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Abstract. Let R be a commutative completely primary finite ring with Jacobson
radical J such that J3 = (0), J% # (0) and R/J = GF(p"), the finite field with
p" elements, for any prime p and any positive integer r. Then, characteristic of R is
either p, p? or p>. In this paper, we determine the structure and generators of the
group of units of the ring R in the special case when the characteristic of R is p3.
We treat the problem by considering fixed dimensions and bases for the vector spaces
JH T (i =1, 2) over the residue field R/J and by fixing the order of the ideal J2.
This complements the author’s earlier solution to the problem in the case when the
characteristic of R is p or p? and J? C ann(J), the annihilator of J.
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1. Introduction

Throughout this paper, all rings are finite and commutative (unless otherwise
stated) with identity element 1 # 0, subrings have the same identity, ring ho-
momorphisms preserve 1 and modules are unital. A finite ring R is called
completely primary if all its zero divisors including the zero element form the
unique maximal ideal [J. Completely primary finite rings are precisely local
rings with unique maximal ideals. For a given completely primary finite ring
R, unless otherwise stated, J will denote the Jacobson radical of R, and we
will denote the Galois ring GR(p™", p™) of characteristic p" and order p™" by
R,, for a prime integer p and positive integers n, r. We denote the group of
units of R by U(R); if g is an element of U(R), then o(g) denotes its order, and
< g > denotes the cyclic group generated by g. Similarly, if f(x) € R[z|, we
shall denote by < f(x) > the ideal generated by f(z). Further, for a subset A
of Ror U(R), |A| will denote the number of elements in A. The ring of integers
modulo the number n will be denoted by Z,,, and the characteristic of R will be
denoted by charR. The symbol K will denote the residue field R/J and K, will
denote the set of coset representatives of the maximal ideal J in the ring R. We
denote a direct product of r cyclic groups of Z,, by Z,, or by Zp, X -+ X Zp.

T
If I is an ideal of R generated by the elements a, b, we shall denote this by
I =(a, b).
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Let R be a completely primary finite ring with maximal ideal ;7. Then, |R| =
p™", J is the Jacobson radical of R, 7™ = (0), where m < n, |J| = p(=D7 and
the residue field R/J = GF(p"), the finite field of p" elements, for some prime
p and positive integers n, r. The characteristic charR of R is equal to R = pF¥,
where 1 < k < m. If k =n, then R = Z,x[b], where b is an element of R of order
p" —1; J = pR and Aut(R) = Aut(R/pR) (see Proposition 2 in [5]). Such a
ring is called a Galois ring, denoted by GR(p*", p*), and a concrete model is
the quotient Z,x[z]/ < f(x) >, where f(r) is a monic polynomial of degree r,
irreducible modulo p. Any such polynomial will do: the rings are all isomorphic.
Trivial cases are GR(p", p") = Zy» and GR(p", p) = Fpn. Furthermore, if k < n
and charR = p¥, it can be deduced from [4] that R has a coefficient subring R, of
the form G R(p*", p*) which is clearly a maximal Galois subring of R. Moreover,
if R, is another coefficient subring of R then there exists an invertible element
z in R such that R, = 2R,z (see Theorem 8 in [5]). The maximal ideal of R,
is

Jo=pRo=JNR,, and R,/J, = GF(p").

Let ¢ : R, — R,/J, be the canonical map. Since the element b has order
p" — 1 and J, C J, we have that 1 (b) is a primitive element of R,/J,. Let
K, =<b> U{0} and let R, = Z,[b] be a coefficient subring of R of order p*”.
Then, it is easy to show that every element of R, can be written uniquely as
Zf:_ol \ip’, where \; € K,. Also, there exist elements mi, ma,...,my € J and
automorphisms o1, ...,0, € Aut(R,) such that

h
R=R,® Z Rom; (as R, — modules), m;r = o;(r)my,
i=1

for every r € R, and any ¢ = 1,...,h. Further, o1,...,0p are uniquely deter-
mined by R and R,. The maximal ideal of R is

h
J =pR, ® Z Rom;.
=1

Let R be a completely primary ring (not necessarily commutative) of order
p™" with unique maximal ideal 7. Then, the set R — J consisting of invertible
elements in R forms a group with respect to the multiplication defined on R,
called the group of units of R. The following facts are useful for our purpose
(e.g. see [5, §2]): The group of units U(R) of R contains a cyclic subgroup
< b > of order p" — 1, and it is a semi-direct product of 1 + J by < b >; the
group U(R) is solvable; if G is a subgroup of U(R) of order p" — 1, then G
is conjugate to < b > in U(R); if U(R) contains a normal subgroup of order
p" — 1, then the set K, =< b > U{0} is contained in the center of the ring
R;and (1 +J9/(1 + 7Y = 79/ J! (the left hand side as a multiplicative
group and the right hand side as an additive group). It is easy to check that
|U(R)| = p"~ D (p" — 1) and that |14+ J| = p(®~V7, so that 14 J is a p-group.
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In [1], the author studied completely primary finite rings with unique maxi-
mal ideals J such that J3 = (0), J?2 # (0) for all the characteristics. For more
details on the structure and construction of these rings, the interested reader
may refer to [1].

Let R be a commutative completely primary finite ring with Jacobson radical
J such that J3 = (0) and J2 # (0) (see, for example, [1]). Then, in view of
the above results, charR is either p, p? or p®. The ring R contains a coefficient
subring R, with charR, =charR, and with R,/pR, equal to R/J. Moreover,
R, is a Galois ring of the form GR(p*", p*), k =1, 2 or 3. Let ann(J) denote
the two-sided annihilator of J in R. Of course ann(J7) is an ideal of R. Because
J? = (0), it follows easily that 72 C ann(J).

From now on, we assume that the characteristic of the ring R is p?. Because
J? = (0), we have that p?m; = 0, for all m; € J. Further, pm; = 0 for all m; €
ann(J). In particular, pm; = 0 for all m; € J2. It is now obvious to see that p
lies in J — 72, and p? € J2. Let By = {p, u1, ..., us} denote the set of elements
of J whose images modulo J2 form a K —basis for J/J? so that dimg (7T /J?)
is dy =1+ s, and let By = {p?, pui, ...,pug, u3, ujua,...,u} denote the set
of elements of J whose images modulo J3(= (0)) form a K—basis for J2, so
that dimy (J?) is do = 1+d+t, where t < s(s+1)/2,i.e. do < (1+5)(2+35)/2.
Then, an arbitrary element in R is of the form

s d s
o+ arp+asp® + > b+ Y apu+ > digusug, (a0, ax, bi, ¢, dij € Ko).
i 1=1 ij=1

Clearly, the products u,u; € J 2. Hence, we conclude that p?, pu; and UUj
(i, j = 1,...,s) generate J2. In fact, we can write any v € J? as a linear
combination of p?, pu; and u;uj as follows:

d s
2
v = aop” + g o;pu; + E QiU U,
i=1 i, j=1

where ag, @, a;j € Ro/pR,. Clearly, |R| = p® - p?dr . pls=dr . pir — p(S+std+t)r

and | 7| = p@tstd+tr (Notice that |Rous| = p?" if pu; # 0, and |Rou;| = p", if
otherwise.)

In this paper, we determine explicitly the group of units of all commutative
completely primary finite rings R with Jacobson radical J such that J2 = (0),
J? # (0), and of characteristic p3. We treat the problem by considering fixed
dimensions and bases for the vector spaces J¢/J**! (i = 1, 2) over the residue
field K = R/J and by fixing the order of the ideal J2. First, if a ring R has
J such that d; :diiji/JiJrl (1 =1, 2), then as we shall see later, we may
further classify R according to the behaviour of a generating set for J. In
particular, we determine the group of units of the ring R with dimy(J/J?) =
1+ s and dimg(J?) < (14 5)(2 + s)/2 under the given conditions (see Section
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2) on the basis elements of J 2 over K. This complements the author’s earlier
solution of the problem [2] in the case when the characteristic of R is p or p?
and J2 C ann(J), the annihilator of 7.

2. The group of units

Let R be a commutative completely primary finite ring with Jacobson radical

J such that J3 = (0), J2? # (0), and of characteristic p®. Suppose that J =
(p, u1, ..., us) so that dimg(J/JT?) = 1+ s, for any integer s > 0. As noted

above, the non-zero elements p?, pu; (i =1,...,s), wu; (i, j =1,...,5) span
J? over K. If pu; = 0, then u; € ann(J) 2 T 2 and as such for every element
z € J, we have u;x = zu; = 0. In particular, wu; =0 (Vi, j =1,...,s). We also

note that pJ C J? is spanned by the non-zero elements p? and pu; (i = 1,...,s),
since puju; =0 (Vi, j=1,...,s).

Following the above observations, we determine the structure of the group
of units U(R) of the ring R under the conditions listed below:
(1) J = (p, u1,...,us), pu; = wjuj = 0, so that J% = (p?), dimg(J?) =1 and
T =1";
(i) J = (p, u1,...,us), J*> = pJ, so that wyu; = 0, dimg(J?) < 1+ s and
|j2| < p(l-i-s)r; and
(i) J = (p, u1,...,us), J? = (P2, puiy...,pus, wu;) (i, j = 1,...,s),
dimp(J?) < (s +1)(s +2)/2 and | J?| < pletDs+2)/2r,

One easily verifies that the above cases are all commutative completely pri-
mary finite rings of characteristic p? with unique maximal ideal J such that
J? = (0) and J? # (0). Also, to distinguish (iii) from the other two cases, we
assume that pu; # 0 for at least one u;, and u;u; # 0 for at least one product.

We know that for a commutative completely primary finite ring R,

U(R) :<b>.(1—i—j) >~ ph> X(l—}-j);

a direct product of the p—group 1 + J by the cyclic subgroup < b > . Thus,
since the structure of < b > is basic, it suffices to determine the structure of the
subgroup 1+ J in order to obtain the complete structure of U(R).

There are many important results on the group of units of certain finite
rings. For example, it is well known that the multiplicative group of the finite
field GF(p") is a cyclic group of order p” — 1, and the multiplicative group of
the finite ring Z/p*Z, the ring of integers modulo p*, for p a prime number, and
k a positive integer, is a cyclic group of order p*~!(p — 1) if p is odd, and is a
direct product of a cyclic group of order 2 and a cyclic group of order 2+~2, if
p=2.

Let U(R,) denote the group of units of the Galois ring R, = GR(p"", p").
Then, U(R,) has the following structure [5]:

Theorem 2.1. U(R,) =< b > X(1 + pR,), where < b > is the cyclic group of
order p" —1 and 14 pR, is of order p""~V" whose structure is described below.
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(2) If (a) p is odd, or (b) p=2 and n < 2, then 1+ pR, is the direct product
of v cyclic groups each of order p("=b).

(i) When p = 2 and n > 3, the group 1 4+ pR, is the direct product of a
cyclic group of order 2, a cyclic group of order 22 and r — 1 cyclic groups
each of order 2(n—1).

In Propositions 2.2 and 2.3, we will provide detailed proofs for the two types
of rings of this paper, while in Proposition 2.1, we merely state U(R) and their
generators for the other type of rings, as the proofs are very similar and may be
proved by slight modifications of these.

For the rest of this paper, we shall take r elements €1,...,&, in R, with
g1 = 1 such that {7,...,&,} is a basis for the quotient ring R,/pR, regarded
as a vector space over its prime subfield GF(p).

2.1 The case when J?2 = (p?) and pu; = uuj; =0

Let dimy(J/J?) = 1+ s and suppose that J = (p, u1,...,us), for any integer
s = 0. Suppose further that pu; = w;u; = 0, for every 7, j = 1,...,s. Then,
J? = (p?), dimk(J?) = 1 and |J?| = p". The following result determines the
structure of the group of units of R and its generators.

Proposition 2.1. Let R be a ring of characteristic p® with mazimal ideal J such
that J3 = {0}, J? # {0}. Suppose further that there exist elements ui, ..., us
in J such that the multiplication in R is defined by pu; = 0, u;u; = 0, for every
i, =1, ..., s. Then,

ZZT_leQXngZZ_leSX e XY, if p=2;
~—_—_—
~ S
U(R) = Zpr,le;;QxZ;x s X L, if pis odd.

s

Moreover, if p = 2, then 1 4+ J is generated by (—1 + 4e1), (1 + 4e1), each of
order 2, (r — 1) cyclic groups < 1+2¢; > (j =2,...,r), each of order 4, and
sr cyclic groups < 14 ¢eju; >, each of order 2, fori=1,...,s. If p is odd, then
1+ J is generated by 1 +pej (j = 1,...,7), each of order p?, and sr cyclic
groups 1 +¢eju; (j =1,...,7), each of order p, fori=1,...,s.

2.2 The case when J? =pJ

Let dimy(J/J?) = 1+ s and suppose that J = (p, u1,...,us), for any integer
s = 0. Suppose further that pu; # 0 for ¢ = 1,...,d < s and pu; = 0 for
j=d+1,...,s. Then, uu; =0, for every i, j = 1,...,s and dimg (J?) < 1+s.
The following determines the structure and generators of the group of units of
the ring R.

Proposition 2.2. Let R be a ring of characteristic p> with mazimal ideal J such
that J3 = {0}, J? # {0}. Suppose further that there exist elements u1, ..., us
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in J such that the multiplication in R is defined by pu; # 0, fori=1,...,d < s,

puj =0, for j=d+1,...,s, and wyu; =0, for every i, j =1, ..., s. Then,
Z2r,1XZ2XZQXZ£71XZZX e X ZY
d
XLy x - XLy, ifp=2
~ s—d
UBRV =\ By x Ty x 2Ly x - x I,
-d
XZLpX o+ XLy, if p#2
s—d

Moreover, if p is odd, then 1+ is generated by r elements 1+pey, (k=1,...,r),
each of order p?, dr elements 1 + exu; (k = 1,...,7), each of order p*, for
i=1,...,d <s and by (s — d)r elements 1 +eu; (k=1,...,r), each of order
p, forj=d+1,...,s.

If p=2, then 1+ J is a direct product of 2 cyclic groups < —1+4e1 > and
< 144e1 >, each of order 2, (r—1) cyclic groups < 142e, > (k=2,...,r), each
of order 4, dr cyclic groups < 1+ epu; >, each of order 4, fori=1,...,d < s
and by (s —d)r cyclic groups < 1+¢egu; >, each of order 2, for j =d+1,...,s.

Proof. Suppose pu; #0fori =1, ..., d<s,pu; =0for j =d+1,...,5 and
uiuj = 0for 1 <4, j <d<s. Let a =1+ be an element of 1 4 J with the
highest possible order and assume that x € J — J2. Then, o(a) = p?. This is
true because, for any ¢ (k=1,...,r),

—1)

(I+exx)P =1+ pegr + p—1)

5 (exx)? (since z° = 0).

For every odd prime p, (1 + ¢,x)P? = 1 + pepz, since pz? = 0. Now,

~1
(14 pepz)’ = 1+4pPepe + p(p2)

= 1, since p’z =0 and p*z% = 0.

(pexz)?

Hence, (1 + epz)?” = 1.

For p = 2, (1 +exz)? = 1+ 22 + (ew)?, and (1 + exz)? = 1, since
4z =0, 622 =0, 42% = 0 and z* = 0.

For any prime number p and for each k =1, ..., r, we see that (1 +5kp)p2 =
1, (1+epus)?’ =1, fori=1,...,d < s, while (14gu;)? = 1, for j = d+1,...,s.

For integers hy; < p?, lk; < p, we asset that

d
ﬁ [0+ epu)™ H H (1 + epuy)™s =1,

k=1i=1 k=1j=d+1
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will imply hy; = p?, forall k =1,...,rand i = 1,...,d < s; lg; = p, for all
k=1,...,rand j=d+1, ..., s.

If we set Dy; = {(1 + Ekui)h’” s hy = 1,... ,pz},Ekj = {(1 + €kuj)l’€j :
lyj =1,...,p}, for all k = 1,...,7, we see that Dy;, Ej; are all subgroups of
1+ Y Rou; © 5. pRou; and that Dy; are all of order p? and that Ej; are all
of order p as indicated in their definition. Also, pairwise intersection of these
subgroups is trivial.

The argument above will show that the product of the dr subgroups Dy;,
and (s — d)r subgroups FEj; is direct. Thus, their product will exhaust 1 +
Z Rou; ® ZpRoui.

It is straightforward to check that if p = 2, then 1 + J is a direct product
of 2 cyclic groups < —1+44e; > and < 1+ 4¢e; >, each of order 2, (r — 1) cyclic
groups < 142¢;, > (k=2,...,r), each of order 4, dr cyclic groups < 1+egu; >,
each of order 4, for i =1,...,d < s and by (s — d)r cyclic groups < 1+ ¢epu; >,
each of order 2, for j =d+1,...,s.

Also, if p is odd, then 1+ 7 is generated by r elements 1+peg (k=1,...,7),
each of order p?, dr elements 1 + exu; (k = 1,...,7), each of order p?, for
i=1,...,d <sand by (s —d)r elements 1 + e,u; (k=1,...,7), each of order
p,for j=d+1,...,s.

This completes the proof. O

2.3 The case when J2 = (p?, pu;, uu;)

Let dimg (J/J?) = 1+ s and suppose that dimg (J?) < (s+1)(s+2)/2. Then,
J? = (p?, pui, usu;). Suppose further that pu; # 0, for i = 1,...,d < s and
that pu; = 0, for j = d+1,...,s. Then, uu; # 0 foralli, j=1,...,d <s
(since in this case u;, u; are not in ann(J)); and w;u; =0 for alli =1,...,s
and j = d+1,...,s. Recall that if pu; = 0, then u; € ann(J) and as such
ujz = 0 for every x € J. The following describes the structure of U(R) and its
possible generators.

Proposition 2.3. Let R be a ring of characteristic p® with mazimal ideal J such
that J3 = {0}, J? # {0}. Suppose further that there exist elements ui, ..., us
in J such that the multiplication in R is defined by pu; # 0, fori=1,...,d < s,
and that pu; = 0, for j =d+1,...,s so that wyu; #0 for alli, j=1,...,d < s;
and wiu; =0 for alli=1,...,s and j =d+1,...,s. Then,

( Zor 1 X Ty X Lo X LY P X Ty x - Ty X TE X -+ X L%
d s—d
Ly x -+ XTIy ifp=2
d(d+1)/2
U(R) = Z;m"f)(%%gxz;;zx ---Zgng;x ><Z;><
d s—d
Ly X -+ XLy, if pF2
\ d(d+1)/2
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Proof. Suppose pu; # 0 foralli =1, ..., d <sand wu; #0 for 1 <14, j <

d < s. Let a =1+ x be an element of 1 + J with the highest poss1ble order
and assume that x € J — J2. Then, o(a) = p2. This is true because, for any
(k=1,...,7),

p(p—1)

5 (exx)? (since z3 = 0).

(1+exx)? =1+ pegz +

If p is odd, then (1 + ,x)P = 1 + pegz, since pz? = 0. Now,

p(p—1)
2
= 1, since p?’z =0 and p*z? =0.

(1+pepx)P = 1 + plepr + (psk:n)2

Hence, (1 + gxz)?” = 1.

For any odd prime number p and for each £ = 1, ..., 7, we see that
(1 —|—5kp)p2 =1, (1 —|—5kui)p2 =1, fori=1,...,d < s, while (1 + e,u;)? =
1, for j = d+1,...,s, and for non-zero elements u?, u;u; (i # j), we have

(1 =+ Eku?)p = 1, (1 + ekuiuj)p =1.
For integers hy; < p?, lkj < p, my; and ng;; < p, we asset that

HH 1+€ku h’“ H H +gku lkJ.HH +5ku mkz.

=1:=1 k=1j=d+1 =11i=1
r
H H (l-i-e’;‘kuiuj')nkij =1,
k=14, j=1

will imply hy; = p?, for all k = 1,...,r and i = 1,...,d; lg; = p, for all

k=1,...,randj=d+1, ..., s;mp=pforallk=1,...,randi=1, ..., d;
and ng;; =p, forallk=1,...,randi, j=1, ... d.
If we set

Dpi = {(1 + epug)™ : hyy = 1,...,p%}
Eyi=A{Q1 —i—akuj')l’“j tly=1,...,p},

Fri = {(1 + epud)™i :my; = 1,...,p},
Grij = {(1 + epusuy)"™ 9 :nyy = 1,...,p},

for all & = 1,...,7, we see that Dy;, Ey;, Fi; and Gy, are all subgroups of
14> Rou; @ )Y Rouju; and that Dy, are all of order p? and the others are all
of order p as indicated in their definition. Also, pairwise intersection of these
subgroups is trivial.

The argument above will show that the product of the dr subgroups Dy;,
(s — d)r subgroups Ey;j, dr subgroups F; and the r[d(d + 1)/2] subgroups Gi;
is direct. Thus, their product will exhaust 1+ ) Rou; @ Y Rouju;, and we see
that the proof for the case when p is odd is complete.
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Now, assume that p = 2. Then, for each k = 1, ..., r, we see that (1 +
epui)? = 14 2eu; +esu?, (L +epu)t =1, fori=1,...,d < s; (1L +epuy)? =1,
for j=d+1,...,s and (1 +epuu;)? =1, for every i # j = 1,...,d.

For integers hy; < 4, lij < 2, my; and ng;; < 2, we asset that

r d r s r d
[T+ 2t TT TT 0+ s - T T o™

k=1i=1 k=1j=d+1 k=1i=1
r d

H H (1 + epujuy)™ i =1,

k=11, j=1

will imply hy; = 4, for all k = 1,...,7; and i = 1,...,d; lx; = 2, for all

k=1,...,randj =d+1, ..., s;m; =2forallk=1,... r;andi=1, ..., d;
and ng;; =2, forall k=1,...,r;and ¢, j=1, ... d.
If we set

Dy = {(1 + Ekui)hki chp=1,... ,4}
Ekj = {(1 =+ ekuj)lkj : lkj = 1, 2},

Fy; = {(1 + 5ku12)m’” tmp; = 1, 2},
Grij = {(1 + epusuy)™7 gy = 1, 2},

for all & = 1,...,7, we see that Dy;, Ey;, Fi; and Gy;; are all subgroups of
14+ > Rou; @ Y Rouju; and that Dy, are all of order 4 and the others are all
of order 2 as indicated in their definition. Also, pairwise intersection of these
subgroups is trivial.

The argument above will show that the product of the dr subgroups Dy,
(s — d)r subgroups Ej;, dr subgroups F; and the r[d(d + 1)/2] subgroups Gy;;
is direct. Thus, their product will exhaust 1+ ) Rou; @ ) Rouju;, and we see
that the proof for the case when p = 2 is complete. O

This completes our investigation of the structure of the group of units of
commutative completely primary finite rings of characteristic p? with unique
maximal ideals 7 such that J3 = (0), J? # (0) with given constraints on the
generators for the ideals J and J2.
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