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Abstract. In this paper, the Sy (A) and Ny (A) summabilities are used along with the
notion of weakly unconditionally Cauchy series (in brief wuC series) to characterize a
Banach space. We examine these two kinds of summabilities which are regular methods
and we recall some features. Furthermore, we investigate the spaces S, (>_,Aw,) and
Ss,(>-,Awyp) which will be thought to characterize the completeness of a space.
Keywords: completeness, unconditionally Cauchy series, lacunary convergence, dif-
ference sequence.

1. Introduction and background

The notion of statistical convergence was introduced under the name almost
convergence by Zygmund [1]. It was formally presented by Fast [2]. Later the
idea was associated with summability theory by Fridy [3] and many others (see
[4,5,6,7,8,9,10, 11, 12, 13, 14]).

By a lacunary sequence we mean an increasing integer sequence 0 = {n,}
such that ng = 0 and h, = n, — n,_1 — 00 as r — oo and ratio nf—il will be
abbreviated by ¢,. Throughout this paper the intervals determined by 6 will
be denoted by I, = (n,_1,n,|. Utilizing lacunary sequence, Fridy and Orhan
[15] presented the notion of lacunary statistical convergence. Some works in
lacunary statistical convergence can be found in [16, 17, 18, 19, 20].

Let us define the forward difference matrix A* = (c,x) and the backward
difference matrix A® = (d,;) by

(D)™, n<k<n+1,
C =
nk 0, 0<k<nork>n+1,

*. Corresponding author
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(—1)"%, n—1<k<n,
dpg =
0, 0<k<n-—1ork>n,

forall k,n € N={0,1,2,...}. Then, the difference sequence spaces lo, (A), ¢ (A)
and ¢g (A) introduced by Kizmaz [21], can be seen as the domain of forward
difference matrix A% in the classical spaces lo, ¢ and ¢q of bounded, convergent
and null sequences, respectively. Quite recently, the difference space bv, was
introduced as the domain of the backward difference matrix A? in the classical
space [, of absolutely p-summable sequences for 0 < p < 1 by Altay and Basgar
[22], and for 1 < p < co by Basar and Altay [23].

Later on the notion was generalized by Et and Colak [24]. Basarir [25]
investigated the A-statistical convergence of sequences. Also, the generalized
difference sequence spaces were worked by various authors [26, 27, 28, 29, 30].

The characterization of a Banach space through various types of convergence
has been examined by authors such as Kolk [31], Connor et al. [32].

The purpose of this study originates in the PhD thesis of the second author
[33] who identified a relationship between features of a normed space Y and some
sequence spaces which are named convergence spaces associated to a wuC series.
These sequence spaces associated to a wuC' series were examined [33] in terms
of the norm topology and the usual weak topology of the space. These types of
consequences have been researched in various convergence spaces connected with
a wuC series utilizing different types of convergence [34, 35, 36, 37, 38, 40, 39].
The readers can refer to the recent papers [41, 42, 43, 44], and references therein
on the wuC series in a normed space and the examples of multiplier convergent
series that characterizes the uc and wuC series, and related topics.

Y be a normed space and > w; also be a series in Y. In [33], the authors
defined the space of convergence S (> w;) connected with the series Y  w;, which
is introduced as the space of sequence (f;) in lo such that > f;w; converges.
They demonstrated that the necessary and sufficient condition for Y to be a
complete space is that for every wuC series ) w;, the space S (D> w;) is com-
plete. Diestel [45] showed that Y w; is wuC iff Y |f (w;)| < oo for all f € Y™
In [46, 47], a Banach space is characterized by means of the strong p-Cesaro
summability and ideal-convergence.

In this paper, we examine the completeness of a normed space through the
lacunary statistical convergence and lacunary strongly convergence of series for
difference sequences. We also describe the summability spaces associated with
these summabilities with strongly (p, A)-Cesaro summability spaces for differ-
ence sequences.

2. Main results

We identify the notion of lacunary A-statistically convergent sequence for Ba-
nach spaces.
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Let A C N and r € N. dj(A) is named the rth partial lacunary density of
A, if
AN

hy

dp(A) =

where I, = (ky_1, ky].
The number dy(A) is indicated the lacunary density (f-density) of A if

T—00

1
do(A) = lim —|{k € I, : k € A}, (ie., do(A) = lim dy(4))

exists. Also, A = {A C N:dy(A) =0} is called to be zero density set.

It is easy to demonstrate that this density is a finitely additive measure
and we can introduce the notion of lacunary statistically convergent difference
sequences for Banach spaces.

Definition 2.1. Let Y be a Banach space and 0 = {n,} a lacunary sequence. A
sequence w = (wp) is a lacunary A-statistically convergent or sequence to § € Y
if given ¢ > 0,

do ({p € I : | Awp — ]| = (}) = 0,

or equivalently,
dg ({p € I : |Awp, — €] < ¢}) =1,

we say that (wp) is Sy (A)-convergent and is written as Sp-lim Aw, = &.

Definition 2.2. A sequence w = (wp) in Y is lacunary strongly A-convergent
or Ny (A)-summable to £ €Y if

.1
Jim =3 A, — ¢ =0,
pelr
and we write Ng-lim Aw, = §.

Theorem 2.1. Let Y be a Banach space and (wy,) a sequence in'Y . Note that
Sp (A) and Ny (A) are regular methods.

Proof. First, we prove that Sp(A) is a regular method. If (Aw,) — &, then
Ny-lim Aw, = . Let ¢ > 0, then there is pg such that if p > pg, then

[Aw, — €]l <.

Therefore, there is 1o € N with rg > pg such that if » > ry we obtain

1 1 hy
2 1wy =gl < =3 0= 3r0=¢,

" pel, pel,

which gives that lim, %Z |Aw, — || = 0.

pElr |
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Now, we show that Ny (A) is a regular method. If (Aw,) — &, then Sy —
lim Aw, = £. One can easily observe that (Aw,) — &, given ¢ > 0 there is pg
such that for every p > py we obtain

card ({p € I, + | Aw, — €] > ¢}) =0,

which gives
do ({p € Ir - [[Awy, — €[l = ¢}) =0
for every p > po. O

The reverse is not true, as was shown in Example 2.1, in which we introduce
an unbounded sequence that is Ny (A)-summable and Example 2.2 where an
unbounded Sy (A)-convergent sequence is given.

Example 2.1. There exist unbounded sequences which are Ny (A)-summable.
Let § = {n,} be a lacunary sequence with ny = 0 and n, = 2". Think that

hi =n1 —ng =2 and h, = 2", for every r > 2,
I = (ng,n1] = (0,2] and I, = (2T_1,2T] , for every r > 2.

Think the sequence determined by

A 0, if p # 27 for all j,
Wy, = .
P7lj—1, ifp=27 for all j.

Notice that, (wp) is unbounded and observe that

doper |Bwp =0l (0, ifr=1 0 as e e
h, T =, ifr>2 ’
which gives that Np-lim Aw, = 0.

Theorem 2.2. Let Y be a Banach space and 6 = {n,} be a lacunary sequence.
Then, we have the followings:

(1) Np-lim Aw, = £ implies Sp-lim Aw, = &,
(i7) (wp) is bounded and Sp-lim Aw, = & imply Np-lim Aw, = §.

Proof. (i) If Np-lim Aw, = ¢ then, for every ¢ > 0,

dlaw, =€l = > Aw, =&l = (Hp el |Aw, — &) >,
pel, pel,
|awp—¢2¢

which gives that Sp-lim Aw, = §.



794 0. KISI axp M. GURDAL

(7) Let us assume that (w,) is bounded and Sp-lim Aw, = £. Since (w)) is
bounded, there exists H > 0 such that |Aw, —&|| < H for every p € N. Given
¢>0,

1 1 1
h*ZIIAwp*SHZh* > 1Awp = €]l + = Y lAw, ¢

" pel, pel, pel,
lawp—¢l=¢ lawp—¢||<¢

H
< - Hp e L : [|Awp — €l 2 G + ¢,
.
so, we obtain Np-lim Aw, = &. O
Next, we give an example to demonstrate that the assumption over the

sequence to be bounded is necessary and cannot be removed.

Example 2.2. There exist unbounded Sy (A)-convergent sequences to & which
are not Ny (A)-summable to £. Let 6 = {n,} be a lacunary sequence with ng = 0
and n, = 2". Consider that

hi =n; —ng =2 and h, = 2" for every r > 2,
I = (ng,n1] = (0,2] and I, = (2“1,2@ for every r > 2.
Think the sequence determined by
0, ifp#2 forallj,
Awp, =4 . | . ]
27 if p =27 for all j.
Given ¢ > 0, it is simply to denote that
{p eI : [Awp, — 0] = ¢}
e

which gives that Sp-lim Aw, = 0. Also, note that (wp) is an unbounded se-
quence. However,

ZpEIT|Awp_O|_{ %:1, if r=1,

h, g =2, ifr>2

which gives that Np-lim Aw, # 0.

— 0 asr — oo,

}—>2, as r — 0o

Definition 2.3. Take Y as a Banach space. A sequence w = (wp) is named to
be lacunary A-statistically Cauchy sequence if there exists a subsequence (wp/(r))
of (wp) sucht that p;. € I., for every r € N, lim, o0 Awy () =&, for some £ €Y
and for each ¢ > 0,

p'(r
1
Jim 2= [{p € I+ [Awy — Awypy || = ¢}| =0,

or equivalently,

1
lim = Hp el : HAwp — Awp/(T)H < C}‘ =1.

7—00

In this case, we say that (wp) is Sp (A)-Cauchy.
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The following consequence is acquired for sequences in Banach spaces, and
we involve the proof for the sake of completeness.

Theorem 2.3. Take Y as a Banach space. A sequence w = (wp) is Sp (A)-
convergent iff it is Sy (A)-Cauchy.

Proof. Let w = (w,) be an Sy (A)-convergent sequence in Y and for each p € N,
we determine .

K= {pe:lau,-¢l< 1},
Observe that K, O K411 and M — 1 asr — oo.

Establish mq such that » < my then card(K1 N 1) /h, > 0, i.e., KiNI. # 0.
Next, select mo > mq such that if »r > ms, then Ky NI, # 0. Now, for each
my1 < r < mg, we select p/. € I, such that p,. € I, N K7, i.e., HAwp/(T) — §H < 1.
Technically, we select mygy1 > my, such that if » > myy 1, then I, N Ky # 0.
So, for all r such that my < r < mg41, we select pl. € I, N K}, and we obtain
[Awy ) — &[] < -

Therefore, we get a sequence (p]) such that p/ € I, for every r € N and
lim, o0 Awp/(r) = £. As a result, we acquire

1 1
il e b 8wy = duy | > Y < o (e 18w, -6 > 5}

1 ¢
bl fren lauyg €= 5|

Since Sp-lim Awy, = £ and lim, o Awyy () = & we conclude that (w,) is Sp (A)-

Cauchy.
Conversely, if (wy) is Sp (A)-Cauchy sequence, for every ¢ > 0,

{p el du,—¢l = <|{pel:||aw, - Auy| = §]
+{pet: |auym ¢l = §}]-

Since (wp) is Sp (A)-Cauchy and lim,—,oc Awy () = &, we conclude that Sp-
lim Aw,, = . O

p'(r

Now, we examine some features of the statistical lacunary summability
spaces for Banach spaces.

Let us think Y a real Banach space, > ;Aw; a series in ¥ and 6 = (n,) a
lacunary sequence. We identify

SSe(Zij) =1 (aj); €l : Zajij is Sp-summable
J J

endowed with the supremum norm. The space will be called as the space of
Sp (A)-summability connected with ;Aw;. We will describe the completeness
of the space Sg, (> ;Aw;) in Theorem 2.4, but first we have to give the following
Lemma.
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Lemma 2.1. Let Y be a Banach space and presume that the series Ejij 18
not wuC. Then, there is f € Y™ and a null sequence (aj)j € co such that

Zajf (Awj) = +o0
J

and
aj f (Aw;) = 0.

Proof. Since } 22, |f (Aw;)| = +o0, there exists ¢, such that 251:1 |f (Aw;)| >
2-2. We itendify a; = 3 if f(Aw;) > 0 and a; = —3 if f(Aw;) < 0 for
j=A{1,2,...,t1}. This gives that Y"1 a;f (Aw;) > 2 and a; f (Aw;) > 0 if j =
{1,2,...,t1}. Let to > t; be such that Z;Q:tlJrl |f (Aw;)| > 22-22. We determine
a; = 2% if f(Aw;) > 0 and a; = —2% if f(Aw;) <0 for j = {t1 +1,...,t2}.
Hence, Z;itl+1ajf (Awj) > 2% and a; f (Aw;) > 0if j = {t; + 1,...,t2}. So, we
have acquired a sequence (a;) ;€ with the above features. O

Theorem 2.4. Let Y be a Banach space and 0 = {n,} a lacunary sequence.
The subsequent are equivalent:

(¢) The series 3 ;Aw; is wuC.
(i) The space Ss, (3. ;Aw;) is complete.
(iéi) The space co of all null sequences is included in Ss,(3_;Aw;).

Proof. (i) = (ii): Since ;Awj; is wuC, the subsequent supremum is finite:
n
Q@ = sup Zﬁjij B <1, 1<j<n,neN} < +oo.
j=1

Let (%), C Ss,(3°;Aw;) such that lim, || 8% — 8% = 0, with ° € lo. We will
denote that 8° € Ssy(D_jAwj). Let us assume without any loss of generality
that HBOHOO < 1. Then, the partial sums Sg = ?Zlﬁjkoj satisfy HSSH <Q
for every p € N, i.e., the sequence (5’2) is bounded. Then, 3° € Sg, (Zjij) iff
(Sg) is Sp (A)-summable to some £ € Y. In accordance with Theorem 2.3, (5’2)
is lacunary A-statistically convergent to £ € Y iff (SS) is lacunary A-statistically
Cauchy sequence.

Let ¢ > 0 and n € N. Then, we acquire statement (i7) if we indicate that
there is a subsequence (S /(r)) such that p). € I, for every r € N, lim, o, Sprry =

¢ and !
dy ({p el : HSS — 52/(7») < C}) =1.
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Since 3% — B° in Iy, there is sg > n such that Hﬁs ﬁOH < 4@ for all s > sq,
and since S5 is Sy (A)-Cauchy, there is p;. € I such that lim, SSO = ¢ for

some & and
d@({pGITI) C})Zl.

Think » € N and fix p € I, such that

S0 — 839,

s

S0 S0
S0 =S 2

p'(r)

(1) |

We will signify that HSS — 5’2, | < ¢, and this will evidence that

{pen: <S}efpens|si-soy)<c).

Since the first set has density 1, the second will also have density 1 and we will
be done.
Let us observe first that for each 7 € N,

SSO N Sp’o (r)

Z“f (85 - 550) dws| < @
=1

for every s > sg, therefore

@) It — s = |52 (80 - ) by | < &

J=1

Then, by using the triangular inequality,

8-

< 150 - syl + |
<S+5+5=¢C

5" = S

|

531y~ Y

0
p '(r) p'(r)

Therefore, by applying (1) and (2), the last inequality yields the desired result.
(i) = (ii): Let us observe that if Sg, (3_;Awy;) is complete, then it includes
the space of ultimately zero sequences coy and therefore the thesis comes, since
the supremum norm completion of cyq is ¢p.
(¢4i) = (7): By utilizing the contradiction, presume that the series > Awy; is
not wuC. So, there is f € Y* such that Z;’il |f (Aw;)| = 4+00. By Lemma 2.1,
we can create technically a sequence () j€co such that

> Bif (Awy) = +o0
j

and

Bif (Aw;) >0
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Now, we will examine that the sequence (S,) = ( ?Zlﬁjf (Awj)) is not Sy (A)-
summable to any ¢ € R. By utilizing the contradiction, assume that it is
Sp (A)-summable to £ € R, then we obtain

1 1 &
E’{peIr:‘Sp_€| ZC}‘:hrp_;_llﬁoaST%oo.
|Sp—2|z<;

Since S, is an inreasing sequence and S, — oo, there is ng such that |S, — §| > ¢
for every p > ng. Let us presume that n, > ng for every r. Consequently,

za
SDIREL Y
— =5 = -+ 0 as r — oo,

T r
n=n,—1

|Sp—€|>¢

a contradiction. This gives that (S)) is not Sp (A)-convergent and is a contra-
diction with (). O

Now, we examine some features of the lacunary strongly A-summability
space for Banach spaces.

Let Y a real Banach space, ) ;Aw; a series in Y and 6 = (n;) a lacunary
sequence. We itendify

SNB(ZAUJ]') =<¢(aj); €l Zajij is Np-summable
J
J J

endowed with the supremum norm. This will be characterised as the space of
Np (A)-summability connected with the series > ;Aw;. We can now give a the-
orem very same as that of Theorem 2.4 but for the case of Ny (A)-summability.
Actually Theorem 2.5 describes the completeness of the space Sn, (3_;Aw;).

Theorem 2.5. LetY be a real Banach space and 0 = (n,) a lacunary sequence.
The subsequent are equivalent:

(i) The series 3 ;Aw; is wuC.
(i4) The space Sn,(3_;Aw;) is complete.

(i4i) The space co of all null sequences is included in Sn,(>_,;Aw;).

Proof. (i) = (ii): Since > ;Aw; is wuC, the subsequent supremum is finite:

k
Q = sup ZBjij 81 <1,1<j<k,keNj) <oo.
j=1
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Let (p%), C SN&(Zjij) such that limg Hﬂs —BOHOO =0, with 8° € Ioo. We
will denote that 8° € Sy, (> jij). With no loss of generality, we can presume
that HBOHOO < 1. So, the partial sums Sp = ?Zlﬁ?ij satisfy HSSH < Q for
every p € N, i.e., the sequence (Sg) is bounded. Then, 3° € SNy (22 jAwy) iff
(5p) is Ng (A)-summable to some & € Y. Since (S)) is bounded, it is sufficient
to show that (S)) is Sp (A)-convergent, as a consequence of Theorem 2.1 due to
Fridy and Orhan [15]. The results follows similarly as in Theorem 2.4.

(i4) = (i12): It is adequate to observe that Sy, (3_;Aw;) is a complete space
and it includes the space of ultimately zero sequences cgg, so it involves the
completion of cog with regards to the supremum norm, hence it includes cy.

(#49) = (i): By utilizing the contradiction, presume that the series > Awy; is
not wuC. So, there is f € Y such that > 322, |f (Aw;)| = +oo. By Lemma 2.1,
we can create technically a sequence (3;); € co such that }°.8;f (Aw;) = +o0
and 5, f (Aw;) > 0.

The sequence S, = ?zlﬁjf (Awj) is not Ny (A)-summable to any & € R.
Since S, — oo, for every H > 0, there is pg such that |S,| > H if p > pg. Then,

we acquire
I8 >
pEI
Hence S, is not Ny (A)-summable to any £ € R, on the other hand

oo 1o S0 1Sl < 1€l + 3 1S, - €]~ I¢

pe[’r pElr
We can deduce that S}, is not Ny (A)-convergent, a contradiction with (ii7). [

A Banach space Y can be characterized by the completeness of the space
SN, (22,Awp) for every wuC series ) Awp, as we will show, nextly.

Theorem 2.6. Toke Y as a normed real vector space. Then, Y is complete iff
SNG(ZpAwp) 18 a complete space for every wuC' series ZpAwp.

Proof. The necessary condition is obvious from Theorem 2.4. Now, suppose
that Y is not complete, hence there is a series > | Awy, in Y such that [|Aw,| <

ﬁ and Y Aw, = w*™ € Y™ \Y. We will provide a wuC' series > Ay, such

that Swn,(3_,Ayp) is not complete, a contradiction. Set Sy = szlAwp. As

Y** is a Banach space endowed with the dual topology, sup |y* (Sar) — w™ (y*)|
ly*lI<1
tends to 0 as M — oo, i.e.,

for every |ly*|| < 1. Put Ay, = pAw, and let us observe that [|Ay,| < .

Therefore, ZpAyp is absolutely convergent, so it is unconditionally convergent
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and weakly unconditionally Cauchy. We claim that the series Zp%Ayp is not
Ny-summable in Y. Using contradiction assume that Sy, = Zéw: 1%Ayp is Ny-

summable in Y, i.e., there exists £ in Y such that lim,_, h%zpelr S, — &]] = 0.
This gives that

(®) tim -3y (8,) =y ()

for every ||y*|| < 1. By the relations (3) and (4), the uniqueness of the limit and
since Ny (A) is a regular method, we get w** (y*) = y* (£) for every ||y*|| < 1,
so we acquire w** = £ € Y, a contradiction. Hence, Sy = szléAyp is not
Ng-summable to any £ € Y.

Finally, let us observe that since ZpAyp is a weakly unconditionally Cauchy

series and Sy = M 1Ay, is not Ny-summable, we get (%) ¢ Sny(D_,AYp)

p=lp
and this means that co ¢ Sn, (3_,Ay;) which contradicts Part (i) of Theorem
2.5. This completes the proof. O

Definition 2.4. Let 0 < p < oo, the sequence w = (wy,) is named to be strongly
(p, A)-Cesaro or |op| (A)-summable if there is £ € R such that

t—

t
1
- e —
lim % [|Aw; — €[J” =0
i=1
and is writen as (Awy,) —>| € or |op| — limy 00 Awy, = &.
Ip

Let > Aw; be a series in a real Banach space Y,

S‘op‘(ZAwi) = {(ai)i €loo: ZaiAwi is |ap]—summable}

endowed with the supremum norm.

Corollary 2.1. TakeY as a normed real vector space andp > 1. The subsequent
are equivalent:

(i) Y is complete.
(i) SN, (3_,Awp) is complete for every wuC' series ), Awy.
(i) Ss,(>_,Awp is complete for every wuC series 5, Awy,.

(1v) S, (D2,Awy) is complete, for every wuC series ), Awp.
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