On a maximal subgroup $\bar{G}=5^{4}:\left(\left(3 \times 2 L_{2}(25)\right): 2_{2}\right)$ of the Monster \mathbb{M}

David Mwanzia Musyoka
Department of Mathematics and Actuarial Science
Kenyatta University
PO Box 43844-00100, Nairobi
Kenya
davidmusyoka21@yahoo.com
Lydia Nyambura Njuguna
Department of Mathematics and Actuarial Science
Kenyatta University
PO Box 43844-00100, Nairobi
Kenya
njuguna.lydia@ku.ac.ke
lydiahnjuguna@yahoo.com
Abraham Love Prins*
Department of Mathematics and Applied Mathematics
Faculty of Science
Nelson Mandela University
PO Box 77000, Gqeberha, 6031
South Africa
abraham.prins@mandela.ac.za
abrahamprinsie@yahoo.com

Lucy Chikamai

Department of Mathematics and Actuarial Science
Kibabii University
PO Box 1699-50200, Bungoma
Kenya
chikamail@kibu.ac.ke
lucychikamai@gmail.com

Abstract

The split extension $\bar{G}=5^{4}:\left(\left(3 \times 2 L_{2}(25)\right): 2_{2}\right)$ is a maximal subgroup of the sporadic Monster group \mathbb{M} of order $58500000=2^{5} .3^{2} .5^{6} .13$. The technique of Fischer-Clifford matrices has been applied to numerous examples of split and non-split extensions where the kernels are either elementary abelian 2 or 3 -groups but very few examples exist where the kernel is an elementary abelian 5 -group. In this paper, the Fischer-Clifford matrices technique is applied to the group $\bar{G}=5^{4}:\left(\left(3 \times 2 L_{2}(25)\right): 2_{2}\right)$, where the kernel 5^{4} of the extension is an elementary abelian 5 -group.

Keywords: coset analysis, Fischer-Clifford matrices, split extension, inertia factor, character table, fusion map, restriction of characters.
*. Corresponding author

1. Introduction

The sporadic Monster group \mathbb{M} has a conjugacy class of maximal 5 -local subgroups of the form $5^{4}:\left(\left(3 \times 2 L_{2}(25)\right): 2_{2}\right)$ [6]. Obtaining a permutation representation on 625 points for $\bar{G}=5^{4}:\left(\left(3 \times 2 L_{2}(25)\right): 2_{2}\right)$ from the online ATLAS [23], the group \bar{G} is generated by using the algebra computational system MAGMA [5]. The normal subgroup $N=5^{4}$ and subgroup $G=\left(3 \times 2 L_{2}(25)\right): 2_{2} \cong S L_{2}(25): S_{3}$ of \bar{G} are constructed by MAGMA as permutation groups on 625 points. Using the MAGMA commands, "M:=GModule (\bar{G}, N); and "M:Maximal;", the group $G=<g_{1}, g_{2}>$ is constructed as a matrix group of degree 4 over $G F(5)$ with generators g_{1} and g_{2} such that $o\left(g_{1}\right)=2, o\left(g_{2}\right)=39$ and $o\left(g_{1} g_{2}\right)=8$ (see, Figure 1).

$$
g_{1}=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 4 & 0 \\
0 & 2 & 0 & 4
\end{array}\right), g_{2}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
4 & 1 & 4 & 2 \\
0 & 0 & 0 & 1 \\
3 & 4 & 2 & 0
\end{array}\right)
$$

Figure 1: Generators of G
Considering $N=V_{4}(5)$ as the vector space of dimension 4 over $G F(5)$, on which the matrix group $G=<g_{1}, g_{2}>$ acts absolutely irreducibly, it was found with aid of GAP [8] that G has two orbits on N of lengths 1 and 624 with corresponding point stabilizers $P_{1}=G$ and $P_{2}=5^{2}: S_{3}$. By Brauer's theorem (see Theorem 5.1.5 in [12]), the action of G on $\operatorname{Irr}(N)$ also has two orbits of lengths 1 and 624 with corresponding inertia factor groups $H_{1}=G$ and $H_{2}=5^{2}: S_{3}$. It is worth noting that the vector space N and its dual space $N^{*}=\operatorname{Irr}(N)$ are isomorphic as 4-dimensional modules over $G F(5)$ for G. Having obtained G as a 4-dimensional matrix group over the finite field $G F(5)$ and treating N as the vector space $V_{4}(5)$ we can apply Fischer-Clifford theory (see, for example, [7] and [14]) to the split extension \bar{G} to construct its ordinary character table. The Fischer-Clifford matrices technique is powerful if the kernel of a suitable split extension group is elementary abelian as it is the case with the group \bar{G}. A GAP routine found in [21] which is based on coset analysis technique found in [11] and [14] is used to compute the conjugacy classes of \bar{G}. This method is very efficient when the kernel of a split extension is an elementary-abelian p group. The importance of computing conjugacy classes of \bar{G} from a coset $N g$ is that the centralizer orders of these classes play a role in the computation of the entries of a Fischer-Clifford matrix $M(g)$, where g is a conjugacy class representative of G. In the paper [10], Fischer-Clifford technique was applied to a non-split extension $\overline{G_{1}}=5^{3 \cdot} L_{3}(5)$, which is a maximal subgroup of the Lyons sporadic simple group $\mathbb{L} y$. Besides our group $\bar{G}, \overline{G_{1}}$ is one of the few extension groups in the literature with the kernel being an elementary abelian 5-group, where the method of Fischer-Clifford matrices has been applied to.

In the sections that follow, an outline of the Fischer-Clifford matrices technique is going to be given. The conjugacy classes and Fischer-Clifford matrices
of \bar{G} are also computed using appropriate GAP routines. In addition, the ordinary character table of \bar{G} is constructed and the fusion of conjugacy classes of \bar{G} into those of the Monster \mathbb{M} is determined. For an update on recent developments around Fischer-Clifford matrices, interested readers are referred to the papers [1], [2], [15] [16], [17], [18] and [19]. Most of the computations in this paper are carried out with computer algebra systems MAGMA and GAP. Notation from the ATLAS [6] is mostly followed.

2. Theory of Fischer-Clifford matrices

Since the ordinary character table of $\bar{G}=5^{4}:\left(\left(3 \times 2 L_{2}(25)\right): 2_{2}\right)$ will be constructed by the technique of Fischer-Clifford matrices, an outline of this technique is given for a split extension $\bar{G}=N: G$, where N is an elementary abelian p-group, see for example, [14] or [22].

Let $\bar{G}=N: G$ be a split extension of N by G, where N is an elementary abelian p-group. The subgroup $\bar{H}=N: H=\left\{x \in \bar{G} \mid \theta^{x}=\theta\right\}$ of \bar{G} is defined as the inertia group of $\theta \in \operatorname{Irr}(N)$ in \bar{G}, with inertia factor $H=\bar{H} / N$. Note that a lifting $\bar{g} \in \bar{G}$ of $g \in G$ into \bar{G} under the natural homomorphism $\eta: \bar{G} \longrightarrow G$ is just g itself, since $G \leq \bar{G}$. Let $X(g)=\left\{x_{1}, x_{2}, \cdots, x_{c(g)}\right\}$ be a set of representatives of the conjugacy classes of \bar{G} from the coset $N g$ whose images under the natural homomorphism η are in the conjugacy class $[g]$ of G where $x_{1}=g$. Now let $\theta_{1}=1_{N}, \theta_{2}, \cdots, \theta_{t}$ be representatives of the orbits of \bar{G} on $\operatorname{Irr}(N)$. Since N is elementary abelian, we have by Mackey's Theorem (see Theorem 5.1.15 in [12]) that each $\theta_{i}, 1 \leq i \leq t$, extends to a $\psi_{i} \in \operatorname{Irr}\left(\overline{H_{i}}\right)$, i.e. $\psi_{i} \downarrow_{N}=\theta_{i}$. By Theorem 5.1.7, Remark 5.1.8 and Theorem 5.1.19 in [12], an ordinary irreducible character $\chi=\left(\psi_{i} \bar{\beta}\right)^{\bar{G}}$ of \bar{G} consists of $\psi_{i} \bar{\beta} \in \operatorname{Irr}\left(\overline{H_{i}}\right)$ which is induced to \bar{G}, where N is contained in the kernel $\operatorname{ker}(\bar{\beta})$ of a lifting $\bar{\beta} \in \operatorname{Irr}\left(\overline{H_{i}}\right)$ of $\beta \in \operatorname{Irr}\left(H_{i}\right)$ into $\overline{H_{i}}$. Therefore,

$$
\operatorname{Irr}(\bar{G})=\bigcup_{i=1}^{t}\left\{\left(\psi_{i} \bar{\beta}\right)^{\bar{G}} \mid \bar{\beta} \in \operatorname{Irr}\left(\overline{H_{i}}\right), N \subseteq \operatorname{ker}(\bar{\beta})\right\}=\bigcup_{i=1}^{t}\left\{\left(\psi_{i} \bar{\beta}\right)^{\bar{G}} \mid \beta \in \operatorname{Irr}\left(H_{i}\right)\right\}
$$

Hence, the set $\operatorname{Irr}(\bar{G})$ are partitioned into t blocks B_{i} with each block B_{i} corresponding to an inertia subgroup $\overline{H_{i}}$ of \bar{G}. Observe that $|\operatorname{Irr}(\bar{G})|=\left|\operatorname{Irr}\left(H_{1}\right)\right|+$ $\ldots+\left|\operatorname{Irr}\left(H_{t}\right)\right|$.

We take $\overline{H_{1}}=\bar{G}$ and $H_{1}=G$. Choose $y_{1}, y_{2}, . ., y_{r}$ to be representatives of the conjugacy classes $\left[y_{k}\right], k=1, \ldots, r$, of H_{i} that fuse to $[g]$ in G. We define $R(g)=\left\{\left(i, y_{k}\right) \mid 1 \leq i \leq t, H_{i} \cap[g] \neq \emptyset, 1 \leq k \leq r\right\}$ and we observe that y_{k} runs over representatives of the conjugacy classes [y_{k}] of H_{i} which fuse into $[g]$ of G. We define $y_{l_{k}} \in \overline{H_{i}}$ such that $y_{l_{k}}$ ranges over all representatives of the conjugacy classes of \bar{H}_{i} which map to y_{k} under the homomorphism $\overline{H_{i}} \longrightarrow H_{i}$ whose kernel is N.

Lemma 2.1. With notation as above,

$$
\left(\psi_{i} \bar{\beta}\right)^{\bar{G}}\left(x_{j}\right)=\sum_{y_{k}:\left(i, y_{k}\right) \in R(g)}\left[\sum_{l}^{\prime} \frac{\left|C_{\bar{G}}\left(x_{j}\right)\right|}{\left|C_{\overline{H_{i}}}\left(y_{l_{k}}\right)\right|} \psi_{i}\left(y_{l_{k}}\right)\right] \beta\left(y_{k}\right) .
$$

Proof. See [22].
Then, the Fischer-Clifford matrix $M(g)=\left(a_{\left(i, y_{k}\right)}^{j}\right)$ is defined as $\left(a_{\left(i, y_{k}\right)}^{j}\right)=$ $\left(\sum_{l}^{\prime} \frac{\left|C_{\bar{G}}\left(x_{j}\right)\right|}{\left|C_{\overline{H_{i}}}\left(y_{l_{k}}\right)\right|} \psi_{i}\left(y_{l_{k}}\right)\right)$, with columns indexed by $X(g)$ and rows indexed by $R(g)$ and where \sum_{l}^{\prime} is the summation over all l for which $y_{l_{k}} \sim x_{j}$ in \bar{G}. So, we can write Lemma 2.1 as

$$
\left(\psi_{i} \bar{\beta}\right)^{\bar{G}}\left(x_{j}\right)=\sum_{y_{k}:\left(i, y_{k}\right) \in R(g)} a_{\left(i, y_{k}\right)}^{j} \beta\left(y_{k}\right) .
$$

The Fischer-Clifford $M(g)$ (see, Figure 2) is partitioned row-wise into blocks $M_{i}(g)$, where each block corresponds to an inertia group \bar{H}_{i}. We write $\left|C_{\bar{G}}\left(x_{j}\right)\right|$, for each $x_{j} \in X(g)$, at the top of the columns of $M(g)$ and at the bottom we write $m_{j} \in \mathbb{N}$, where we define $m_{j}=|N| \frac{\left|C_{G}(g)\right|}{\left|C_{\bar{G}}\left(x_{j}\right)\right|}$. On the left of each row we write $\left|C_{H_{i}}\left(y_{k}\right)\right|$, where the conjugacy classes $\left[y_{k}\right], k=1,2, \ldots, r$, of an inertia factor H_{i} fuse into the conjugacy class $[g]$ of G.

Figure 2: The Fischer-Clifford Matrix $M(g)$

In practice it is difficult to compute the elements $y_{l_{k}}$ or the ordinary irreducible character tables of the inertia groups \bar{H}_{i}, since the sets $\operatorname{Irr}\left(\bar{H}_{i}\right)$ of ordinary irreducible characters of the \bar{H}_{i} 's are in general much larger and more complicated to compute than the one for \bar{G}. Instead of using the above formal definition of a Fischer-Clifford matrix $M(g)$, the arithmetical properties of $M(g)$ found in [14] are used to compute the entries of $M(g)$. The matrix $M(g)$ is square where the number of rows is equal to the number of conjugacy classes of the inertia factors H_{i} 's, $1 \leq i \leq t$, which fuse into the class $[g]$ in G and the number of columns is equal to the number $c(g)$ of conjugacy classes of \bar{G} which is obtained from the coset $N \bar{g}$. Then, the partial character table of \bar{G} on the classes $\left\{x_{1}, x_{2}, \cdots, x_{c(g)}\right\}$ is given by

$$
\left[\begin{array}{c}
C_{1}(g) M_{1}(g) \\
C_{2}(g) M_{2}(g) \\
\vdots \\
C_{t}(g) M_{t}(g)
\end{array}\right]
$$

with each block $M_{i}(g)$ of $M(g)$ (see Figure 2) corresponding to an inertia group \bar{H}_{i} and $C_{i}(g)$ consists of the columns of the ordinary character table of H_{i} which correspond to the conjugacy classes of H_{i} that fuse into the class $[g]$ of G. We obtain the characters of \bar{G} by multiplying the relevant columns of the ordinary irreducible characters of H_{i} by the rows of $M(g)$.

3. The conjugacy classes of \bar{G}

In this section, a GAP routine (labelled as Programme A in [21]), which is based on the method of coset analysis (see [11], [13] or [14]), is used to compute the conjugacy classes of \bar{G}. This GAP routine is written for a split extension $S=p^{n}: Q$ of an elementary abelian p-group p^{n} by a linear matrix group Q of dimension n over the field $G F(p)$. The group p^{n} (regarded as a vector space $V_{n}(p)$ of degree n over the finite field $G F(p)$ (p is a prime)) is a Q-module where upon the matrix group Q acts naturally. A coset $p^{n} q$ is considered for each conjugacy class $[q]$ representative q in Q and then consider the action of the stabilizer $C_{g}=p^{n}: C_{Q}(q)=\left\{x \in S \mid x\left(p^{n} q\right) x^{-1}=p^{n} q\right\}$ of the coset $p^{n} q$ in S by conjugation on the elements of $p^{n} q$. Since C_{g} is split extension we will first act p^{n} on $p^{n} q$ to form k orbits $Q_{1}, Q_{2}, \ldots, Q_{k}$, with each orbit Q_{i} containing $\left|p^{n}\right| / k$ elements. Under the action of the centralizer $C_{Q}(q)$ of q in Q, f_{j} of the k orbits Q_{i} fuse together to form an orbit O_{j}. The orbit O_{j} contains the elements from the coset $p^{n} q$ which belong to a conjugacy class $\left[x_{j}\right]$ of S with class representative x_{j}. Note that $\sum f_{j}=k$. The order of the centralizer $\left|C_{S}\left(x_{j}\right)\right|$ of the class representative x_{j} is then computed by $\left|C_{S}\left(x_{j}\right)\right|=\frac{k\left|C_{Q}(q)\right|}{f_{j}}$. In this manner, the conjugacy classes of S, with class representatives $X(q)=\left\{x_{1}, x_{2}, \ldots, x_{c(q)}\right\}$ (see Section 2) coming from the coset $p^{n} q$, are obtained.

Using similar techniques as in [14], the permutation character $\chi\left(G \mid 5^{4}\right)$ of $G=\left(3 \times 2 L_{2}(25)\right): 2_{2}$ on the conjugacy classes of $N=5^{4}$ is computed as

$$
\chi\left(G \mid 5^{4}\right)=\sum_{i=1}^{2} I_{P_{i}}^{G}=1 a a+13 c d+25 b+26 d d+52 b b d e j k l m n o .
$$

Note that $\chi\left(G \mid 5^{4}\right)$ is the sum of the identity characters $I_{P_{i}}^{G}, i=1,2$, of the point stabilizers P_{i} of the orbits of G on N, which are induced to G. Also, $\chi\left(G \mid 5^{4}\right)$ is written in terms of the ordinary irreducible characters of G. For an element g in a conjugacy class $[g]$ of G, it is required that $\chi\left(G \mid 5^{4}\right)(g)=5^{n}$, for some $n \in\{0,1,2,3,4\}$. The value $\chi\left(G \mid 5^{4}\right)(g)$ gives the number of elements of N which is fixed by an element $g \in G$ and it is also the number of orbits of N on a coset $N g$.

In Section 1, the group $G=\left(3 \times 2 L_{2}(25)\right): 2_{2}=<g_{1}, g_{2}>$ was computed as a 4-dimensional matrix group over the field $G F(5)$ and with $N=5^{4}$ represented as a vector space $V_{4}(5)$ of dimension 4 over $G F(5)$, we now proceed to compute the conjugacy classes for \bar{G} as described above. The permutation character $\chi\left(G \mid 5^{4}\right)$ is evaluated on each class representative $g \in G$ to determine the number $k=$ $\chi\left(G \mid 5^{4}\right)(g)$ of orbits of N on $N g$. Programme A in [21] written in GAP is then used to calculate the number f_{j} of these k orbits which come together as an orbit O_{j} under the action of $C_{G}(g)$. With the values of k and the f_{j} 's obtained, the order of the centralizer $\left|C_{\bar{G}}\left(d_{j} g\right)\right|=\frac{k\left|C_{G}(g)\right|}{f_{j}}$ of a class representative $d_{j} g \in O_{j}$, where $d_{j} \in N$ and $g \in G$, is computed (see Table 1). Altogether 70 conjugacy classes are obtained for \bar{G}. Using the GAP routine, Programme B in [21], which is based on Theorem 2.7 and Remark 2.8 in [14], the order $o\left(d_{j} g\right)$ of a representative $d_{j} g$ in the orbit O_{j}, is computed. Let $\left(d_{j} g\right)^{o(g)}=w \in N$. If $w=$ 1_{N}, then $o\left(d_{j} g\right)=o(g)$. Otherwise for $w \neq 1_{N}$ we have $o\left(d_{j} g\right)=5 o(g)$, since N is an elementary abelian 5 -group. Hence the order for each class representative $d_{j} g$ in a conjugacy class $\left[d_{j} g\right]$ of \bar{G} coming from a coset $N g$ is determined and is found in Table 1. From Programme A and Programme B in [21] the p-power maps, p a prime, are computed for the elements in each conjugacy class $\left[d_{j} g\right]$ of \bar{G} and are listed in Table 1. The values of the parameter, $m_{j}=\frac{f_{j}|N|}{k}$, which are useful in determining the entries of a Fischer-Clifford matrix $M(g)$ are also listed in Table 1. We identify $d_{j} g$ with x_{j} used in Section 2 and in the beginning of Section 3.

Table 1: The Conjugacy Classes of \bar{G}

Table 1. The Conjugacy Classes of \bar{G} (continued)

$[g]_{G}$			m_{j}	d_{j}	w	$\left[d_{j} g\right]_{\bar{G}} \mid$	$\left\|C_{\bar{G}}\left(d_{j} g\right)\right\|$	$\begin{array}{llll}2 & 3 & 5\end{array}$	13	$\mapsto \mathbb{M}$
$24 A$		6	625	(0,0,0, 0)	$(0,0,0,0)$	$24 A$	72	$12 B 8 B$		$12 F$
$24 B$		16	625 (0,	$(0,0,0,0)$	$(0,0,0,0)$	$24 B$	72	$12 B 8 B$		24 J
$24 C$		16	625	$(0,0,0,0)$	$(0,0,0,0)$	$24 C$	72	$12 D 8 B$		$24 J$
$24 D$		16	625	$(0,0,0,0)$	$(0,0,0,0)$	24 D	72	12 D 8 B		$24 J$
$24 E$		16	625	$(0,0,0,0)$	$(0,0,0,0)$	$24 E$	72	$12 C 8 B$		$24 J$
$24 F$		16	625	$(0,0,0,0)$	$(0,0,0,0)$	$24 F$	72	$12 C 8 B$		$24 J$
$24 G$		16	625	$(0,0,0,0)$	$(0,0,0,0)$	$24 G$	72	$12 E 8 B$		$24 J$
24 H		16	625	$(0,0,0,0)$	$(0,0,0,0)$	24 H	72	$12 E 8 B$		$24 J$
26 A		16	625 ($(0,0,0,0)$	$(0,0,0,0)$	26 A	78	13 C	$2 A$	$26 B$
$26 B$		16	625	$(0,0,0,0)$	$(0,0,0,0)$	$26 B$	78	$13 A$	$2 A$	$26 B$
26 C		16	625	$(0,0,0,0)$	$(0,0,0,0)$	$26 C$	78	$13 B$	$2 A$	26
30 A		16	625	$(0,0,0,0)$	$(0,0,0,0)$	30 A	150	$15 A 10 B 6 A$		$30 A$
$30 B$		16	625	$(0,0,0,0)$	$(0,0,0,0)$	$30 B$	150	15B 10C 6 A		30 D
$39 A$		16	625	$(0,0,0,0)$	$(0,0,0,0)$	$39 A$	78	13 C	$3 A$	39 C
$39 B$		16	625	$(0,0,0,0)$	$(0,0,0,0)$	$39 B$	78	13 C	$3 A$	39D
39 C		16	625	$(0,0,0,0)$	$(0,0,0,0)$	39 C	78	13 A	$3 A$	39 C
39 D			625 (0,	$(0,0,0,0)$	$(0,0,0,0)$	39 D	78	13 A	$3 A$	39 D
$39 E$		16	625	$(0,0,0,0)$	$(0,0,0,0)$	$39 E$	78	$13 B$	$3 A$	$39 C$
$39 F$		16	625	$(0,0,0,0)$	$(0,0,0,0)$	$39 F$	78	$13 B$	$3 A$	39D
$78 A$		6	625	$(0,0,0,0)$	$(0,0,0,0)$	$78 A$	78	$39 E 26 C$	6 A	$78 B$
$78 B$		16	625	$(0,0,0,0)$	$(0,0,0,0)$	$78 B$	78	39 F 26 C	$6 A$	$78 C$
$78 C$		6	625	$(0,0,0,0)$	$(0,0,0,0)$	$78 C$	78	39A 26 A	6 A	$78 B$
78 D		6	625	$(0,0,0,0)$	$(0,0,0,0)$	78 D	78	39B 26A	$6 A$	78
$78 E$	1	16	625 ($(0,0,0,0)$	$(0,0,0,0)$	$78 E$	78	$39 C 26 B$	6 A	$78 B$
78 F		16	625	$(0,0,0,0)$	$(0,0,0,0)$	$78 F$	78	39 D 26 B	6 A	$78 C$

4. Inertia factor groups of \bar{G}

We have already seen in the Introduction of this paper, that the orbit stabilizers (the so-called inertia factors) of the action of G on $\operatorname{Irr}(N)$ are two groups of the form $H_{1}=G$ and $H_{2}=5^{2}: S_{3}$. The inertia factor $H_{2}=<\alpha_{1}, \alpha_{2}>$ is generated from elements $\alpha_{1} \in 2 B$ and $\alpha_{2} \in 10 C$ (see Figure 3) in the conjugacy classes $2 B$ and $10 C$ of G.

The fusion maps of the conjugacy classes of H_{2} into G are shown in Table 2 and will be used in the construction of the Fischer-Clifford matrices and ordinary character table of \bar{G}.

$$
\alpha_{1}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
2 & 0 & 4 & 0 \\
0 & 2 & 0 & 4
\end{array}\right), \alpha_{2}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
4 & 3 & 2 & 4 \\
2 & 0 & 4 & 0 \\
4 & 3 & 1 & 2
\end{array}\right)
$$

Figure 3: Generators of H_{2}

Table 2: The fusion of H_{2} into G

$[h]_{H_{2}} \longrightarrow[g]_{\left(3 \times 2 L_{2}(25)\right): 2_{2}}$	$[h]_{H_{2}} \longrightarrow[g]_{\left(3 \times 2 L_{2}(25)\right): 2_{2}}$		
$1 A$	$1 A$	$5 E$	$5 B$
$2 A$	$2 B$	$5 F$	$5 B$
$3 A$	$3 C$	$10 A$	$10 C$
$5 A$	$5 A$	$10 B$	$10 D$
$5 B$	$5 A$	$10 C$	$10 C$
$5 C$	$5 B$	$10 D$	$10 D$
$5 D$	$5 B$		

5. The Fischer-matrices of \bar{G}

In this section, the Fischer-Clifford matrices of the group \bar{G} are going to be obtained by using a GAP routine, Programme D in [3] and [4]. This routine gives a possible candidate for a Fischer-Clifford matrix $M(g)$ and then the properties of Fischer-Clifford matrices (see [2], [14]) are used to rearrange the rows and columns in order to get the unique matrix $M(g)$ corresponding to a class representative $g \in G$. A brief outline of the theory behind the development of Programme D, as found in [9] and [14], is given first.

We restrict our discussion to a split extension $S=p^{n}: Q$, with p^{n} an elementary abelian p-group. For a class representative $q \in Q$, it can be shown that the map $\phi_{q}: p^{n} \longrightarrow p^{n}$, defined by $\phi_{q}(\bar{n})=\bar{n} q \bar{n}^{-1} q^{-1}$, is an endomorphism of p^{n}. The image $\mathbb{I}=\operatorname{Im}\left(\phi_{q}\right)$ and kernel $\operatorname{ker}\left(\phi_{q}\right)$ are C_{q}-sub-modules of p^{n}, where $C_{q}=p^{n}: C_{Q}(q)$ is the stabilizer of the coset $p^{n} q$. The actions of p^{n} by conjugation on $p^{n} q$ and that of \mathbb{I} by left multiplication result in the same number k of orbits. It follows that the action of C_{q} on the k orbits of p^{n} on $p^{n} q$ is the same as the action of C_{q} on the module $p^{n} / \mathbb{I} \cong \operatorname{ker}\left(\phi_{q}\right)$. Therefore, we can identify the k orbits of the action of \mathbb{I} on $p^{n} q$ with the k elements of p^{n} / \mathbb{I}. Since p^{n} is an elementary abelian p-group, \mathbb{I} and $\operatorname{ker}\left(\phi_{q}\right)$ are also elementary abelian p-groups and it follows that the index of \mathbb{I} in p^{n} is $\left[p^{n}: \mathbb{I}\right]=k$. Instead of acting C_{q} on the k orbits, the centralizer $C_{Q}(q)$ of q in Q is used. With the above discussion and notation and more details in [9], the following theorem is formulated.

Theorem 5.1. A Fischer-Clifford matrix $M(q)$ of a split extension $S=p^{n}: Q$, corresponding to a class representative $q \in Q$, is a matrix of orbit sums of
C_{q} acting on the rows of the ordinary character table of p^{n} / \mathbb{I} with duplicating columns discarded.

Corollary 5.1. If $q=1_{Q}$, then $\mathbb{I}=\operatorname{Im}\left(\phi_{q}\right)=1_{p^{n}}$ and the Fischer-Clifford matrix $M\left(1_{Q}\right)$ is the matrix of orbit sums of $C_{q}=S$ acting on the rows of the ordinary character table of $p^{n} / \mathbb{I}=p^{n}$ with duplicating columns discarded.

The following GAP routine, which is based on the above theoretical discussion, is taken from Programme D in [3] and can compute a candidate FM for a Fischer-Clifford matrix $M(q)$ of $S=p^{n}: Q$.
$\mathrm{C}:=\operatorname{List}($ ConjugacyClasses(G),Representative) $; ; \mathrm{M}:=[] ; ;$
$\mathrm{g}:=\mathrm{C}[\mathrm{i}] ;$; for n in N do
Add (M, n* ${ }^{*}$ Inverse(n$)^{*}$ Inverse (g)) $;$ od;
$\mathrm{M}:=\operatorname{AsGroup}(\mathrm{M}) ;$ cent $:=\operatorname{Centralizer(G,~g);~}$
$\mathrm{I}:=\operatorname{Irr}(\mathrm{N}) ;$ IM: $=[] ;$ for i in $[1 . . \operatorname{Size}(\mathrm{I})]$ do
if $\operatorname{IsSubgroup}(\operatorname{Kernel}(\mathrm{I}[\mathrm{i}]), \mathrm{M})$ then $\operatorname{Add}(\mathrm{IM}, \mathrm{I}[\mathrm{i}])$;
fi; od; oo:=Orbits(cent,IM); FM:=[];;
for i in $[1 . . \operatorname{Size}(o o)]$ do
Append(FM,[AsList(Sum(oo[i]))]);od;
M1:=TransposedMat(FM);
M2:=AsDuplicateFreeList(M1);;
FM:=TransposedMat(M2);; Display(FM)

As an example, consider the conjugacy class $5 B$ of G. By making use of Theorem 5.2 .4 and property (e) in [12], $M(5 B)$ has the following form with corresponding weights attached to the rows and columns,

		$\left\|C_{\bar{G}}(5 E)\right\|$	$\left\|C_{\bar{G}}(5 F)\right\|$	$\left\|C_{\bar{G}}(5 G)\right\|$	$\left\|C_{\bar{G}}(5 H)\right\|$	$\left\|C_{\bar{G}}(5 I)\right\|$
		7500	1250	1250	1250	1250
$\left\|C_{H_{1}}(5 B)\right\|=$	300	(1	1	1	1	1
$\left\|C_{H_{2}}(5 C)\right\|=$	50	6	g	h	i	j
$\left\|C_{H_{2}}(5 D)\right\|=$	50	6	l	m	n	o
$\left\|C_{H_{2}}(5 E)\right\|=$	50	6	q	r	s	t
$\left\|C_{H_{2}}(5 F)\right\|=$	50	(6	v	w	x	y
	m_{j}	25	150	150	150	150

To determine the unknown entries $M(5 B)$, the above GAP routine gives the candidate FM,

$$
M(5 B)=\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
6 & A^{*} & A & B^{*} & B \\
6 & A & A^{*} & B & B^{*} \\
6 & B^{*} & B & A & A^{*} \\
6 & B & B^{*} & A^{*} & A
\end{array}\right)
$$

where $A=1-\sqrt{5}$ and $B=(-3-\sqrt{5}) / 2$.
From the p-power maps of \bar{G} in Table 1, we have that $(10 I)^{2}=5 F,(10 H)^{2}=$ $5 G,(10 E)^{2}=5 H$ and $(10 F)^{2}=5 I$. Thus, for any $\chi \in \operatorname{Irr}(\bar{G})$, the congruent relations $\chi(5 F) \equiv \chi(10 I)(\bmod 2), \chi(5 G) \equiv \chi(10 H)(\bmod 2), \chi(5 H) \equiv \chi(10 E)$ $(\bmod 2)$ and $\chi(5 I) \equiv \chi(10 F)(\bmod 2)$ must be satisfied. Checking the validity of these relations for the parts of the ordinary character tables of \bar{G} corresponding to $M(10 C), M(10 D)$ and the candidate $F M$ for $M(5 B)$, the rows of FM are rearranged to find the desired Fischer-Clifford matrix $M(5 B)$ of \bar{G} (see Figure 4).

$$
M(5 B)=\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
6 & A^{*} & A & B^{*} & B \\
6 & B & B^{*} & A^{*} & A \\
6 & A & A^{*} & B & B^{*} \\
6 & B^{*} & B & A & A^{*}
\end{array}\right)
$$

Figure 4: Fischer-Clifford matrix $M(5 B)$
Only the Fischer-matrices $M(5 B), M(10 C)$ and $M(10 D)$ were computed with the aid of the above GAP routine. The rest of the Fischer-Clifford matrices of \bar{G} were computed manually. The above GAP routine comes in very handy when some entries of the Fischer-Clifford matrices are algebraic integers which are not integers. If there are considerately many inertia factors H_{i} for the action of a split extension $S=p^{n}: Q$ on $\operatorname{Irr}\left(p^{n}\right)$, the Fischer-Clifford matrices can become very large. Consequently, to compute the desired Fischer-Clifford matrices of S, it is necessary also to use other techniques such as restriction of ordinary characters of the parent group of S to the ordinary irreducible characters of S together with the GAP routine. However, when the group S becomes too large, the computational power to use the GAP routine becomes difficult. We have then to resort to other methods, if possible, to compute the FischerClifford matrices. The Fischer-Clifford matrices of \bar{G} have sizes ranging from 1 to 5 and are contained in Table 3.

Table 3: The Fischer-Clifford Matrices of \bar{G}

$M(g)$	$M(\mathrm{~g})$
$M(1 A)=\left(\begin{array}{cc}1 & 1 \\ 624 & -1\end{array}\right)$	$M(2 B)=\left(\begin{array}{cc}1 & 1 \\ 24 & -1\end{array}\right)$
$M(3 C)=\left(\begin{array}{cc}1 & 1 \\ 24 & -1\end{array}\right)$	$M(5 A)=\left(\begin{array}{ccc}1 & 1 & 1 \\ 12 & -3 & 2 \\ 12 & 2 & -3\end{array}\right)$
$M(5 B)=\left(\begin{array}{ccccc}1 & 1 & 1 & 1 & 1 \\ 6 & A^{*} & A & B^{*} & B \\ 6 & B & B^{*} & A^{*} & A \\ 6 & A & A^{*} & B & B^{*} \\ 6 & B^{*} & B & A & A^{*}\end{array}\right)$	$M(10 C)=\left(\begin{array}{ccc}1 & 1 & 1 \\ 2 & C & C^{*} \\ 2 & C^{*} & C\end{array}\right)$
$M(10 D)=\left(\begin{array}{ccc}1 & 1 & 1 \\ 2 & C & C^{*} \\ 2 & C^{*} & C\end{array}\right)$	$M\left(g_{i}\right)=(1), \forall g_{i} \notin\{1 A, 2 B, 3 C, 5 A, 5 B, 10 C, 10 D\}$

6. The character table of \bar{G} and fusion into the Monster \mathbb{M}

With all the necessary information obtained in the previous sections, the ordinary character table of \bar{G} can now be constructed by the technique of FischerClifford matrices as discussed in Section 2. The character table (see Table 4) is a $70 \times 70 \mathbb{C}$-valued matrix partitioned row-wise into two blocks $\triangle_{1}=\left\{\chi_{i} \mid 1 \leq\right.$ $i \leq 57\}$ and $\triangle_{2}=\left\{\chi_{i} \mid 58 \leq i \leq 70\right\}$, where $\chi_{i} \in \operatorname{Irr}(\bar{G})=\cup_{i=1}^{2} \triangle_{i}$. Note that each block corresponds to an inertia group $\bar{H}_{i}=5^{4}: H_{i}$. Checks for consistency and accuracy of the character table obtained have been carried out with the GAP routine, Programme C [20].

Unique p-power maps for the elements of \bar{G} are obtained for our Table 4 using Programme C, which coincide with the p-power maps in Table 1. Using the power maps of \bar{G} and \mathbb{M}, the permutation character $\chi(\mathbb{M} \mid \bar{G})$ of \mathbb{M} on the classes of \bar{G} which was computed directly by GAP, we obtained partial fusion from the classes of \bar{G} into \mathbb{M}. To complete the fusion map from \bar{G} to \mathbb{M}, the technique of set intersections [14] was used to restrict ordinary irreducible characters of \mathbb{M} of small degrees to \bar{G}. For example, the character $196883 a \in \operatorname{Irr}(\mathbb{M})$ will restrict to \bar{G} as $(196883 a)_{\bar{G}}=13 c+24 a+26 c e f+52 a c j k+624 a+4(624 b)+5(1248 a)+$ $5(1872 a)+7(1872 b)+5(1872 c)+7(1872 d)+5(1872 e)+7(1872 f)+5(1872 g)+$ $7(1872 h)+13(3744 a)+13(3744 b)$. The fusion map of the classes of \bar{G} into the classes of \mathbb{M} is found in the last column of Table 1.
Table 4: The Character Table of \bar{G}

where $\mathrm{A}=\frac{-1-5 \sqrt{5}}{2}, \mathrm{~B}=\frac{3+5 \sqrt{5}}{2}, \mathrm{C}=-7 E(5)-2 E(5)^{2}+3 E(5)^{3}+3 E(5)^{4}$,
$\mathrm{D}=3 E(5)-7 E(5)^{2}+3 E(5)^{3}-2 E(5)^{4}, \mathrm{E}=-1-5 \sqrt{5}$

Table 4: The Character Table of \bar{G} (continued)

$[g]_{G}$	6 A	6B	6 C	6D	8A	8B	10A	10B		10 C			10D		12A	12B	12C	12D	12 E
$[x]_{\bar{G}}$	6 A	6B	6 C	6D	8A	8B	10B	10C	10D	10 E	10F	10G	10H	10I	12A	12B	12 C	12D	12 E
χ_{1}	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_{2}	1	1	1	-1	-1	1	1	1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1
χ^{χ}	-1	2	-1	0	0	2	2	2	0	0	0	0	0	0	0	-1	-1	-1	2
χ_{4}	-12	0	0	0	0	0	3	-2	0	0	0	0	0	0	0	0	0	0	0
χ_{5}	-12	0	0	0	0	0	3	-2	0	0	0	0	0	0	0	0	0	0	0
χ_{6}	-12	0	0	0	0	0	-2	3	F	F	F	-F	-F	-F	0	0	0	0	0
χ_{7}	-12	0	0	0	0	0	-2	3	-F	-F	-F	F	F	F	0	0	0	0	0
χ_{8}	13	1	1	-1	1	-1	-2	3	-1	-1	-1	-1	-1	-1	1	1	1	1	1
$\chi 9$	13	1	1	1	1	-1	3	-2	0	0	0	0	0	0	-1	1	1	1	1
χ_{10}	13	1	1	-1	-1	-1	3	-2	0	0	0	0	0	0	1	1	1	1	1
χ_{11}	13	1	1	1	-1	-1	-2	3	1	1	1	1	1	1	-1	1	1	1	1
χ_{12}	12	0	0	0	0	0	6	-4	0	0	0	0	0	0	0	0	0	0	0
χ_{13}	12	0	0	0	0	0	-4	6	0	0	0	0	0	0	0	0	0	0	0
χ_{14}	25	1	1	1	-1	1	0	0	0	0	0	0	0	0	1	1	1	1	1
χ_{15}	25	1	1	-1	1	1	0	0	0	0	0	0	0	0	-1	1	1	1	1
χ_{16}	-13	2	-1	0	0	-2	6	-4	0	0	0	0	0	0	0	-1	-1	-1	2
χ_{17}	-13	2	-1	0	0	-2	-4	6	0	0	0	0	0	0	0	-1	-1	-1	2
χ_{18}	26	2	2	0	0	0	1	1	1	1	1	1	1	,	0	-2	-2	-2	-2
χ_{19}	26	2	2	0	0	0	1	1	-1	-1	-1	-1	-1	-1	0	-2	-2	-2	-2
$\chi 20$	26	-1	-1	-1	0	2	1	1	1	1	1	1	1	1	-1	2	-1	-1	-1
χ_{21}	26	-1	-1	1	0	-2	1	1	-1	-1	-1	-1	-1	-1	-1	2	-1	-1	-1
$\chi^{\chi 2}$	26	-1	-1	-1	0	-2	1	1	1	1	1	1	1	1	1	2	-1	-1	-1
$\chi 23$	26	-1	-1	1	0	2	1	1	-1	-1	-1	-1	-1	-1	1	2	-1	-1	-1
χ_{24}	48	0	0	0	0	0	-2	-2	0	0	0	0	0	0	0	0	0	0	0
$\chi 25$	48	0	0	0	0	0	-2	-2	0	0	0	0	0	0	0	0	0	0	0
χ^{26}	48	0	0	0	0	0	-2	-2	0	0	0	0	0	0	0	0	0	0	0
$\chi^{\chi} 27$	-48	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0
$\chi 28$	-48	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0
χ_{29}	-48	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0
χ^{χ}	24	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0
$\chi 31$	24	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0
χ^{χ}	24	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0
χ^{23}	24	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0
χ^{24}	24	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0
$\chi^{2} 5$	24	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0
χ_{36}	-24	0	0	0	0	0	-2	-2	0	0	0	0	0	0	0	0	0	0	0
χ^{2}	-24	0	0	0	0	0	-2	-2	0	0	0	0	0	0	0	0	0	0	0
χ^{28}	-24	0	0	0	0	0	-2	-2	0	0	0	0	0	0	0	0	0	0	0
$\chi 39$	-24	0	0	0	0	0	-2	-2	0	0	0	0	0	0	0	0	0	0	0
χ_{40}	-24	0	0	0	0	0	-2	-2	0	0	0	0	0	0	0	0	0	0	0
χ_{41}	-24	0	0	0	0	0	-2	-2	0	0	0	0	0	0	0	0	0	0	0
χ_{42}	-25	2	-1	0	0	2	0	0	0	0	0	0	0	0	0	-1	-1	-1	2
$\chi 43$	-26	4	-2	0	0	0	2	2	0	0	0	0	0	0	0	2	2	2	-4
χ_{44}	-52	-4	-4	0	0	0	-2	-2	0	0	0	0	0	0	0	0	0	0	0
χ_{45}	52	-2	-2	0	0	0	2	2	0	0	0	0	0	0	0	-4	2	2	2
χ_{46}	-26	-2	1	0	0	-4	2	2	0	0	0	0	0	0	0	-2	1	1	-2
χ_{47}	-26	-2	1	0	0	4	2	2	0	0	0	0	0	0	0	-2	1	1	-2
χ_{48}	26	-4	2	0	0	0	-2	-2	0	0	0	0	0	0	0	0	0	0	0
χ_{49}	26	-4	2	0	0	0	-2	-2	0	0	0	0	0	0	0	0	0	0	0
$\chi^{\chi} 5$	-52	2	2	0	0	0	-2	-2	0	0	0	0	0	0	0	0	0	0	0
$\chi^{\chi} 51$	-52	2	2	0	0	0	-2	-2	0	0	0	0	0	0	0	0	0	0	0
χ_{52}	26	-2	1	0	0	0	2	2	0	0	0	0	0	0	0	2	-1	-1	2
χ_{53}	-26	-2	1	0	0	0	2	2	0	0	0	0	0	0	0	2	-1	-1	2
χ_{54}	26	2	-1	0	0	0	-2	-2	0	0	0	0	0	0	0	0	J	-J	0
χ_{55}	26	2	-1	0	0	0	-2	-2	0	0	0	0	0	0	0	0	J	-J	0
$\chi^{\prime}{ }_{56}$	26	2	-1	0	0	0	-2	-2	0	0	0	0	0	0	0	0	-J	J	0
χ_{57}	26	2	-1	0	0	0	-2	-2	0	0	0	0	0	0	0	0	-J	J	0
χ_{58}	0	0	0	0	0	0	0	0	4	-1	-1	4	-1	-1	0	0	0	0	0
χ_{59}	0	0	0	0	0	0	0	0	-4	1	1	-4	1	1	0	0	0	0	0
χ_{60}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{61}	0	0	0	0	0	0	0	0	G	H	$\overline{\mathrm{H}}$	*G	$\overline{\mathrm{I}}$	I	0	0	0	0	0
$\chi 62$	0	0	0	0	0	0	0	0	*G	I	$\overline{\mathrm{I}}$	G	H	$\overline{\mathrm{H}}$	0	0	0	0	0
χ_{63}	0	0	0	0	0	0	0	0	G	$\overline{\mathrm{H}}$	H	*G	I	1	0	0	0	0	0
χ_{64}	0	0	0	0	0	0	0	0	*G	I	I	G	$\overline{\mathrm{H}}$	H	0	0	0	0	0
χ_{65}	0	0	0	0	0	0	0	0	-G	-H	- $\overline{\mathrm{H}}$	-*G	- $\overline{\mathrm{I}}$	-I	0	0	0	0	0
χ_{66}	0	0	0	0	0	0	0	0	-*G	- I	- $\overline{\mathrm{I}}$	-G	-H	- $\overline{\mathrm{H}}$	0	0	0	0	0
χ_{67}	0	0	0	0	0	0	0	0	-G	- $\overline{\mathrm{H}}$	-H	-*G	-I	- $\overline{\mathrm{I}}$	0	0	0	0	0
χ_{68}	0	0	0	0	0	0	0	0	-*G	- $\overline{\mathrm{I}}$	-I	-G	- $\overline{\mathrm{H}}$	-H	0	0	0	0	0
χ_{69}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{70}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

where $\mathrm{F}=-\sqrt{5}, \mathrm{G}=1+\sqrt{5}, \mathrm{H}=-E(5)+E(5)^{2}+E(5)^{4}$,

$$
\mathrm{I}=-E(5)^{2}+E(5)^{3}+E(5)^{4}, \mathrm{~J}=-3 E(4)
$$

Table 4: The Character Table of \bar{G} (continued)

g] ${ }_{G}$	13A	13B	13C	15A	15B	20A	20B	24A	24B	24C	24D	24E	24F	24G	24 H
$[x]_{\bar{G}}$	13A	13B	13C	15A	15B	20A	20B	24A	24B	24C	24D	24 E	24F	24G	24 H
χ_{1}												1	1	1	
χ_{2} χ χ 	1 2	1 2	2	-1	-1	-1 0	-1 0	-1	1 -1	1 -1	-1	1 -1	1 -1	1 2	2
χ χ_{3} χ_{4}	-1	-1	-1	-3	2	N	-N	0	0	0	0	0	0	0	0
χ^{χ}	-1	-1	-1	-3	2	-N	N	0	0	0	0	0	0	0	0
χ_{6}	-1	-1	-1	2	-3	0	0	0	0	0	0	0	0	0	0
χ_{7}	-1	-1	-1	${ }_{2}$	-3	0	0	0	0	0	0	0	0	0	0
$\chi^{\chi} 8$	0	0 0 0	0	-2	3 -2 -2	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
$\chi 8$ χ χ χ 10	0	0	0	3	-2	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
$\chi^{\chi 11}$	0	0	0	-2	3	0	0	-1	-1	-1	-1	-1	-1	-1	-1
χ_{12}	-2	-2	-2	3	-2	0	0	0	0	0	0	0	0	0	0
$\chi 13$	-2	-2	-2	-2	3	0	0	0	0	0	0	0	0	0	0
χ^{14}	-1	-1	-1	0	0	0	0	1	1	1	,	1	1	1	1
$\chi 15$ χ χ χ χ	-1	-1	-1	-3	2	0	0	1	1	1	1	1	1	-2	-2
${ }^{\chi} 16$	0	0	0	2	-3	0	0	1	1	1	1	1	1	-2	-2
$\chi^{\chi} 18$	0	0	0	1	1	-1	-1	0	0	0	0	0	0	0	0
χ_{19}	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0
$\chi 20$	0	0	0	1	1	1	1	2	2	-1	-1	-1	-1	-1	-1
$\chi^{\chi 21}$	0	0	0	1	1	-1	-1	-2	-2	1	1	1	1	1	1
$\chi^{\chi 23}$	0	0	0	1	1	-1	-1	2	2	-1	-1	-1	-1	-1	-1
χ_{24}	K	M	L	-2	-2	0	,	0	0	0	0	0	0	0	0
$\chi 25$	L	K	M	-2	-2	0	0	0	0	0	0	0	0	0	0
$\chi 26$	M	L	K	-2	-2	0	0	0	0	0	0	0	0	0	0
$\chi 27$	K	M	L	-2	-2	0	0	0	0	0	0	0	0	0	0
$\chi 28$	L	K	M	-2	-2	0	0	0	0	0	0	0	0	0	0
$\chi 29$	M	$\stackrel{L}{4}$	K	-2	-2	0	0	0	0	0	0	0	0	0	0
χ χ $\chi 30$ $\chi 31$	L	M	$\stackrel{\text { L }}{ }$	1	1	0	0	0	0	0	0	0	${ }_{0}^{0}$	0	0
$\chi 31$ χ $\chi 32$ χ	M	L	K	1	1	0	0	0	0	0	0	0	0	0	0
$\chi^{\chi 3}$	M	L	K	1	1	0	0	0	0	0	0	0	0	0	0
$\chi^{\chi} \times$	K	M	L	1	1	0	0	0	0	0	0	0	0	0	0
$\chi 35$	L	K	M	1	1	0	0	0	0	0	0	0	0	0	0
χ_{36}	K	M	L	1	1	0	0	0	0	0	0	0	0	0	0
χ^{27}	L	K	M	1	1	0	0	0	0	0	0	0	0	0	0
$\chi 338$	M	L	K	1	1	0	0	0	0	0	0	0	0	0	0
χ_{39}	M		K	1	1	0	0	0	0	0	0	0	0	0	0
$\chi_{\chi 4}$	L	K	M	1	1	0	0	0	0	0	0	0	0	0	0
$\chi 41$ χ $\chi 42$ χ	-2	-2	-2	0	0	0	0	-1	-1	-1	-1	-1	-1	2	2
χ_{43}	0	0	0	-1	-1	0	0	0	0	0	0	0	0	0	0
χ_{44}	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0
$\chi 45$	0	0	0	2	1	0	0	0	0	0	0	0	0	${ }^{2}$	0
χ χ χ $\chi 46$ 48	0	0 0	0	-1	-1	0	0	-2	2 -2	-1	-1	1 1 1	-1	-2	-2
χ χ $\chi 47$ χ $\chi 48$	0	${ }_{0}$	0	-1	-1	0	0	-	-R	$\stackrel{1}{R}$	-R	R	-R	-	-
χ_{49}	0	0	0	-1	-1	0	0	-R	R	-R	R	-R	R	0	0
$\chi^{2} 5$	0	0	0	2	2	0	0	0	0	S	-S	S	-S	S	-S
χ_{51}	0	0	0	2	2	0	0	0	0	-S	S	-S	S	-S	S
χ_{52}	0	0	0	-1	-1	0	0	0	0	-J	-J	-J	-J	0	0
χ_{53}	0	0	0	-1	-1	0	0		-	-	-T			S	${ }_{-}^{0}$
χ_{54}	0	0	0	-1	-1	0	0	R	-R	T	-T	\underline{T}	-	S	-S
χ_{55}	0	0	0	-1	-1	0	0	-R	R	-T	T	- $\overline{\mathrm{T}}$	$\overline{\mathrm{T}}$	-S	S
χ_{56}	0	0	0	-1	-1	0	0	R	-R	- \bar{T}	$\overline{\mathrm{T}}$	-T	T	-S	S
χ_{57}	0	0	0	-1	-1	0	0	-R	R	$\overline{\mathrm{T}}$	- \bar{T}	T	-T	S	-S
$\chi \chi_{58}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\chi 59$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\chi 60$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\chi_{\chi 61}$	0	0 0	0	0	0	0	0	0	0	0	0	0 0	0 0	0	0
$\chi 62$ $\chi 63$ χ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{64}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{65}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ Х66	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\chi 67$	0	0 0	0	0	0	0	0	0	0	0	0	0 0	${ }_{0}^{0}$	0	0
$\chi 68$ $\chi 69$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\chi^{\chi} 70$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 4: The Character Table of \bar{G} (continued)

g] ${ }_{G}$	26A	26B	26C	30A	30B	39A	39B	39C	39D	39 E	39F	78A	78B	78C	78D	78 E	78 F
[x] ${ }_{\bar{G}}$	26A	26B	26C	30A	30B	39A	39B	39 C	39D	39E	39F	78A	78B	78C	78D	78 E	78 F
χ_{1}	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$\chi 2$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$\chi 3$	2	2	2	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
χ^{χ}	1	1	1	3	-2	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1
χ_{5}	,	1	1	3	-2	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1
χ_{6}	1	1	1	-2	3	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1
χ_{7}	1	1	1	-2	3	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1
χ_{8}	0	0	0	-2	3	0	0	0	0	0	0	0	0	0	0	0	0
χ_{9}	0	0	0	3	-2	0	0	0	0	0	0	0	0	0	0	0	0
χ_{10}	0	0	0	3	-2	0	0	0	0	0	0	0	0	0	0	0	0
χ_{11}	0	0	0	-2	3	0	0	0	0	0	0	0	0	0	0	0	0
χ_{12}	2	2	2	-3	2	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1
χ_{13}	2	2	2	2	-3	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1
χ_{14}	-1	-1	-1	0	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
χ_{15}	-1	-1	-1	0	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
χ_{16}	0	0	0	-3	2	0	0	0	0	0	0	0	0	0	0	0	0
χ_{17}	0	0	0	2	-3	0	0	0	0	0	0	0	0	0	0	0	0
$\chi 18$	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
χ_{19}	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
$\chi 20$	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
$\chi 21$	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
$\chi 22$	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
$\chi 23$	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
χ_{24}	K	M	L	-2	-2	K	K	M	M	L	L	K	K	M	M	L	L
$\chi 25$	L	K	M	-2	-2	L	L	K	K	M	M	L	L	K	K	M	M
χ_{26}	M	L	K	-2	-2	M	M	L	L	K	K	M	M	L	L	K	K
$\chi 27$	-K	-M	-L	2	2	K	K	M	M	L	L	-K	-K	-M	-M	-L	-L
$\chi 28$	-L	-K	-M	2	2	L	L	K	K	M	M	-L	-L	-K	-K	-M	-M
$\chi 29$	-M	-L	-K	2	2	M	$\underline{\mathrm{M}}$	L	L	K	K	-M	-M	-L	-L	-K	-K
χ_{30}	-K	-M	-L	-1	-1	O	$\overline{\mathrm{O}}$	Q	$\overline{\mathrm{Q}}$	P	$\overline{\mathrm{P}}$	-O	- $\overline{\mathrm{O}}$	-Q	- $\overline{\mathrm{Q}}$	-P	$-\overline{\mathrm{P}}$
$\chi 31$	-L	-K	-M	-1	-1	P	$\overline{\mathrm{P}}$	O	$\overline{\mathrm{O}}$	Q	$\overline{\mathrm{Q}}$	-P	- $\overline{\mathrm{P}}$	-O	- $\overline{\mathrm{O}}$	-Q	- $\overline{\mathrm{Q}}$
χ_{32}	-M	-L	-K	-1	-1	Q	$\overline{\mathrm{Q}}$	P	$\overline{\mathrm{P}}$	O	O	-Q	$-\overline{\mathrm{Q}}$	-P	- $\overline{\mathrm{P}}$	- O	- $\overline{\mathrm{O}}$
$\chi 33$	-M	-L	-K	-1	-1	Q	Q	$\overline{\mathrm{P}}$	P	$\overline{\mathrm{O}}$	O	- $\overline{\mathrm{Q}}$	-Q	$-\overline{\mathrm{P}}$	-P	- $\overline{\mathrm{O}}$	-O
$\chi 34$	-K	-M	-L	-1	-1	$\overline{\mathrm{O}}$	O	$\overline{\mathrm{Q}}$	Q	$\overline{\mathrm{P}}$	P	-	-O	- $\overline{\mathrm{Q}}$	-Q	$-\overline{\mathrm{P}}$	-P
$\chi 35$	-L	-K	-M	-1	-1	$\overline{\mathrm{P}}$	P	$\overline{\mathrm{O}}$	O	$\overline{\mathrm{Q}}$	Q	$-\overline{\mathrm{P}}$	-	- $\overline{\mathrm{O}}$	- ${ }^{\text {O}}$	- $\overline{\mathrm{Q}}$	-Q
χ_{36}	K	M	L	1	1	O	$\overline{\mathrm{O}}$	Q	$\overline{\mathrm{Q}}$	P	$\overline{\mathrm{P}}$	O	$\overline{\mathrm{O}}$	Q	$\overline{\mathrm{Q}}$	P	$\overline{\mathrm{P}}$
χ_{37}	L	K	M	1	1	P	$\overline{\mathrm{P}}$	O	$\overline{\mathrm{O}}$	Q	$\overline{\mathrm{Q}}$	P	$\overline{\bar{P}}$	O	-	Q	$\overline{\mathrm{Q}}$
$\chi 38$	M	L	K	1	1	Q	$\overline{\mathrm{Q}}$	$\underline{\mathrm{P}}$	$\overline{\mathrm{P}}$	O	$\overline{\mathrm{O}}$	Q	$\overline{\mathrm{Q}}$	P	$\overline{\mathrm{P}}$	O	O
$\chi 39$	M	L	K	1	1	Q	Q	$\overline{\mathrm{P}}$	P	$\overline{\mathrm{O}}$	O	Q	Q	$\overline{\mathrm{P}}$	P	$\overline{\mathrm{O}}$	O
$\chi 40$	K	M	L	1	1	$\overline{\mathrm{O}}$	O	$\overline{\mathrm{Q}}$	Q	$\overline{\mathrm{P}}$	P	$\overline{\mathrm{O}}$	O	$\overline{\mathrm{Q}}$	Q	$\overline{\mathrm{P}}$	P
χ_{41}	L	K	M	1	1	$\overline{\mathrm{P}}$	P	$\overline{\mathrm{O}}$	O	$\overline{\mathrm{Q}}$	Q	$\overline{\mathrm{P}}$	P	$\overline{\mathrm{O}}$	O	$\overline{\mathrm{Q}}$	Q
χ_{42}	-2	-2	-2	0	0	1	1	1	1	1	1	1	1	1	1	1	1
χ_{43}	0	0	0	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
χ_{44}	0	0	0	-2	-2	0	0	0	0	0	0	0	0	0	0	0	0
χ_{45}	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0
χ_{46}	0	0	0	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
χ_{47}	0	0	0	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
χ_{48}	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
χ_{49}	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
$\chi^{\chi} 50$	0	0	0	-2	-2	0	0	0	0	0	0	0	0	0	0	0	0
χ_{51}	0	0	0	-2	-2	0	0	0	0	0	0	0	0	0	0	0	0
χ_{52}	0	0	0	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
χ_{53}	0	0	0	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
χ_{54}	0	0	0	1	,	0	0	0	0	0	0	0	0	0	0	0	0
χ_{55}	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
χ_{56}	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
$\chi^{\chi} 57$	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
$\chi 58$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{59}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{60}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{61}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{62}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{63}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{64}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\chi 65$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{66}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{67}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{68}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{69}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{70}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

where $\mathrm{K}=-E(13)^{4}-E(13)^{6}-E(13)^{7}-E(13)^{9}, \mathrm{~L}=-E(13)-E(13)^{5}-E(13)^{8}-E(13)^{12}$,
$\mathrm{M}=-E(13)^{2}-E(13)^{3}-E(13)^{10}-E(13)^{11}, \mathrm{O}=-E(39)-E(39)^{5}-E(39)^{8}-E(39)^{25}$,
$\mathrm{P}=-E(39)^{2}-E(39)^{10}-E(39)^{11}-E(39)^{16}, \mathrm{Q}=-E(39)^{4}-E(39)^{20}-E(39)^{22}-E(39)^{32}$

Acknowledgements

We wish to thank the referee for helpful suggestions and pointing out some typographical errors to improve this paper. The first author is grateful for the support received from his supervisors at Kenyatta University, Nelson Mandela University and Kibabii University to conduct this research. We are most grateful to our Lord Jesus.

References

[1] A.B.M. Basheer, J. Moori, On a maximal subgroup of the affine general linear group of $G L(6,2)$, Adv. Group Theory Appl., 11 (2021), 1-30.
[2] A. B. M. Basheer, J. Moori, A survey on Clifford-Fischer theory, London Mathematical Society Lecture Notes Series, 422, Cambridge University Press, 2015, 160-172.
[3] C. Chileshe, J. Moori, T.T. Seretlo, On a maximal parabolic subgroup of $O_{8}^{+}(2)$, Bull. Iran. Math. Soc., 44 (2018), 159-181.
[4] C. Chileshe, Irreducible characters of Sylow p-Subgroups associated with some classical linear groups, PhD Thesis, North-West University, 2016.
[5] W. Bosma, J.J. Canon, Handbook of magma functions, Department of Mathematics, University of Sydney, November 1994.
[6] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of finite groups, Oxford University Press, Oxford, 1985.
[7] B. Fischer, Clifford-matrices, Progr. Math., 95, Michler G.O. and Ringel C.(eds), Birkhauser, Basel, 1991, 1-16.
[8] The GAP Group, GAP-groups, algorithms, and programming, version 4.11.0; 2020. (http://www.gap-system.org).
[9] R. List, On the characters of $2^{n-\epsilon} . S_{n}$, Archiv der Mathematik, 51 (1988), 118-124.
[10] J. Moori, T. Seretlo, On the Fischer-Clifford matrices of a maximal subgroup of the Lyons group Ly, Bull. Iranian Math. Soc., 39 (2013), 10371052.
[11] J. Moori, On the groups G^{+}and \bar{G} of the forms $2^{10}: M_{22}$ and $2^{10}: \bar{M}_{22}$, PhD thesis, University of Birmingham, 1975.
[12] Z.E. Mpono, Fischer-Clifford theory and character tables of group extensions, PhD Thesis, University of Natal, 1998.
[13] J. Moori, On certain groups associated with the smallest Fischer group, J. London Math. Soc., 2 (1981), 61- 67.
[14] J. Moori, Z.E. Mpono, The Fischer-Clifford matrices of the group $2^{6}: S P_{6}(2)$, Quaest. Math., 22 (1999), 257-298.
[15] D. M. Musyoka, L. N. Njuguna, A. L. Prins, L. Chikamai, On a maximal subgroup of the orthogonal group $O_{8}^{+}(3)$, Proyecciones, 41 (2022), 137-161.
[16] A.L. Prins, On a two-fold cover 2. $\left(2^{6 \cdot} G_{2}(2)\right)$ of a maximal subgroup of Rudvalis group Ru, Proyecciones, 40 (2021), 1011-1029.
[17] A.L. Prins, A maximal subgroup $2^{4+6}:\left(A_{5} \times 3\right)$ of $G_{2}(4)$ treated as a nonsplit extension $\bar{G}=2^{6 \cdot}\left(2^{4}:\left(A_{5} \times 3\right)\right)$, Adv. Group Theory Appl., 10 (2020), 43-66.
[18] A.L. Prins, R.L. Monaledi, R.L. Fray, On a maximal subgroup $\left(2^{9}: L_{3}(4)\right): 3$ of the automorphism group $U_{6}(2): 3$ of $U_{6}(2)$, Afr. Mat., 31 (2020), 13111336.
[19] A.L. Prins, Computing the conjugacy classes and character table of a nonsplit extension $2^{6 \cdot}\left(2^{5}: S_{6}\right)$ from a split extension $2^{6}:\left(2^{5}: S_{6}\right)$, AIMS Math., 5 (2020), 2113-2125.
[20] A.L. Prins, Fischer-Clifford matrices and character tables of inertia groups of maximal subgroups of finite simple groups of extension type, PhD Thesis, University of the Western Cape, 2011.
[21] T.T. Seretlo, Fischer Clifford matrices and character tables of certain groups associated with simple groups $O_{10}^{+}(2), H S$ and Ly, PhD Thesis, University of KwaZulu Natal, 2011.
[22] N.S. Whitley, Fischer matrices and character tables of group extensions, MSc Thesis, University of Natal, 1994.
[23] R.A. Wilson, P. Walsh, J. Tripp, I. Suleiman, S. Rogers, R. Parker, S. Norton, S. Nickerson, S. Linton, J. Bray, R. Abbot, ATLAS of finite group representations, http://brauer.maths.qmul.ac.uk/Atlas/v3/.

Accepted: March 12, 2022

