\ -1\\ -1\\ 1\\ -1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ -2\\ 2\\ -2\\ 2\\ -2\\ 2\\ 2\\ 2\\ -1\\ -1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ -2\\ -2\\ 2\\ -2\\ -2\\ 2\\ -2\\ -2\\ 2\\ -2\\ -$	$\begin{array}{c} \hline 39A \\ \hline 39A \\ \hline 11 \\ -11 \\ -11 \\ -11 \\ -11 \\ -11 \\ -11 \\ -10 \\ 00 \\ 0$	39B 39B 11-1-1-1-00000000000000000000000000000	<u>39C</u> <u>1</u> 11111000001111100000000000000000000	<u>39D</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u>	$\begin{array}{c} \underline{39E} \\ \underline{39E} \\ 1 \\ 1 \\ -1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ $	$\begin{array}{c} \underline{39F} \\ \underline{39F} \\ 1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1$	78A 78A 11-1111000000-1-1-1-1-1000000000000000	B 1 0	78C 78C 111111100000,111,100000000000000000000	78D 78D 11-111100000-1-1-1-1000000000000000000	78E 78E 1111111100000000000000000000000000000	$\begin{array}{c} 78F\\ \hline 78F\\ \hline 11\\ -11\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ $
$\chi_{51} \\ \chi_{52} \\ \chi_{53} \\ \chi_{54} \\ \chi_{55} \\ \chi_{56} \\ \chi_{56} $				$ -2 \\ -1 \\ -1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	-2 -1 -1 1 1 1												
$\lambda 57 \ \chi 58 \ \chi 59 \ \chi 60 \ \chi 61 \ \chi 62 \ \chi 63 \ \chi 64 \ \chi 65 \ \chi 66 \ \chi 67 \ \chi 68 \ \chi 69 \ \chi 70$																	

Table 4: The Character Table of \overline{G} (continued)

Acknowledgements

We wish to thank the referee for helpful suggestions and pointing out some typographical errors to improve this paper. The first author is grateful for the support received from his supervisors at Kenyatta University, Nelson Mandela University and Kibabii University to conduct this research. We are most grateful to our Lord Jesus.

References

- A.B.M. Basheer, J. Moori, On a maximal subgroup of the affine general linear group of GL(6,2), Adv. Group Theory Appl., 11 (2021), 1-30.
- [2] A. B. M. Basheer, J. Moori, A survey on Clifford-Fischer theory, London Mathematical Society Lecture Notes Series, 422, Cambridge University Press, 2015, 160-172.
- [3] C. Chileshe, J. Moori, T.T. Seretlo, On a maximal parabolic subgroup of O⁺₈(2), Bull. Iran. Math. Soc., 44 (2018), 159-181.
- [4] C. Chileshe, Irreducible characters of Sylow p-Subgroups associated with some classical linear groups, PhD Thesis, North-West University, 2016.
- [5] W. Bosma, J.J. Canon, *Handbook of magma functions*, Department of Mathematics, University of Sydney, November 1994.
- [6] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of finite groups, Oxford University Press, Oxford, 1985.
- B. Fischer, *Clifford-matrices*, Progr. Math., 95, Michler G.O. and Ringel C.(eds), Birkhauser, Basel, 1991, 1-16.
- [8] The GAP Group, *GAP-groups, algorithms, and programming*, version 4.11.0; 2020. (http://www.gap-system.org).
- [9] R. List, On the characters of $2^{n-\epsilon} S_n$, Archiv der Mathematik, 51 (1988), 118-124.
- [10] J. Moori, T. Seretlo, On the Fischer-Clifford matrices of a maximal subgroup of the Lyons group Ly, Bull. Iranian Math. Soc., 39 (2013), 1037-1052.
- [11] J. Moori, On the groups G^+ and \overline{G} of the forms $2^{10}:M_{22}$ and $2^{10}:\overline{M}_{22}$, PhD thesis, University of Birmingham, 1975.
- [12] Z.E. Mpono, Fischer-Clifford theory and character tables of group extensions, PhD Thesis, University of Natal, 1998.

- [13] J. Moori, On certain groups associated with the smallest Fischer group, J. London Math. Soc., 2 (1981), 61- 67.
- [14] J. Moori, Z.E. Mpono, The Fischer-Clifford matrices of the group $2^6:SP_6(2)$, Quaest. Math., 22 (1999), 257-298.
- [15] D. M. Musyoka, L. N. Njuguna, A. L. Prins, L. Chikamai, On a maximal subgroup of the orthogonal group O₈⁺(3), Proyectiones, 41 (2022), 137-161.
- [16] A.L. Prins, On a two-fold cover $2.(2^{6} \cdot G_2(2))$ of a maximal subgroup of Rudvalis group Ru, Proyectiones, 40 (2021), 1011-1029.
- [17] A.L. Prins, A maximal subgroup $2^{4+6}:(A_5 \times 3)$ of $G_2(4)$ treated as a nonsplit extension $\overline{G} = 2^{6} \cdot (2^4:(A_5 \times 3))$, Adv. Group Theory Appl., 10 (2020), 43-66.
- [18] A.L. Prins, R.L. Monaledi, R.L. Fray, On a maximal subgroup $(2^9:L_3(4)):3$ of the automorphism group $U_6(2):3$ of $U_6(2)$, Afr. Mat., 31 (2020), 1311-1336.
- [19] A.L. Prins, Computing the conjugacy classes and character table of a nonsplit extension $2^{6} \cdot (2^5:S_6)$ from a split extension $2^6 \cdot (2^5:S_6)$, AIMS Math., 5 (2020), 2113-2125.
- [20] A.L. Prins, Fischer-Clifford matrices and character tables of inertia groups of maximal subgroups of finite simple groups of extension type, PhD Thesis, University of the Western Cape, 2011.
- [21] T.T. Seretlo, Fischer Clifford matrices and character tables of certain groups associated with simple groups $O_{10}^+(2)$, HS and Ly, PhD Thesis, University of KwaZulu Natal, 2011.
- [22] N.S. Whitley, Fischer matrices and character tables of group extensions, MSc Thesis, University of Natal, 1994.
- [23] R.A. Wilson, P. Walsh, J. Tripp, I. Suleiman, S. Rogers, R. Parker, S. Norton, S. Nickerson, S. Linton, J. Bray, R. Abbot, ATLAS of finite group representations, http://brauer.maths.qmul.ac.uk/Atlas/v3/.

Accepted: March 12, 2022