On lacunary statistical convergence of difference sequences

Ömer Kişi^{*}

Department of Mathematics Bartin University Bartin Turkey okisi@bartin.edu.tr

Mehmet Gürdal

ference sequence.

Department of Mathematics Suleyman Demirel University Isparta Turkey gurdalmehmet@sdu.edu.tr

Abstract. In this paper, the $S_{\theta}(\Delta)$ and $N_{\theta}(\Delta)$ summabilities are used along with the notion of weakly unconditionally Cauchy series (in brief wuC series) to characterize a Banach space. We examine these two kinds of summabilities which are regular methods and we recall some features. Furthermore, we investigate the spaces $S_{N_{\theta}}(\sum_{p}\Delta w_{p})$ and $S_{S_{\theta}}(\sum_{p}\Delta w_{p})$ which will be thought to characterize the completeness of a space. **Keywords:** completeness, unconditionally Cauchy series, lacunary convergence, dif-

1. Introduction and background

The notion of statistical convergence was introduced under the name almost convergence by Zygmund [1]. It was formally presented by Fast [2]. Later the idea was associated with summability theory by Fridy [3] and many others (see [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]).

By a lacunary sequence we mean an increasing integer sequence $\theta = \{n_r\}$ such that $n_0 = 0$ and $h_r = n_r - n_{r-1} \to \infty$ as $r \to \infty$ and ratio $\frac{n_r}{n_{r-1}}$ will be abbreviated by q_r . Throughout this paper the intervals determined by θ will be denoted by $I_r = (n_{r-1}, n_r]$. Utilizing lacunary sequence, Fridy and Orhan [15] presented the notion of lacunary statistical convergence. Some works in lacunary statistical convergence can be found in [16, 17, 18, 19, 20].

Let us define the forward difference matrix $\Delta^F = (c_{nk})$ and the backward difference matrix $\Delta^B = (d_{nk})$ by

$$c_{nk} = \begin{cases} (-1)^{n-k}, & n \le k \le n+1, \\ 0, & 0 \le k < n \text{ or } k > n+1, \end{cases}$$

^{*.} Corresponding author

$$d_{nk} = \begin{cases} (-1)^{n-k}, & n-1 \le k \le n, \\ 0, & 0 \le k < n-1 \text{ or } k > n \end{cases}$$

for all $k, n \in \mathbb{N} = \{0, 1, 2, ...\}$. Then, the difference sequence spaces $l_{\infty}(\Delta)$, $c(\Delta)$ and $c_0(\Delta)$ introduced by Kızmaz [21], can be seen as the domain of forward difference matrix Δ^F in the classical spaces l_{∞} , c and c_0 of bounded, convergent and null sequences, respectively. Quite recently, the difference space bv_p was introduced as the domain of the backward difference matrix Δ^B in the classical space l_p of absolutely *p*-summable sequences for 0 by Altay and Başar $[22], and for <math>1 \le p \le \infty$ by Başar and Altay [23].

Later on the notion was generalized by Et and Çolak [24]. Başarır [25] investigated the Δ -statistical convergence of sequences. Also, the generalized difference sequence spaces were worked by various authors [26, 27, 28, 29, 30].

The characterization of a Banach space through various types of convergence has been examined by authors such as Kolk [31], Connor et al. [32].

The purpose of this study originates in the PhD thesis of the second author [33] who identified a relationship between features of a normed space Y and some sequence spaces which are named convergence spaces associated to a wuC series. These sequence spaces associated to a wuC series were examined [33] in terms of the norm topology and the usual weak topology of the space. These types of consequences have been researched in various convergence spaces connected with a wuC series utilizing different types of convergence [34, 35, 36, 37, 38, 40, 39]. The readers can refer to the recent papers [41, 42, 43, 44], and references therein on the wuC series in a normed space and the examples of multiplier convergent series that characterizes the uc and wuC series, and related topics.

Y be a normed space and $\sum w_i$ also be a series in Y. In [33], the authors defined the space of convergence $S(\sum w_i)$ connected with the series $\sum w_i$, which is introduced as the space of sequence (β_i) in l_{∞} such that $\sum \beta_i w_i$ converges. They demonstrated that the necessary and sufficient condition for Y to be a complete space is that for every wuC series $\sum w_i$, the space $S(\sum w_i)$ is complete. Diestel [45] showed that $\sum w_i$ is wuC iff $\sum |f(w_i)| < \infty$ for all $f \in Y^*$. In [46, 47], a Banach space is characterized by means of the strong p-Cesàro summability and ideal-convergence.

In this paper, we examine the completeness of a normed space through the lacunary statistical convergence and lacunary strongly convergence of series for difference sequences. We also describe the summability spaces associated with these summabilities with strongly (p, Δ) -Cesàro summability spaces for difference sequences.

2. Main results

We identify the notion of lacunary Δ -statistically convergent sequence for Banach spaces. Let $A \subset \mathbb{N}$ and $r \in \mathbb{N}$. $d_{\theta}^{r}(A)$ is named the *r*th partial lacunary density of A, if

$$d^r_{\theta}(A) = \frac{|A \cap I_r|}{h_r},$$

where $I_r = (k_{r-1}, k_r].$

The number $d_{\theta}(A)$ is indicated the lacunary density (θ -density) of A if

$$d_{\theta}(A) = \lim_{r \to \infty} \frac{1}{h_r} |\{k \in I_r : k \in A\}|, \text{ (i.e., } d_{\theta}(A) = \lim_{r \to \infty} d_{\theta}^r(A)\}$$

exists. Also, $\Lambda = \{A \subset \mathbb{N} : d_{\theta}(A) = 0\}$ is called to be zero density set.

It is easy to demonstrate that this density is a finitely additive measure and we can introduce the notion of lacunary statistically convergent difference sequences for Banach spaces.

Definition 2.1. Let Y be a Banach space and $\theta = \{n_r\}$ a lacunary sequence. A sequence $w = (w_p)$ is a lacunary Δ -statistically convergent or sequence to $\xi \in Y$ if given $\zeta > 0$,

$$d_{\theta}\left(\left\{p \in I_r : \|\Delta w_p - \xi\| \ge \zeta\right\}\right) = 0,$$

or equivalently,

$$d_{\theta}\left(\left\{p \in I_r : \|\Delta w_p - \xi\| < \zeta\right\}\right) = 1,$$

we say that (w_p) is $S_{\theta}(\Delta)$ -convergent and is written as S_{θ} -lim $\Delta w_p = \xi$.

Definition 2.2. A sequence $w = (w_p)$ in Y is lacunary strongly Δ -convergent or $N_{\theta}(\Delta)$ -summable to $\xi \in Y$ if

$$\lim_{r \to \infty} \frac{1}{h_r} \sum_{p \in I_r} \|\Delta w_p - \xi\| = 0,$$

and we write N_{θ} -lim $\Delta w_p = \xi$.

Theorem 2.1. Let Y be a Banach space and (w_p) a sequence in Y. Note that $S_{\theta}(\Delta)$ and $N_{\theta}(\Delta)$ are regular methods.

Proof. First, we prove that $S_{\theta}(\Delta)$ is a regular method. If $(\Delta w_p) \to \xi$, then N_{θ} -lim $\Delta w_p = \xi$. Let $\zeta > 0$, then there is p_0 such that if $p \ge p_0$, then

$$\|\Delta w_p - \xi\| < \zeta.$$

Therefore, there is $r_0 \in \mathbb{N}$ with $r_0 \ge p_0$ such that if $r \ge r_0$ we obtain

$$\frac{1}{h_r} \sum_{p \in I_r} \|\Delta w_p - \xi\| < \frac{1}{h_r} \sum_{p \in I_r} \zeta = \frac{h_r}{h_r} \zeta = \zeta,$$

which gives that $\lim_{r\to\infty} \frac{1}{h_r} \sum_{p\in I_r} \|\Delta w_p - \xi\| = 0.$

Now, we show that $N_{\theta}(\Delta)$ is a regular method. If $(\Delta w_p) \to \xi$, then $S_{\theta} - \lim \Delta w_p = \xi$. One can easily observe that $(\Delta w_p) \to \xi$, given $\zeta > 0$ there is p_0 such that for every $p > p_0$ we obtain

$$card\left(\{p \in I_r : \|\Delta w_p - \xi\| \ge \zeta\}\right) = 0,$$

which gives

$$d_{\theta}\left(\left\{p \in I_r : \|\Delta w_p - \xi\| \ge \zeta\right\}\right) = 0$$

for every $p > p_0$.

The reverse is not true, as was shown in Example 2.1, in which we introduce an unbounded sequence that is $N_{\theta}(\Delta)$ -summable and Example 2.2 where an unbounded $S_{\theta}(\Delta)$ -convergent sequence is given.

Example 2.1. There exist unbounded sequences which are $N_{\theta}(\Delta)$ -summable. Let $\theta = \{n_r\}$ be a lacunary sequence with $n_0 = 0$ and $n_r = 2^r$. Think that

$$h_1 = n_1 - n_0 = 2$$
 and $h_r = 2^{r-1}$, for every $r \ge 2$,
 $I_1 = (n_0, n_1] = (0, 2]$ and $I_r = (2^{r-1}, 2^r]$, for every $r \ge 2$.

Think the sequence determined by

$$\Delta w_p = \begin{cases} 0, & \text{if } p \neq 2^j \text{ for all } j, \\ j-1, & \text{if } p = 2^j \text{ for all } j. \end{cases}$$

Notice that, (w_p) is unbounded and observe that

$$\frac{\sum_{p \in I_r} |\Delta w_p - 0|}{h_r} = \left\{ \begin{array}{cc} 0, & \text{if } r = 1\\ \frac{r-1}{2^{r-1}}, & \text{if } r \ge 2 \end{array} \right\} \to 0, \text{ as } r \to \infty$$

which gives that N_{θ} -lim $\Delta w_p = 0$.

Theorem 2.2. Let Y be a Banach space and $\theta = \{n_r\}$ be a lacunary sequence. Then, we have the followings:

- (i) $N_{\theta} \lim \Delta w_p = \xi$ implies $S_{\theta} \lim \Delta w_p = \xi$,
- (ii) (w_p) is bounded and S_{θ} -lim $\Delta w_p = \xi$ imply N_{θ} -lim $\Delta w_p = \xi$.

Proof. (i) If N_{θ} -lim $\Delta w_p = \xi$ then, for every $\zeta > 0$,

$$\sum_{p \in I_r} \|\Delta w_p - \xi\| \ge \sum_{\substack{p \in I_r \\ \|\Delta w_p - \xi\| \ge \zeta}} \|\Delta w_p - \xi\| \ge \zeta \left| \{p \in I_r : \|\Delta w_p - \xi\| \ge \zeta \} \right|,$$

which gives that S_{θ} -lim $\Delta w_p = \xi$.

(ii) Let us assume that (w_p) is bounded and S_{θ} -lim $\Delta w_p = \xi$. Since (w_p) is bounded, there exists H > 0 such that $\|\Delta w_p - \xi\| < H$ for every $p \in \mathbb{N}$. Given $\zeta > 0,$

$$\frac{1}{h_r} \sum_{p \in I_r} \|\Delta w_p - \xi\| = \frac{1}{h_r} \sum_{\substack{p \in I_r \\ \|\Delta w_p - \xi\| \ge \zeta}} \|\Delta w_p - \xi\| + \frac{1}{h_r} \sum_{\substack{p \in I_r \\ \|\Delta w_p - \xi\| \le \zeta}} \|\Delta w_p - \xi\| \\
\leq \frac{H}{h_r} |\{p \in I_r : \|\Delta w_p - \xi\| \ge \zeta\}| + \zeta,$$
e obtain N_{θ} -lim $\Delta w_p = \xi$.

so, we obtain N_{θ} -lim $\Delta w_p = \xi$.

Next, we give an example to demonstrate that the assumption over the sequence to be bounded is necessary and cannot be removed.

Example 2.2. There exist unbounded $S_{\theta}(\Delta)$ -convergent sequences to ξ which are not $N_{\theta}(\Delta)$ -summable to ξ . Let $\theta = \{n_r\}$ be a lacunary sequence with $n_0 = 0$ and $n_r = 2^r$. Consider that

$$h_1 = n_1 - n_0 = 2$$
 and $h_r = 2^{r-1}$ for every $r \ge 2$,
 $I_1 = (n_0, n_1] = (0, 2]$ and $I_r = (2^{r-1}, 2^r]$ for every $r \ge 2$.

Think the sequence determined by

$$\Delta w_p = \begin{cases} 0, & \text{if } p \neq 2^j \text{ for all } j, \\ 2^j, & \text{if } p = 2^j \text{ for all } j. \end{cases}$$

Given $\zeta > 0$, it is simply to denote that

$$\frac{|\{p \in I_r : \|\Delta w_p - 0\| \ge \zeta\}|}{h_r} \to 0 \text{ as } r \to \infty,$$

which gives that S_{θ} -lim $\Delta w_p = 0$. Also, note that (w_p) is an unbounded sequence. However,

$$\frac{\sum_{p \in I_r} |\Delta w_p - 0|}{h_r} = \left\{ \begin{array}{c} \frac{2}{2} = 1, & \text{if } r = 1, \\ \frac{2^r}{2^{r-1}} = 2, & \text{if } r \ge 2 \end{array} \right\} \to 2, \text{ as } r \to \infty$$

which gives that N_{θ} -lim $\Delta w_p \neq 0$.

Definition 2.3. Take Y as a Banach space. A sequence $w = (w_p)$ is named to be lacunary Δ -statistically Cauchy sequence if there exists a subsequence $(w_{p'(r)})$ of (w_p) such that $p'_r \in I_r$, for every $r \in \mathbb{N}$, $\lim_{r \to \infty} \Delta w_{p'(r)} = \xi$, for some $\xi \in Y$ and for each $\zeta > 0$,

$$\lim_{r \to \infty} \frac{1}{h_r} \left| \left\{ p \in I_r : \left\| \Delta w_p - \Delta w_{p'(r)} \right\| \ge \zeta \right\} \right| = 0,$$

or equivalently,

$$\lim_{r \to \infty} \frac{1}{h_r} \left| \left\{ p \in I_r : \left\| \Delta w_p - \Delta w_{p'(r)} \right\| < \zeta \right\} \right| = 1.$$

In this case, we say that (w_p) is $S_{\theta}(\Delta)$ -Cauchy.

The following consequence is acquired for sequences in Banach spaces, and we involve the proof for the sake of completeness.

Theorem 2.3. Take Y as a Banach space. A sequence $w = (w_p)$ is $S_{\theta}(\Delta)$ convergent iff it is $S_{\theta}(\Delta)$ -Cauchy.

Proof. Let $w = (w_p)$ be an $S_{\theta}(\Delta)$ -convergent sequence in Y and for each $p \in \mathbb{N}$, we determine

$$K_q = \left\{ p \in \mathbb{N} : \|\Delta w_p - \xi\| < \frac{1}{q} \right\}$$

Observe that $K_q \supseteq K_{q+1}$ and $\frac{\operatorname{card}(K_q \cap I_r)}{h_r} \to 1$ as $r \to \infty$. Establish m_1 such that $r \leq m_1$ then $\operatorname{card}(K_1 \cap I_r) / h_r > 0$, i.e., $K_1 \cap I_r \neq \emptyset$.

Next, select $m_2 > m_1$ such that if $r \ge m_2$, then $K_2 \cap I_r \ne \emptyset$. Now, for each $m_1 \leq r \leq m_2$, we select $p'_r \in I_r$ such that $p'_r \in I_r \cap K_1$, i.e., $\|\Delta w_{p'(r)} - \xi\| < 1$. Technically, we select $m_{k+1} > m_k$, such that if $r > m_{k+1}$, then $I_r \cap K_{k+1} \neq \emptyset$. So, for all r such that $m_k \leq r < m_{k+1}$, we select $p'_r \in I_r \cap K_k$, and we obtain $\left\|\Delta w_{p'(r)} - \xi\right\| < \frac{1}{k}.$

Therefore, we get a sequence (p'_r) such that $p'_r \in I_r$ for every $r \in \mathbb{N}$ and $\lim_{r\to\infty} \Delta w_{p'(r)} = \xi$. As a result, we acquire

$$\frac{1}{h_r} \left| \left\{ p \in I_r : \left\| \Delta w_p - \Delta w_{p'(r)} \right\| \ge \zeta \right\} \right| \le \frac{1}{h_r} \left| \left\{ p \in I_r : \left\| \Delta w_p - \xi \right\| \ge \frac{\zeta}{2} \right\} \right| + \frac{1}{h_r} \left| \left\{ p \in I_r : \left\| \Delta w_{p'(r)} - \xi \right\| \ge \frac{\zeta}{2} \right\} \right|.$$

Since S_{θ} -lim $\Delta w_p = \xi$ and $\lim_{r \to \infty} \Delta w_{p'(r)} = \xi$ we conclude that (w_p) is $S_{\theta}(\Delta)$ -Cauchy.

Conversely, if (w_p) is $S_{\theta}(\Delta)$ -Cauchy sequence, for every $\zeta > 0$,

$$|\{p \in I_r : \|\Delta w_p - \xi\| \ge \zeta\}| \le \left| \left\{ p \in I_r : \|\Delta w_p - \Delta w_{p'(r)}\| \ge \frac{\zeta}{2} \right\} \right| + \left| \left\{ p \in I_r : \|\Delta w_{p'(r)} - \xi\| \ge \frac{\zeta}{2} \right\} \right|.$$

Since (w_p) is $S_{\theta}(\Delta)$ -Cauchy and $\lim_{r\to\infty} \Delta w_{p'(r)} = \xi$, we conclude that S_{θ} - $\lim \Delta w_p = \xi.$

Now, we examine some features of the statistical lacunary summability spaces for Banach spaces.

Let us think Y a real Banach space, $\sum_{j} \Delta w_{j}$ a series in Y and $\theta = (n_{r})$ a lacunary sequence. We identify

$$S_{S_{\theta}}(\sum_{j} \Delta w_{j}) = \left\{ (a_{j})_{j} \in l_{\infty} : \sum_{j} a_{j} \Delta w_{j} \text{ is } S_{\theta}\text{-summable} \right\}$$

endowed with the supremum norm. The space will be called as the space of $S_{\theta}(\Delta)$ -summability connected with $\sum_{j} \Delta w_{j}$. We will describe the completeness of the space $S_{S_{\theta}}(\sum_{j} \Delta w_{j})$ in Theorem 2.4, but first we have to give the following Lemma.

Lemma 2.1. Let Y be a Banach space and presume that the series $\sum_{j} \Delta w_{j}$ is not wuC. Then, there is $f \in Y^{*}$ and a null sequence $(a_{j})_{j} \in c_{0}$ such that

$$\sum_{j} a_j f\left(\Delta w_j\right) = +\infty$$

and

$$a_j f\left(\Delta w_j\right) \ge 0.$$

Proof. Since $\sum_{j=1}^{\infty} |f(\Delta w_j)| = +\infty$, there exists t_1 such that $\sum_{j=1}^{t_1} |f(\Delta w_j)| > 2 \cdot 2$. We itendify $a_j = \frac{1}{2}$ if $f(\Delta w_j) \ge 0$ and $a_j = -\frac{1}{2}$ if $f(\Delta w_j) < 0$ for $j = \{1, 2, ..., t_1\}$. This gives that $\sum_{j=1}^{t_1} a_j f(\Delta w_j) > 2$ and $a_j f(\Delta w_j) \ge 0$ if $j = \{1, 2, ..., t_1\}$. Let $t_2 > t_1$ be such that $\sum_{j=t_1+1}^{t_2} |f(\Delta w_j)| > 2^2 \cdot 2^2$. We determine $a_j = \frac{1}{2^2}$ if $f(\Delta w_j) \ge 0$ and $a_j = -\frac{1}{2^2}$ if $f(\Delta w_j) \ge 0$ and $a_j = -\frac{1}{2^2}$ if $f(\Delta w_j) < 0$ for $j = \{t_1 + 1, ..., t_2\}$. Hence, $\sum_{j=t_1+1}^{t_2} a_j f(\Delta w_j) > 2^2$ and $a_j f(\Delta w_j) \ge 0$ if $j = \{t_1 + 1, ..., t_2\}$. So, we have acquired a sequence $(a_j)_j \in c_0$ with the above features.

Theorem 2.4. Let Y be a Banach space and $\theta = \{n_r\}$ a lacunary sequence. The subsequent are equivalent:

- (i) The series $\sum_{j} \Delta w_j$ is wuC.
- (ii) The space $S_{S_{\theta}}(\sum_{j} \Delta w_j)$ is complete.
- (iii) The space c_0 of all null sequences is included in $S_{S_{\theta}}(\sum_{j} \Delta w_j)$.

Proof. $(i) \Rightarrow (ii)$: Since $\sum_{j} \Delta w_j$ is wuC, the subsequent supremum is finite:

$$Q = \sup\left\{ \left\| \sum_{j=1}^{n} \beta_j \Delta w_j \right\| : |\beta_j| \le 1, \, 1 \le j \le n, \, n \in \mathbb{N} \right\} < +\infty.$$

Let $(\beta^s)_s \subset S_{S_\theta}(\sum_j \Delta w_j)$ such that $\lim_s \|\beta^s - \beta^0\|_{\infty} = 0$, with $\beta^0 \in l_{\infty}$. We will denote that $\beta^0 \in S_{S_\theta}(\sum_j \Delta w_j)$. Let us assume without any loss of generality that $\|\beta^0\|_{\infty} \leq 1$. Then, the partial sums $S_p^0 = \sum_{j=1}^p \beta_j^0 \Delta w_j$ satisfy $\|S_p^0\| \leq Q$ for every $p \in \mathbb{N}$, i.e., the sequence (S_p^0) is bounded. Then, $\beta^0 \in S_{S_\theta}(\sum_j \Delta w_j)$ iff (S_p^0) is $S_\theta(\Delta)$ -summable to some $\xi \in Y$. In accordance with Theorem 2.3, (S_p^0) is lacunary Δ -statistically convergent to $\xi \in Y$ iff (S_p^0) is lacunary Δ -statistically Cauchy sequence.

Let $\zeta > 0$ and $n \in \mathbb{N}$. Then, we acquire statement (*ii*) if we indicate that there is a subsequence $(S_{p'(r)})$ such that $p'_r \in I_r$ for every $r \in \mathbb{N}$, $\lim_{r\to\infty} S_{p'(r)} = \xi$ and

$$d_{\theta}\left(\left\{p \in I_r : \left\|S_p^0 - S_{p'(r)}^0\right\| < \zeta\right\}\right) = 1.$$

Since $\beta^s \to \beta^0$ in l_{∞} , there is $s_0 > n$ such that $\|\beta^s - \beta^0\|_{\infty} < \frac{\zeta}{4Q}$ for all $s > s_0$, and since $S_p^{s_0}$ is $S_{\theta}(\Delta)$ -Cauchy, there is $p'_r \in I_r$ such that $\lim_{r\to\infty} S_{p'(r)}^{s_0} = \xi$ for some ξ and

$$d_{\theta}\left(\left\{p \in I_r : \left\|S_p^{s_0} - S_{p'(r)}^{s_0}\right\| < \frac{\zeta}{2}\right\}\right) = 1.$$

Think $r \in \mathbb{N}$ and fix $p \in I_r$ such that

(1)
$$\left\|S_p^{s_0} - S_{p'(r)}^{s_0}\right\| < \frac{\zeta}{2}.$$

We will signify that $\left\|S_p^0 - S_{p'(r)}^0\right\| < \zeta$, and this will evidence that

$$\left\{ p \in I_r : \left\| S_p^{s_0} - S_{p'(r)}^{s_0} \right\| < \frac{\zeta}{2} \right\} \subset \left\{ p \in I_r : \left\| S_p^0 - S_{p'(r)}^0 \right\| < \zeta \right\}.$$

Since the first set has density 1, the second will also have density 1 and we will be done.

Let us observe first that for each $i \in \mathbb{N}$,

$$\left\|\sum_{j=1}^{i} \frac{4Q}{\zeta} \left(\beta_{j}^{s} - \beta_{j}^{s_{0}}\right) \Delta w_{j}\right\| \leq Q,$$

for every $s > s_0$, therefore

(2)
$$||S_i^0 - S_i^{s_0}|| = \left\|\sum_{j=1}^i \left(\beta_j^0 - \beta_j^{s_0}\right) \Delta w_j\right\| \le \frac{\zeta}{4}.$$

Then, by using the triangular inequality,

$$\begin{split} \left\| S_p^0 - S_{p'(r)}^0 \right\| &\leq \left\| S_p^0 - S_p^{s_0} \right\| + \left\| S_p^{s_0} - S_{p'(r)}^{s_0} \right\| + \left\| S_{p'(r)}^{s_0} - S_{p'(r)}^0 \right\| \\ &< \frac{\zeta}{4} + \frac{\zeta}{2} + \frac{\zeta}{4} = \zeta. \end{split}$$

Therefore, by applying (1) and (2), the last inequality yields the desired result.

 $(ii) \Rightarrow (iii)$: Let us observe that if $S_{S_{\theta}}(\sum_{j} \Delta w_{j})$ is complete, then it includes the space of ultimately zero sequences c_{00} and therefore the thesis comes, since the supremum norm completion of c_{00} is c_{0} .

 $(iii) \Rightarrow (i)$: By utilizing the contradiction, presume that the series $\sum \Delta w_j$ is not wuC. So, there is $f \in Y^*$ such that $\sum_{j=1}^{\infty} |f(\Delta w_j)| = +\infty$. By Lemma 2.1, we can create technically a sequence $(\beta_j)_j \in c_0$ such that

$$\sum_{j} \beta_j f\left(\Delta w_j\right) = +\infty$$

and

$$\beta_j f\left(\Delta w_j\right) \ge 0.$$

Now, we will examine that the sequence $(S_p) = (\sum_{j=1}^p \beta_j f(\Delta w_j))$ is not $S_{\theta}(\Delta)$ -summable to any $\xi \in \mathbb{R}$. By utilizing the contradiction, assume that it is $S_{\theta}(\Delta)$ -summable to $\xi \in \mathbb{R}$, then we obtain

$$\frac{1}{h_r} |\{p \in I_r : |S_p - \xi| \ge \zeta\}| = \frac{1}{h_r} \sum_{\substack{p=n_r-1\\|S_p - \xi| \ge \zeta}}^{n_r} 1 \to 0 \text{ as } r \to \infty.$$

Since S_p is an inreasing sequence and $S_p \to \infty$, there is n_0 such that $|S_p - \xi| \ge \zeta$ for every $p \ge n_0$. Let us presume that $n_r > n_0$ for every r. Consequently,

$$\frac{1}{h_r} \sum_{\substack{n=n_r-1\\|S_p-\xi|\geq \zeta}}^{n_r} 1 = \frac{h_r}{h_r} = 1 \nrightarrow 0 \text{ as } r \to \infty,$$

a contradiction. This gives that (S_p) is not $S_{\theta}(\Delta)$ -convergent and is a contradiction with *(iii)*.

Now, we examine some features of the lacunary strongly Δ -summability space for Banach spaces.

Let Y a real Banach space, $\sum_{j} \Delta w_j$ a series in Y and $\theta = (n_r)$ a lacunary sequence. We itendify

$$S_{N_{\theta}}(\sum_{j} \Delta w_{j}) = \left\{ (a_{j})_{j} \in l_{\infty} : \sum_{j} a_{j} \Delta w_{j} \text{ is } N_{\theta} \text{-summable} \right\}$$

endowed with the supremum norm. This will be characterised as the space of $N_{\theta}(\Delta)$ -summability connected with the series $\sum_{j} \Delta w_{j}$. We can now give a theorem very same as that of Theorem 2.4 but for the case of $N_{\theta}(\Delta)$ -summability. Actually Theorem 2.5 describes the completeness of the space $S_{N_{\theta}}(\sum_{j} \Delta w_{j})$.

Theorem 2.5. Let Y be a real Banach space and $\theta = (n_r)$ a lacunary sequence. The subsequent are equivalent:

- (i) The series $\sum_{i} \Delta w_{i}$ is wuC.
- (ii) The space $S_{N_{\theta}}(\sum_{j} \Delta w_j)$ is complete.
- (iii) The space c_0 of all null sequences is included in $S_{N_{\theta}}(\sum_{j} \Delta w_j)$.

Proof. $(i) \Rightarrow (ii)$: Since $\sum_{j} \Delta w_j$ is wuC, the subsequent supremum is finite:

$$Q = \sup\left\{ \left\| \sum_{j=1}^{k} \beta_j \Delta w_j \right\| : |\beta_j| \le 1, 1 \le j \le k, k \in \mathbb{N} \right\} < \infty.$$

Let $(\beta^s)_s \subset S_{N_\theta}(\sum_j \Delta w_j)$ such that $\lim_s \|\beta^s - \beta^0\|_{\infty} = 0$, with $\beta^0 \in l_{\infty}$. We will denote that $\beta^0 \in S_{N_\theta}(\sum_j \Delta w_j)$. With no loss of generality, we can presume that $\|\beta^0\|_{\infty} \leq 1$. So, the partial sums $S_p^0 = \sum_{j=1}^p \beta_j^0 \Delta w_j$ satisfy $\|S_p^0\| \leq Q$ for every $p \in \mathbb{N}$, i.e., the sequence (S_p^0) is bounded. Then, $\beta^0 \in S_{N_\theta}(\sum_j \Delta w_j)$ iff (S_p^0) is $N_\theta(\Delta)$ -summable to some $\xi \in Y$. Since (S_p^0) is bounded, it is sufficient to show that (S_p) is $S_\theta(\Delta)$ -convergent, as a consequence of Theorem 2.1 due to Fridy and Orhan [15]. The results follows similarly as in Theorem 2.4.

 $(ii) \Rightarrow (iii)$: It is adequate to observe that $S_{N_{\theta}}(\sum_{j} \Delta w_{j})$ is a complete space and it includes the space of ultimately zero sequences c_{00} , so it involves the completion of c_{00} with regards to the supremum norm, hence it includes c_{0} .

 $(iii) \Rightarrow (i)$: By utilizing the contradiction, presume that the series $\sum \Delta w_j$ is not wuC. So, there is $f \in Y^*$ such that $\sum_{j=1}^{\infty} |f(\Delta w_j)| = +\infty$. By Lemma 2.1, we can create technically a sequence $(\beta_j)_j \in c_0$ such that $\sum_j \beta_j f(\Delta w_j) = +\infty$ and $\beta_j f(\Delta w_j) \ge 0$.

The sequence $S_p = \sum_{j=1}^p \beta_j f(\Delta w_j)$ is not $N_\theta(\Delta)$ -summable to any $\xi \in \mathbb{R}$. Since $S_p \to \infty$, for every H > 0, there is p_0 such that $|S_p| > H$ if $p > p_0$. Then, we acquire

$$\frac{1}{h_r} \sum_{p \in I_r} |S_p| > \frac{h_r Q}{h_r} = Q.$$

Hence S_p is not $N_{\theta}(\Delta)$ -summable to any $\xi \in \mathbb{R}$, on the other hand

$$\infty \leftarrow \frac{1}{h_r} \sum_{p \in I_r} |S_p| \le |\xi| + \sum_{p \in I_r} |S_p - \xi| \to |\xi|$$

We can deduce that S_p is not $N_{\theta}(\Delta)$ -convergent, a contradiction with (*iii*). \Box

A Banach space Y can be characterized by the completeness of the space $S_{N_{\theta}}(\sum_{p} \Delta w_{p})$ for every wuC series $\sum_{p} \Delta w_{p}$, as we will show, nextly.

Theorem 2.6. Take Y as a normed real vector space. Then, Y is complete iff $S_{N_{\theta}}(\sum_{p} \Delta w_{p})$ is a complete space for every wuC series $\sum_{p} \Delta w_{p}$.

Proof. The necessary condition is obvious from Theorem 2.4. Now, suppose that Y is not complete, hence there is a series $\sum_{p} \Delta w_p$ in Y such that $||\Delta w_p|| \leq \frac{1}{p^{2p}}$ and $\sum \Delta w_p = w^{**} \in Y^{**} \setminus Y$. We will provide a wuC series $\sum_{p} \Delta y_p$ such that $S_{N_{\theta}}(\sum_{p} \Delta y_p)$ is not complete, a contradiction. Set $S_M = \sum_{p=1}^M \Delta w_p$. As Y^{**} is a Banach space endowed with the dual topology, $\sup_{\|y^*\|\leq 1} ||y^*|| \leq 1$

tends to 0 as $M \to \infty$, i.e.,

(3)
$$\lim_{M \to +\infty} y^* (S_M) = \lim_{M \to +\infty} \sum_{p=1}^M y^* (\Delta w_p) = w^{**} (y^*),$$

for every $||y^*|| \leq 1$. Put $\Delta y_p = p \Delta w_p$ and let us observe that $||\Delta y_p|| < \frac{1}{2^p}$. Therefore, $\sum_p \Delta y_p$ is absolutely convergent, so it is unconditionally convergent and weakly unconditionally Cauchy. We claim that the series $\sum_{p} \frac{1}{p} \Delta y_p$ is not N_{θ} -summable in Y. Using contradiction assume that $S_M = \sum_{p=1}^{M} \frac{1}{p} \Delta y_p$ is N_{θ} -summable in Y, i.e., there exists ξ in Y such that $\lim_{r\to\infty} \frac{1}{h_r} \sum_{p \in I_r} \|S_p - \xi\| = 0$. This gives that

(4)
$$\lim_{r \to \infty} \frac{1}{h_r} \sum_{p \in I_r} y^* \left(S_p \right) = y^* \left(\xi \right),$$

for every $||y^*|| \leq 1$. By the relations (3) and (4), the uniqueness of the limit and since $N_{\theta}(\Delta)$ is a regular method, we get $w^{**}(y^*) = y^*(\xi)$ for every $||y^*|| \leq 1$, so we acquire $w^{**} = \xi \in Y$, a contradiction. Hence, $S_M = \sum_{p=1}^M \frac{1}{p} \Delta y_p$ is not N_{θ} -summable to any $\xi \in Y$.

Finally, let us observe that since $\sum_{p} \Delta y_{p}$ is a weakly unconditionally Cauchy series and $S_{M} = \sum_{p=1}^{M} \frac{1}{p} \Delta y_{p}$ is not N_{θ} -summable, we get $\left(\frac{1}{p}\right) \notin S_{N_{\theta}}(\sum_{p} \Delta y_{p})$ and this means that $c_{0} \notin S_{N_{\theta}}(\sum_{p} \Delta y_{p})$ which contradicts Part (*iii*) of Theorem 2.5. This completes the proof.

Definition 2.4. Let $0 , the sequence <math>w = (w_n)$ is named to be strongly (p, Δ) -Cesàro or $|\sigma_p|(\Delta)$ -summable if there is $\xi \in \mathbb{R}$ such that

$$\lim_{t \to \infty} \frac{1}{t} \sum_{i=1}^{t} \|\Delta w_i - \xi\|^p = 0$$

and is written as $(\Delta w_n) \xrightarrow[|\sigma_p|]{} \xi$ or $|\sigma_p| - \lim_{n \to \infty} \Delta w_n = \xi$.

Let $\sum \Delta w_i$ be a series in a real Banach space Y,

$$S_{|\sigma_p|}(\sum_i \Delta w_i) = \left\{ (a_i)_i \in l_\infty : \sum_i a_i \Delta w_i \text{ is } |\sigma_p| \text{-summable} \right\}$$

endowed with the supremum norm.

Corollary 2.1. Take Y as a normed real vector space and $p \ge 1$. The subsequent are equivalent:

- (i) Y is complete.
- (ii) $S_{N_{\theta}}(\sum_{p} \Delta w_{p})$ is complete for every wuC series $\sum_{p} \Delta w_{p}$.
- (iii) $S_{S_{\theta}}(\sum_{p} \Delta w_{p} \text{ is complete for every } wuC \text{ series } \sum_{p} \Delta w_{p}.$
- (iv) $S_{|\sigma_p|}(\sum_p \Delta w_p)$ is complete, for every wuC series $\sum_p \Delta w_p$.

Acknowledgement

The authors thank to the referees for valuable comments and fruitful suggestions which enhanced the readability of the paper.

References

- A. Zygmund, *Trigonometrical series*, Dover Publications: New York, NY, USA, 1955.
- [2] H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244.
- [3] J.A. Fridy, On statistical convergence, Analysis, 5 (1985), 301-313.
- [4] A. A. Nabiev, E. Savaş, M. Gürdal, Statistically localized sequences in metric spaces, J. Appl. Anal. Comput., 9 (2019), 739-746.
- [5] E. Savaş, M. Gürdal, Generalized statistically convergent sequences of functions in fuzzy 2-normed spaces, J. Intell. Fuzzy Systems., 27 (2014), 2067-2075.
- [6] F. Başar, Summability theory and its applications, Second edition, CRC Press/Taylor & Francis Group, in press.
- [7] H Roopaei, F Başar, On the spaces of Cesàro absolutely p-summable, null, and convergent sequences, Math. Methods Appl. Sci., 44 (2021), 3670-3685.
- [8] M. Mursaleen, F. Başar, Sequence spaces: topics in modern summability theory, CRC Press, Taylor & Francis Group, Series: Mathematics and Its Applications, Boca Raton London New York, 2020.
- [9] A.R. Freedman, J.J. Sember, M. Raphael, Some Cesàro-type summability spaces, Proc. Lond. Math. Soc., 37 (1978), 508-520.
- [10] C. Belen, S.A. Mohiuddine, Generalized weighted statistical convergence and application, Appl. Math. Comput., 219 (2013), 9821-9826.
- [11] U. Kadak, S.A. Mohiuddine, Generalized statistically almost convergence based on the difference operator which includes the (p,q)-Gamma function and related approximation theorems, Results Math., 73 (2018), 1-31.
- [12] S.A. Mohiuddine and B.A.S. Alamri, Generalization of equi-statistical convergence via weighted lacunary sequence with associated Korovkin and Voronovskaya type approximation theorems, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math., 113 (2019), 1955-1973.
- [13] S.A. Mohiuddine, A. Asiri, B. Hazarika, Weighted statistical convergence through difference operator of sequences of fuzzy numbers with application to fuzzy approximation theorems. Int. J. Gen. Syst., 48 (2019), 492-506.

- [14] M. Mursaleen, Applied Summability Methods, Springer Briefs in Mathematics; Springer: Cham, Switzerland, 2014.
- [15] J. A. Fridy, C. Orhan, Lacunary statistical convergence, Pacific J. Math., 160 (1993), 43-51.
- [16] J. A. Fridy, C. Orhan, Lacunary statistical summability, J. Math. Anal. Appl., 173 (1993),497-504.
- [17] M. Sen, M. Et, Lacunary statistical and lacunary strongly convergence of generalized difference sequences in intuitionistic fuzzy normed linear spaces, Bol. Soc. Paran. Mat., 38 (2020), 117-129.
- [18] M. Mursaleen, S.A. Mohiuddine, On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space, J. Comput. Apl. Math., 233 (2009), 142-149.
- [19] F. Nuray, Lacunary statistical convergence of sequences of fuzzy numbers, Fuzzy Sets and Systems, 99 (1998), 353-355.
- [20] Y. Altin, M. Et, R. Çolak, Lacunary statistical and lacunary strongly convergence of generalized difference sequences of fuzzy numbers, Comput. Math. Appl., 52 (2006), 1011-1020.
- [21] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull., 24 (1981), 169-176.
- [22] B. Altay, F. Başar, The fine spectrum and the matrix domain of the difference operator Δ on the sequence space l_p , (0 , Commun. Math.Anal., 2 (2007), 1-11.
- [23] F. Başar, B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J., 55 (2003), 136-147.
- [24] M. Et, R. Çolak, On some generalized difference sequence spaces, Soochow J. Math., 21 (1995), 377-386.
- [25] M. Başarır, On the Δ-statistical convergence of sequences, First Univ. Turk. J. Sci. Technol., 2 (1995), 1-6.
- [26] B. Hazarika, Lacunary generalized difference statistical convergence in random 2-normed spaces, Proyectiones, 31 (2012), 373-390.
- [27] R. Çolak, H. Altınok, M. Et, Generalized difference sequences of fuzzy numbers, Chaos Solitons Fractals, 40 (2009), 1106-1117.
- [28] Y. Altın, M. Başarır, M. Et, On some generalized difference sequences of fuzzy numbers, Kuwait J. Sci., 34 (2007), 1-14.

- [29] Y. Altin, M. Et, M. Basarir, On some generalized difference sequences of fuzzy numbers, Kuwait J. Sci. Engrg., 34 (2007), 1-14.
- [30] M. Et and F. Nuray, Δ^m -Statistical convergence, Indian J. Pure appl. Math., 32(6) (2001), 961-969.
- [31] E. Kolk, The statistical convergence in Banach spaces, Acta Comment. Univ. Tartu. Math., 928 (1991), 41-52.
- [32] J. Connor, M. Ganichev, V. Kadets, A characterization of Banach spaces with separable duals via weak statistical convergence, J. Math. Anal. Appl., 244 (2000), 251-261.
- [33] F. J. Pérez-Fernández, F. Benítez-Trujillo and A. Aizpuru, Characterizations of completeness of normed spaces through weakly unconditionally Cauchy series, Czechoslovak Math. J., 50 (2000), 889-896.
- [34] A. Aizpuru, R. Armario, F. J. Pérez-Fernández, Almost summability and unconditionally Cauchy series, Bull. Belg. Math. Soc. Simon Stevin, 15 (2008), 635-644.
- [35] A. Aizpuru, A. Gutiérrez-Dávila, A. Sala, Unconditionally Cauchy series and Cesàro summability, J. Math. Anal. Appl., 324 (2006), 39-48.
- [36] A. Aizpuru, C. Pérez-Eslava, J.B. Seoane-Sepúlveda, Matrix summability methods and weakly unconditionally Cauchy series, Rocky Mountain J. Math., 39 (2009), 367-380.
- [37] A. Aizpuru, F. J. Pérez-Fernández, Sequence spaces associated to a series in a Banach space (sequence spaces associated to a series), Indian J. Pure Appl. Math., 33 (2002), 1317-1329.
- [38] A. Aizpuru, M. Nicasio-Llach, Spaces of sequences defined by the statistical convergence, Studia Sci. Math. Hung., 45 (2008), 519-529.
- [39] S. Moreno-Pulido, G. Barbieri, F. L. Saavedra, F. J. Pérez-Fernández, A.Sala-Pérez, Characterizations of a Banach space through the strong lacunary and the lacunary statistical summabilities, Mathematics, 8 (2020), 1066.
- [40] F. León-Saavedra, S. Moreno-Pulido, A. Sala, Completeness of a normed space via strong p-Cesàro convergence, Filomat, 33 (2019), 3013-3022.
- [41] M. Karakuş, F. Başar, A generalization of almost convergence, completeness of some normed spaces with wuC series and a version of Orlicz-Pettis theorem, Rev. R. Acad. Cienc. Exactas Fís. Nat., 113 (2019), 3461-3475.

- [42] M. Karakuş, F. Başar, Operator valued series, almost summability of vector valued multipliers and (weak) compactness of summing operator, J. Math. Anal. Appl., 484 (2020), 123651.
- [43] M. Karakuş, F. Başar, Vector valued multiplier spaces of f_{λ} -summability, completeness through $c_0(X)$ -multiplier convergence and continuity and compactness of summing operators, Rev. R. Acad. Cienc. Exactas Fís. Nat. RACSAM 114, 169 (2020).
- [44] M. Karakuş, F. Başar, On some classical properties of normed spaces via generalized vector valued almost convergence, Math. Slovaca, accepted.
- [45] J. Diestel, Sequences and series in Banach spaces, Graduate Texts in Mathematics; Springer: New York, NY, USA, 1984.
- [46] F. León-Saavedra, S. Moreno-Pulido and A. Sala-Pérez, Completeness of a normed space via strong p-Cesàro summability, Filomat, 33 (2019) 3013-3022.
- [47] F. León-Saavedra, F. J. Pérez-Fernández, M.P. Romero de la Rosa, A. Sala, *Ideal convergence and completeness of a normed space*, Mathematics, 7 (897) (2019).

Accepted: February 20, 2022