Units of a class of finite rings of characteristic p^{3}

Chitengá John Chikunji
Department of Biometry and Mathematics
Botswana University of Agriculture and Natural Resources
Private Bag 0027, Gaborone
Botswana
jchikunj@buan.ac.bw

Abstract

Let R be a commutative completely primary finite ring with Jacobson radical \mathcal{J} such that $\mathcal{J}^{3}=(0), \mathcal{J}^{2} \neq(0)$ and $R / \mathcal{J} \cong G F\left(p^{r}\right)$, the finite field with p^{r} elements, for any prime p and any positive integer r. Then, characteristic of R is either p, p^{2} or p^{3}. In this paper, we determine the structure and generators of the group of units of the ring R in the special case when the characteristic of R is p^{3}. We treat the problem by considering fixed dimensions and bases for the vector spaces $\mathcal{J}^{i} / \mathcal{J}^{i+1}(i=1,2)$ over the residue field R / \mathcal{J} and by fixing the order of the ideal \mathcal{J}^{2}. This complements the author's earlier solution to the problem in the case when the characteristic of R is p or p^{2} and $\mathcal{J}^{2} \subseteq \operatorname{ann}(\mathcal{J})$, the annihilator of \mathcal{J}.

Keywords: finite commutative rings, unit groups.

1. Introduction

Throughout this paper, all rings are finite and commutative (unless otherwise stated) with identity element $1 \neq 0$, subrings have the same identity, ring homomorphisms preserve 1 and modules are unital. A finite ring R is called completely primary if all its zero divisors including the zero element form the unique maximal ideal \mathcal{J}. Completely primary finite rings are precisely local rings with unique maximal ideals. For a given completely primary finite ring R, unless otherwise stated, \mathcal{J} will denote the Jacobson radical of R, and we will denote the Galois ring $G R\left(p^{n r}, p^{n}\right)$ of characteristic p^{n} and order $p^{n r}$ by R_{o}, for a prime integer p and positive integers n, r. We denote the group of units of R by $U(R)$; if g is an element of $U(R)$, then $o(g)$ denotes its order, and $<g\rangle$ denotes the cyclic group generated by g. Similarly, if $f(x) \in R[x]$, we shall denote by $<f(x)>$ the ideal generated by $f(x)$. Further, for a subset A of R or $U(R),|A|$ will denote the number of elements in A. The ring of integers modulo the number n will be denoted by \mathbb{Z}_{n}, and the characteristic of R will be denoted by char R. The symbol K will denote the residue field R / \mathcal{J} and K_{o} will denote the set of coset representatives of the maximal ideal \mathcal{J} in the ring R. We denote a direct product of r cyclic groups of \mathbb{Z}_{m} by \mathbb{Z}_{m}^{r} or by $\underbrace{\mathbb{Z}_{m} \times \cdots \times \mathbb{Z}_{m}}_{r}$. If I is an ideal of R generated by the elements a, b, we shall denote this by $I=(a, b)$.

Let R be a completely primary finite ring with maximal ideal \mathcal{J}. Then, $|R|=$ $p^{n r}, \mathcal{J}$ is the Jacobson radical of $R, \mathcal{J}^{m}=(0)$, where $m \leqslant n,|\mathcal{J}|=p^{(n-1) r}$, and the residue field $R / \mathcal{J} \cong G F\left(p^{r}\right)$, the finite field of p^{r} elements, for some prime p and positive integers n, r. The characteristic char R of R is equal to $R=p^{k}$, where $1 \leqslant k \leqslant m$. If $k=n$, then $R=\mathbb{Z}_{p^{k}}[b]$, where b is an element of R of order $p^{r}-1 ; \mathcal{J}=p R$ and $\operatorname{Aut}(R) \cong \operatorname{Aut}(R / p R)$ (see Proposition 2 in [5]). Such a ring is called a Galois ring, denoted by $G R\left(p^{k r}, p^{k}\right)$, and a concrete model is the quotient $\mathbb{Z}_{p^{k}}[x] /<f(x)>$, where $f(x)$ is a monic polynomial of degree r, irreducible modulo p. Any such polynomial will do: the rings are all isomorphic. Trivial cases are $G R\left(p^{n}, p^{n}\right)=\mathbb{Z}_{p^{n}}$ and $G R\left(p^{n}, p\right)=\mathbb{F}_{p^{n}}$. Furthermore, if $k<n$ and char $R=p^{k}$, it can be deduced from [4] that R has a coefficient subring R_{o} of the form $G R\left(p^{k r}, p^{k}\right)$ which is clearly a maximal Galois subring of R. Moreover, if R_{o}^{\prime} is another coefficient subring of R then there exists an invertible element x in R such that $R_{o}^{\prime}=x R_{o} x^{-1}$ (see Theorem 8 in [5]). The maximal ideal of R_{o} is

$$
\mathcal{J}_{o}=p R_{o}=\mathcal{J} \cap R_{o}, \quad \text { and } \quad R_{o} / \mathcal{J}_{o} \cong G F\left(p^{r}\right) .
$$

Let $\psi: R_{o} \longrightarrow R_{o} / \mathcal{J}_{o}$ be the canonical map. Since the element b has order $p^{r}-1$ and $\mathcal{J}_{o} \subset \mathcal{J}$, we have that $\psi(b)$ is a primitive element of R_{o} / \mathcal{J}_{o}. Let $K_{o}=\cup\{0\}$ and let $R_{o}=\mathbb{Z}_{p^{k}}[b]$ be a coefficient subring of R of order $p^{k r}$. Then, it is easy to show that every element of R_{o} can be written uniquely as $\sum_{i=0}^{k-1} \lambda_{i} p^{i}$, where $\lambda_{i} \in K_{o}$. Also, there exist elements $m_{1}, m_{2}, \ldots, m_{h} \in \mathcal{J}$ and automorphisms $\sigma_{1}, \ldots, \sigma_{h} \in \operatorname{Aut}\left(R_{o}\right)$ such that

$$
R=R_{o} \oplus \sum_{i=1}^{h} R_{o} m_{i} \quad\left(\text { as } R_{o}-\text { modules }\right), \quad m_{i} r=\sigma_{i}(r) m_{i},
$$

for every $r \in R_{o}$ and any $i=1, \ldots, h$. Further, $\sigma_{1}, \ldots, \sigma_{h}$ are uniquely determined by R and R_{o}. The maximal ideal of R is

$$
\mathcal{J}=p R_{o} \oplus \sum_{i=1}^{h} R_{o} m_{i} .
$$

Let R be a completely primary ring (not necessarily commutative) of order $p^{n r}$ with unique maximal ideal \mathcal{J}. Then, the set $R-\mathcal{J}$ consisting of invertible elements in R forms a group with respect to the multiplication defined on R, called the group of units of R. The following facts are useful for our purpose (e.g. see [5, §2]): The group of units $U(R)$ of R contains a cyclic subgroup $\langle b\rangle$ of order $p^{r}-1$, and it is a semi-direct product of $1+\mathcal{J}$ by $\langle b\rangle$; the group $U(R)$ is solvable; if G is a subgroup of $U(R)$ of order $p^{r}-1$, then G is conjugate to $$ in $U(R)$; if $U(R)$ contains a normal subgroup of order $p^{r}-1$, then the set $K_{o}=\cup\{0\}$ is contained in the center of the ring R; and $\left(1+\mathcal{J}^{i}\right) /\left(1+\mathcal{J}^{i+1}\right) \cong \mathcal{J}^{i} / \mathcal{J}^{i+1}$ (the left hand side as a multiplicative group and the right hand side as an additive group). It is easy to check that $|U(R)|=p^{(n-1) r}\left(p^{r}-1\right)$ and that $|1+\mathcal{J}|=p^{(n-1) r}$, so that $1+\mathcal{J}$ is a p-group.

In [1], the author studied completely primary finite rings with unique maximal ideals \mathcal{J} such that $\mathcal{J}^{3}=(0), \mathcal{J}^{2} \neq(0)$ for all the characteristics. For more details on the structure and construction of these rings, the interested reader may refer to [1].

Let R be a commutative completely primary finite ring with Jacobson radical \mathcal{J} such that $\mathcal{J}^{3}=(0)$ and $\mathcal{J}^{2} \neq(0)$ (see, for example, [1]). Then, in view of the above results, char R is either p, p^{2} or p^{3}. The ring R contains a coefficient subring R_{o} with $\operatorname{char} R_{o}=\operatorname{char} R$, and with $R_{o} / p R_{o}$ equal to R / \mathcal{J}. Moreover, R_{o} is a Galois ring of the form $\operatorname{GR}\left(p^{k r}, p^{k}\right), k=1,2$ or 3 . Let $\operatorname{ann}(\mathcal{J})$ denote the two-sided annihilator of \mathcal{J} in R. Of course $\operatorname{ann}(\mathcal{J})$ is an ideal of R. Because $\mathcal{J}^{3}=(0)$, it follows easily that $\mathcal{J}^{2} \subseteq \operatorname{ann}(\mathcal{J})$.

From now on, we assume that the characteristic of the ring R is p^{3}. Because $\mathcal{J}^{3}=(0)$, we have that $p^{2} m_{i}=0$, for all $m_{i} \in \mathcal{J}$. Further, $p m_{i}=0$ for all $m_{i} \in$ $\operatorname{ann}(\mathcal{J})$. In particular, $p m_{i}=0$ for all $m_{i} \in \mathcal{J}^{2}$. It is now obvious to see that p lies in $\mathcal{J}-\mathcal{J}^{2}$, and $p^{2} \in \mathcal{J}^{2}$. Let $B_{1}=\left\{p, u_{1}, \ldots, u_{s}\right\}$ denote the set of elements of \mathcal{J} whose images modulo \mathcal{J}^{2} form a K-basis for $\mathcal{J} / \mathcal{J}^{2}$ so that $\operatorname{dim}_{K}\left(\mathcal{J} / \mathcal{J}^{2}\right)$ is $d_{1}=1+s$, and let $B_{2}=\left\{p^{2}, p u_{1}, \ldots, p u_{d}, u_{1}^{2}, u_{1} u_{2}, \ldots, u_{s}^{2}\right\}$ denote the set of elements of \mathcal{J} whose images modulo $\mathcal{J}^{3}(\cong(0))$ form a K-basis for \mathcal{J}^{2}, so that $\operatorname{dim}_{K}\left(\mathcal{J}^{2}\right)$ is $d_{2}=1+d+t$, where $t \leqslant s(s+1) / 2$, i.e. $d_{2} \leqslant(1+s)(2+s) / 2$. Then, an arbitrary element in R is of the form
$a_{o}+a_{1} p+a_{2} p^{2}+\sum_{i}^{s} b_{i} u_{i}+\sum_{l=1}^{d} c_{l} p u_{l}+\sum_{i, j=1}^{s} d_{i j} u_{i} u_{j}, \quad\left(a_{o}, a_{1}, b_{i}, c_{l}, d_{i j} \in K_{o}\right)$.
Clearly, the products $u_{i} u_{j} \in \mathcal{J}^{2}$. Hence, we conclude that $p^{2}, p u_{i}$ and $u_{i} u_{j}$ $(i, j=1, \ldots, s)$ generate \mathcal{J}^{2}. In fact, we can write any $v \in \mathcal{J}^{2}$ as a linear combination of $p^{2}, p u_{i}$ and $u_{i} u_{j}$ as follows:

$$
v=\alpha_{0} p^{2}+\sum_{i=1}^{d} \alpha_{i} p u_{i}+\sum_{i, j=1}^{s} \alpha_{i j} u_{i} u_{j},
$$

where $\alpha_{0}, \alpha_{i}, \alpha_{i j} \in R_{o} / p R_{o}$. Clearly, $|R|=p^{3 r} \cdot p^{2 d r} \cdot p^{(s-d) r} \cdot p^{t r}=p^{(3+s+d+t) r}$ and $|\mathcal{J}|=p^{(2+s+d+t) r}$. (Notice that $\left|R_{o} u_{i}\right|=p^{2 r}$ if $p u_{i} \neq 0$, and $\left|R_{o} u_{i}\right|=p^{r}$, if otherwise.)

In this paper, we determine explicitly the group of units of all commutative completely primary finite rings R with Jacobson radical \mathcal{J} such that $\mathcal{J}^{3}=(0)$, $\mathcal{J}^{2} \neq(0)$, and of characteristic p^{3}. We treat the problem by considering fixed dimensions and bases for the vector spaces $\mathcal{J}^{i} / \mathcal{J}^{i+1}(i=1,2)$ over the residue field $K=R / \mathcal{J}$ and by fixing the order of the ideal \mathcal{J}^{2}. First, if a ring R has \mathcal{J} such that $d_{i}=\operatorname{dim}_{K} \mathcal{J}^{i} / \mathcal{J}^{i+1}(i=1,2)$, then as we shall see later, we may further classify R according to the behaviour of a generating set for \mathcal{J}. In particular, we determine the group of units of the ring R with $\operatorname{dim}_{K}\left(\mathcal{J} / \mathcal{J}^{2}\right)=$ $1+s$ and $\operatorname{dim}_{K}\left(\mathcal{J}^{2}\right) \leqslant(1+s)(2+s) / 2$ under the given conditions (see Section
2) on the basis elements of \mathcal{J}^{2} over K. This complements the author's earlier solution of the problem [2] in the case when the characteristic of R is p or p^{2} and $\mathcal{J}^{2} \subseteq \operatorname{ann}(\mathcal{J})$, the annihilator of \mathcal{J}.

2. The group of units

Let R be a commutative completely primary finite ring with Jacobson radical \mathcal{J} such that $\mathcal{J}^{3}=(0), \mathcal{J}^{2} \neq(0)$, and of characteristic p^{3}. Suppose that $\mathcal{J}=$ $\left(p, u_{1}, \ldots, u_{s}\right)$ so that $\operatorname{dim}_{K}\left(\mathcal{J} / \mathcal{J}^{2}\right)=1+s$, for any integer $s \geqslant 0$. As noted above, the non-zero elements $p^{2}, p u_{i}(i=1, \ldots, s), u_{i} u_{j}(i, j=1, \ldots, s)$ span \mathcal{J}^{2} over K. If $p u_{i}=0$, then $u_{i} \in \operatorname{ann}(\mathcal{J}) \supseteq \mathcal{J}^{2}$ and as such for every element $x \in \mathcal{J}$, we have $u_{i} x=x u_{i}=0$. In particular, $u_{i} u_{j}=0(\forall i, j=1, \ldots, s)$. We also note that $p \mathcal{J} \subseteq \mathcal{J}^{2}$ is spanned by the non-zero elements p^{2} and $p u_{i}(i=1, \ldots, s)$, since $p u_{i} u_{j}=0(\forall i, j=1, \ldots, s)$.

Following the above observations, we determine the structure of the group of units $U(R)$ of the ring R under the conditions listed below:
(i) $\mathcal{J}=\left(p, u_{1}, \ldots, u_{s}\right), p u_{i}=u_{i} u_{j}=0$, so that $\mathcal{J}^{2}=\left(p^{2}\right), \operatorname{dim}_{K}\left(\mathcal{J}^{2}\right)=1$ and $\left|\mathcal{J}^{2}\right|=p^{r}$;
(ii) $\mathcal{J}=\left(p, u_{1}, \ldots, u_{s}\right), \mathcal{J}^{2}=p \mathcal{J}$, so that $u_{i} u_{j}=0, \operatorname{dim}_{K}\left(\mathcal{J}^{2}\right) \leqslant 1+s$ and $\left|\mathcal{J}^{2}\right| \leqslant p^{(1+s) r}$; and
(iii) $\mathcal{J}=\left(p, u_{1}, \ldots, u_{s}\right), \mathcal{J}^{2}=\left(p^{2}, p u_{i}, \ldots, p u_{s}, u_{i} u_{j}\right)(i, j=1, \ldots, s)$, $\operatorname{dim}_{K}\left(\mathcal{J}^{2}\right) \leqslant(s+1)(s+2) / 2$ and $\left|\mathcal{J}^{2}\right| \leqslant p^{[(s+1)(s+2) / 2] r}$.

One easily verifies that the above cases are all commutative completely primary finite rings of characteristic p^{3} with unique maximal ideal \mathcal{J} such that $\mathcal{J}^{3}=(0)$ and $\mathcal{J}^{2} \neq(0)$. Also, to distinguish (iii) from the other two cases, we assume that $p u_{i} \neq 0$ for at least one u_{i}, and $u_{i} u_{j} \neq 0$ for at least one product.

We know that for a commutative completely primary finite ring R,

$$
U(R)=\langle b>\cdot(1+\mathcal{J}) \cong\times(1+\mathcal{J}) ;
$$

a direct product of the p-group $1+\mathcal{J}$ by the cyclic subgroup $\langle b\rangle$. Thus, since the structure of $\langle b\rangle$ is basic, it suffices to determine the structure of the subgroup $1+\mathcal{J}$ in order to obtain the complete structure of $U(R)$.

There are many important results on the group of units of certain finite rings. For example, it is well known that the multiplicative group of the finite field $G F\left(p^{r}\right)$ is a cyclic group of order $p^{r}-1$, and the multiplicative group of the finite ring $\mathbb{Z} / p^{k} \mathbb{Z}$, the ring of integers modulo p^{k}, for p a prime number, and k a positive integer, is a cyclic group of order $p^{k-1}(p-1)$ if p is odd, and is a direct product of a cyclic group of order 2 and a cyclic group of order 2^{k-2}, if $p=2$.

Let $U\left(R_{o}\right)$ denote the group of units of the Galois ring $R_{o}=G R\left(p^{n r}, p^{n}\right)$. Then, $U\left(R_{o}\right)$ has the following structure [5]:
Theorem 2.1. $U\left(R_{o}\right)=\langle b\rangle \times\left(1+p R_{o}\right)$, where $\langle b\rangle$ is the cyclic group of order $p^{r}-1$ and $1+p R_{o}$ is of order $p^{(n-1) r}$ whose structure is described below.
(i) If (a) p is odd, or (b) $p=2$ and $n \leqslant 2$, then $1+p R_{o}$ is the direct product of r cyclic groups each of order $p^{(n-1)}$.
(ii) When $p=2$ and $n \geqslant 3$, the group $1+p R_{o}$ is the direct product of a cyclic group of order 2 , a cyclic group of order $2^{(n-2)}$ and $r-1$ cyclic groups each of order $2^{(n-1)}$.

In Propositions 2.2 and 2.3, we will provide detailed proofs for the two types of rings of this paper, while in Proposition 2.1, we merely state $U(R)$ and their generators for the other type of rings, as the proofs are very similar and may be proved by slight modifications of these.

For the rest of this paper, we shall take r elements $\varepsilon_{1}, \ldots, \varepsilon_{r}$ in R_{o} with $\varepsilon_{1}=1$ such that $\left\{\overline{\varepsilon_{1}}, \ldots, \overline{\varepsilon_{r}}\right\}$ is a basis for the quotient ring $R_{o} / p R_{o}$ regarded as a vector space over its prime subfield $G F(p)$.
2.1 The case when $\mathcal{J}^{2}=\left(p^{2}\right)$ and $p u_{i}=u_{i} u_{j}=0$

Let $\operatorname{dim}_{K}\left(\mathcal{J} / \mathcal{J}^{2}\right)=1+s$ and suppose that $\mathcal{J}=\left(p, u_{1}, \ldots, u_{s}\right)$, for any integer $s \geqslant 0$. Suppose further that $p u_{i}=u_{i} u_{j}=0$, for every $i, j=1, \ldots, s$. Then, $\mathcal{J}^{2}=\left(p^{2}\right), \operatorname{dim}_{K}\left(\mathcal{J}^{2}\right)=1$ and $\left|\mathcal{J}^{2}\right|=p^{r}$. The following result determines the structure of the group of units of R and its generators.

Proposition 2.1. Let R be a ring of characteristic p^{3} with maximal ideal \mathcal{J} such that $\mathcal{J}^{3}=\{0\}, \mathcal{J}^{2} \neq\{0\}$. Suppose further that there exist elements u_{1}, \ldots, u_{s} in \mathcal{J} such that the multiplication in R is defined by $p u_{i}=0, u_{i} u_{j}=0$, for every $i, j=1, \ldots, s$. Then,

$$
U(R) \cong \begin{cases}\mathbb{Z}_{2^{r}-1} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{4}^{r-1} \times \underbrace{\mathbb{Z}_{2}^{r} \times \cdots \times \mathbb{Z}_{2}^{r}}_{s}, & \text { if } p=2 \\ \mathbb{Z}_{p^{r}-1} \times \mathbb{Z}_{p^{2}}^{r} \times \underbrace{\mathbb{Z}_{p}^{r} \times \cdots \times \mathbb{Z}_{p}^{r}}_{s}, & \text { if } p \text { is odd } .\end{cases}
$$

Moreover, if $p=2$, then $1+\mathcal{J}$ is generated by $\left(-1+4 \varepsilon_{1}\right),\left(1+4 \varepsilon_{1}\right)$, each of order 2 , $(r-1)$ cyclic groups $<1+2 \varepsilon_{j}>(j=2, \ldots, r)$, each of order 4 , and sr cyclic groups $<1+\varepsilon_{j} u_{i}>$, each of order 2 , for $i=1, \ldots, s$. If p is odd, then $1+\mathcal{J}$ is generated by $1+p \varepsilon_{j}(j=1, \ldots, r)$, each of order p^{2}, and sr cyclic groups $1+\varepsilon_{j} u_{i}(j=1, \ldots, r)$, each of order p, for $i=1, \ldots, s$.

2.2 The case when $\mathcal{J}^{2}=p \mathcal{J}$

Let $\operatorname{dim}_{K}\left(\mathcal{J} / \mathcal{J}^{2}\right)=1+s$ and suppose that $\mathcal{J}=\left(p, u_{1}, \ldots, u_{s}\right)$, for any integer $s \geqslant 0$. Suppose further that $p u_{i} \neq 0$ for $i=1, \ldots, d \leqslant s$ and $p u_{j}=0$ for $j=d+1, \ldots, s$. Then, $u_{i} u_{j}=0$, for every $i, j=1, \ldots, s$ and $\operatorname{dim}_{K}\left(\mathcal{J}^{2}\right) \leqslant 1+s$. The following determines the structure and generators of the group of units of the ring R.

Proposition 2.2. Let R be a ring of characteristic p^{3} with maximal ideal \mathcal{J} such that $\mathcal{J}^{3}=\{0\}, \mathcal{J}^{2} \neq\{0\}$. Suppose further that there exist elements u_{1}, \ldots, u_{s}
in \mathcal{J} such that the multiplication in R is defined by $p u_{i} \neq 0$, for $i=1, \ldots, d \leqslant s$, $p u_{j}=0$, for $j=d+1, \ldots, s$, and $u_{i} u_{j}=0$, for every $i, j=1, \ldots$, s. Then,

$$
U(R) \cong\left\{\begin{array}{l}
\mathbb{Z}_{2^{r}-1} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{4}^{r-1} \times \underbrace{\mathbb{Z}_{4}^{r} \times \cdots \times \mathbb{Z}_{4}^{r}}_{d} \\
\times \underbrace{\mathbb{Z}_{2}^{r} \times \cdots \times \mathbb{Z}_{2}^{r}}_{s-d}, \quad \text { if } p=2 \\
\mathbb{Z}_{p^{r}-1} \times \mathbb{Z}_{p^{2}}^{r} \times \underbrace{d}_{\mathbb{Z}_{p^{2}}^{r} \times \cdots \times \mathbb{Z}_{p^{2}}^{r}} \\
\times \underbrace{\mathbb{Z}_{p}^{r} \times \cdots \times \mathbb{Z}_{p}^{r}}_{s-d}, \quad \text { if } p \neq 2
\end{array}\right.
$$

Moreover, if p is odd, then $1+\mathcal{J}$ is generated by r elements $1+p \varepsilon_{k}(k=1, \ldots, r)$, each of order p^{2}, dr elements $1+\varepsilon_{k} u_{i}(k=1, \ldots, r)$, each of order p^{2}, for $i=1, \ldots, d \leqslant s$ and by $(s-d) r$ elements $1+\varepsilon_{k} u_{j}(k=1, \ldots, r)$, each of order p, for $j=d+1, \ldots, s$.

If $p=2$, then $1+\mathcal{J}$ is a direct product of 2 cyclic groups $\left\langle-1+4 \varepsilon_{1}\right\rangle$ and $<1+4 \varepsilon_{1}>$, each of order 2 , $(r-1)$ cyclic groups $<1+2 \varepsilon_{k}>(k=2, \ldots, r)$, each of order 4 , dr cyclic groups $\left\langle 1+\varepsilon_{k} u_{i}\right\rangle$, each of order 4 , for $i=1, \ldots, d \leqslant s$ and by $(s-d)$ r cyclic groups $\left\langle 1+\varepsilon_{k} u_{j}>\right.$, each of order 2 , for $j=d+1, \ldots, s$.

Proof. Suppose $p u_{i} \neq 0$ for $i=1, \ldots, d \leqslant s, p u_{j}=0$ for $j=d+1, \ldots, s$ and $u_{i} u_{j}=0$ for $1 \leqslant i, j \leqslant d \leqslant s$. Let $a=1+x$ be an element of $1+\mathcal{J}$ with the highest possible order and assume that $x \in \mathcal{J}-\mathcal{J}^{2}$. Then, $o(a)=p^{2}$. This is true because, for any $\varepsilon_{k}(k=1, \ldots, r)$,

$$
\left(1+\varepsilon_{k} x\right)^{p}=1+p \varepsilon_{k} x+\frac{p(p-1)}{2}\left(\varepsilon_{k} x\right)^{2} \quad\left(\text { since } x^{3}=0\right) .
$$

For every odd prime $p,\left(1+\varepsilon_{k} x\right)^{p}=1+p \varepsilon_{k} x$, since $p x^{2}=0$. Now,

$$
\begin{aligned}
\left(1+p \varepsilon_{k} x\right)^{p} & =1+p^{2} \varepsilon_{k} x+\frac{p(p-1)}{2}\left(p \varepsilon_{k} x\right)^{2} \\
& =1, \text { since } p^{2} x=0 \text { and } p^{3} x^{2}=0
\end{aligned}
$$

Hence, $\left(1+\varepsilon_{k} x\right)^{p^{2}}=1$.
For $p=2,\left(1+\varepsilon_{k} x\right)^{2}=1+2 \varepsilon_{k} x+\left(\varepsilon_{k} x\right)^{2}$, and $\left(1+\varepsilon_{k} x\right)^{4}=1$, since $4 x=0,6 x^{2}=0,4 x^{3}=0$ and $x^{4}=0$.

For any prime number p and for each $k=1, \ldots, r$, we see that $\left(1+\varepsilon_{k} p\right)^{p^{2}}=$ 1 , $\left(1+\varepsilon_{k} u_{i}\right)^{p^{2}}=1$, for $i=1, \ldots, d \leqslant s$, while $\left(1+\varepsilon_{k} u_{j}\right)^{p}=1$, for $j=d+1, \ldots, s$.

For integers $h_{k i} \leqslant p^{2}, l_{k j} \leqslant p$, we asset that

$$
\prod_{k=1}^{r} \prod_{i=1}^{d}\left(1+\varepsilon_{k} u_{i}\right)^{h_{k i}} \cdot \prod_{k=1}^{r} \prod_{j=d+1}^{s}\left(1+\varepsilon_{k} u_{j}\right)^{l_{k j}}=1
$$

will imply $h_{k i}=p^{2}$, for all $k=1, \ldots, r$ and $i=1, \ldots, d \leqslant s ; l_{k j}=p$, for all $k=1, \ldots, r$ and $j=d+1, \ldots, s$.

If we set $D_{k i}=\left\{\left(1+\varepsilon_{k} u_{i}\right)^{h_{k i}}: h_{k i}=1, \ldots, p^{2}\right\}, E_{k j}=\left\{\left(1+\varepsilon_{k} u_{j}\right)^{l_{k j}}\right.$: $\left.l_{k j}=1, \ldots, p\right\}$, for all $k=1, \ldots, r$, we see that $D_{k i}, E_{k j}$ are all subgroups of $1+\sum R_{0} u_{i} \oplus \sum p R_{0} u_{i}$ and that $D_{k i}$ are all of order p^{2} and that $E_{k j}$ are all of order p as indicated in their definition. Also, pairwise intersection of these subgroups is trivial.

The argument above will show that the product of the $d r$ subgroups $D_{k j}$, and $(s-d) r$ subgroups $E_{k i}$ is direct. Thus, their product will exhaust $1+$ $\sum R_{0} u_{i} \oplus \sum p R_{0} u_{i}$.

It is straightforward to check that if $p=2$, then $1+\mathcal{J}$ is a direct product of 2 cyclic groups $\left.<-1+4 \varepsilon_{1}\right\rangle$ and $\left.<1+4 \varepsilon_{1}\right\rangle$, each of order $2,(r-1)$ cyclic groups $<1+2 \varepsilon_{k}>(k=2, \ldots, r)$, each of order $4, d r$ cyclic groups $<1+\varepsilon_{k} u_{i}>$, each of order 4 , for $i=1, \ldots, d \leqslant s$ and by $(s-d) r$ cyclic groups $<1+\varepsilon_{k} u_{j}>$, each of order 2 , for $j=d+1, \ldots, s$.

Also, if p is odd, then $1+\mathcal{J}$ is generated by r elements $1+p \varepsilon_{k}(k=1, \ldots, r)$, each of order p^{2}, dr elements $1+\varepsilon_{k} u_{i}(k=1, \ldots, r)$, each of order p^{2}, for $i=1, \ldots, d \leqslant s$ and by $(s-d) r$ elements $1+\varepsilon_{k} u_{j}(k=1, \ldots, r)$, each of order p, for $j=d+1, \ldots, s$.

This completes the proof.

2.3 The case when $\mathcal{J}^{2}=\left(p^{2}, p u_{i}, u_{i} u_{j}\right)$

Let $\operatorname{dim}_{K}\left(\mathcal{J} / \mathcal{J}^{2}\right)=1+s$ and suppose that $\operatorname{dim}_{K}\left(\mathcal{J}^{2}\right) \leqslant(s+1)(s+2) / 2$. Then, $\mathcal{J}^{2}=\left(p^{2}, p u_{i}, u_{i} u_{j}\right)$. Suppose further that $p u_{i} \neq 0$, for $i=1, \ldots, d \leqslant s$ and that $p u_{j}=0$, for $j=d+1, \ldots, s$. Then, $u_{i} u_{j} \neq 0$ for all $i, j=1, \ldots, d \leqslant s$ (since in this case u_{i}, u_{j} are not in $\operatorname{ann}(\mathcal{J})$); and $u_{i} u_{j}=0$ for all $i=1, \ldots, s$ and $j=d+1, \ldots, s$. Recall that if $p u_{j}=0$, then $u_{j} \in \operatorname{ann}(\mathcal{J})$ and as such $u_{j} x=0$ for every $x \in \mathcal{J}$. The following describes the structure of $U(R)$ and its possible generators.
Proposition 2.3. Let R be a ring of characteristic p^{3} with maximal ideal \mathcal{J} such that $\mathcal{J}^{3}=\{0\}, \mathcal{J}^{2} \neq\{0\}$. Suppose further that there exist elements u_{1}, \ldots, u_{s} in \mathcal{J} such that the multiplication in R is defined by puif u^{\prime}, for $i=1, \ldots, d \leqslant s$, and that $p u_{j}=0$, for $j=d+1, \ldots, s$ so that $u_{i} u_{j} \neq 0$ for all $i, j=1, \ldots, d \leqslant s$; and $u_{i} u_{j}=0$ for all $i=1, \ldots, s$ and $j=d+1, \ldots, s$. Then,

$$
U(R) \cong\left\{\begin{array}{l}
\mathbb{Z}_{2^{r}-1} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{4}^{r-1} \times \underbrace{\mathbb{Z}_{4}^{r} \times \cdots \mathbb{Z}_{4}^{r}}_{d} \times \underbrace{\mathbb{Z}_{2}^{r} \times \cdots \times \mathbb{Z}_{2}^{r}}_{s-d} \times \\
\underbrace{\mathbb{Z}_{2}^{r} \times \cdots \times \mathbb{Z}_{2}^{r}}_{d(d+1) / 2}, \quad \text { if } p=2 \\
\mathbb{Z}_{p^{r}-1} \times \mathbb{Z}_{p^{2}}^{r} \times \underbrace{\mathbb{Z}_{d}}_{\mathbb{Z}_{p^{2}}^{r} \times \cdots \mathbb{Z}_{p^{2}}^{r}} \times \underbrace{\mathbb{Z}_{p}^{r} \times \cdots \times \mathbb{Z}_{p}^{r}}_{s-d} \times \\
\underbrace{\mathbb{Z}_{p}^{r} \times \cdots \times \mathbb{Z}_{p}^{r}}_{d(d+1) / 2}, \quad \text { if } p \neq 2
\end{array}\right.
$$

Proof. Suppose $p u_{i} \neq 0$ for all $i=1, \ldots, d \leqslant s$ and $u_{i} u_{j} \neq 0$ for $1 \leqslant i, j \leqslant$ $d \leqslant s$. Let $a=1+x$ be an element of $1+\mathcal{J}$ with the highest possible order and assume that $x \in \mathcal{J}-\mathcal{J}^{2}$. Then, $o(a)=p^{2}$. This is true because, for any $\varepsilon_{k}(k=1, \ldots, r)$,

$$
\left(1+\varepsilon_{k} x\right)^{p}=1+p \varepsilon_{k} x+\frac{p(p-1)}{2}\left(\varepsilon_{k} x\right)^{2} \quad\left(\text { since } x^{3}=0\right) .
$$

If p is odd, then $\left(1+\varepsilon_{k} x\right)^{p}=1+p \varepsilon_{k} x$, since $p x^{2}=0$. Now,

$$
\begin{aligned}
\left(1+p \varepsilon_{k} x\right)^{p} & =1+p^{2} \varepsilon_{k} x+\frac{p(p-1)}{2}\left(p \varepsilon_{k} x\right)^{2} \\
& =1, \text { since } p^{2} x=0 \text { and } p^{3} x^{2}=0
\end{aligned}
$$

Hence, $\left(1+\varepsilon_{k} x\right)^{p^{2}}=1$.
For any odd prime number p and for each $k=1, \ldots, r$, we see that $\left(1+\varepsilon_{k} p\right)^{p^{2}}=1, \quad\left(1+\varepsilon_{k} u_{i}\right)^{p^{2}}=1$, for $i=1, \ldots, d \leqslant s$, while $\left(1+\varepsilon_{k} u_{j}\right)^{p}=$ 1 , for $j=d+1, \ldots, s$, and for non-zero elements $u_{i}^{2}, u_{i} u_{j}(i \neq j)$, we have $\left(1+\varepsilon_{k} u_{i}^{2}\right)^{p}=1,\left(1+\varepsilon_{k} u_{i} u_{j}\right)^{p}=1$.

For integers $h_{k i} \leqslant p^{2}, l_{k j} \leqslant p, m_{k i}$ and $n_{k i j} \leqslant p$, we asset that

$$
\begin{aligned}
& \prod_{k=1}^{r} \prod_{i=1}^{d}\left(1+\varepsilon_{k} u_{i}\right)^{h_{k i}} \cdot \prod_{k=1}^{r} \prod_{j=d+1}^{s}\left(1+\varepsilon_{k} u_{j}\right)^{l_{k j}} \cdot \prod_{k=1}^{r} \prod_{i=1}^{d}\left(1+\varepsilon_{k} u_{i}^{2}\right)^{m_{k i}} . \\
& \prod_{k=1}^{r} \prod_{i, j=1}^{d}\left(1+\varepsilon_{k} u_{i} u_{j}\right)^{n_{k i j}}=1,
\end{aligned}
$$

will imply $h_{k i}=p^{2}$, for all $k=1, \ldots, r$ and $i=1, \ldots, d ; l_{k j}=p$, for all $k=1, \ldots, r$ and $j=d+1, \ldots, s ; m_{k i}=p$ for all $k=1, \ldots, r$ and $i=1, \ldots, d ;$ and $n_{k i j}=p$, for all $k=1, \ldots, r$ and $i, j=1, \ldots d$.

If we set

$$
\begin{aligned}
& D_{k i}=\left\{\left(1+\varepsilon_{k} u_{i}\right)^{h_{k i}}: h_{k i}=1, \ldots, p^{2}\right\} \\
& E_{k j}=\left\{\left(1+\varepsilon_{k} u_{j}\right)^{l_{k j}}: l_{k j}=1, \ldots, p\right\}, \\
& F_{k i}=\left\{\left(1+\varepsilon_{k} u_{i}^{2}\right)^{m_{k i}}: m_{k i}=1, \ldots, p\right\}, \\
& G_{k i j}=\left\{\left(1+\varepsilon_{k} u_{i} u_{j}\right)^{n_{k i j}}: n_{k i j}=1, \ldots, p\right\},
\end{aligned}
$$

for all $k=1, \ldots, r$, we see that $D_{k i}, E_{k j}, F_{k i}$ and $G_{k i j}$ are all subgroups of $1+\sum R_{0} u_{i} \oplus \sum R_{0} u_{i} u_{j}$ and that $D_{k i}$ are all of order p^{2} and the others are all of order p as indicated in their definition. Also, pairwise intersection of these subgroups is trivial.

The argument above will show that the product of the $d r$ subgroups $D_{k i}$, $(s-d) r$ subgroups $E_{k j}, d r$ subgroups $F_{k i}$ and the $r[d(d+1) / 2]$ subgroups $G_{k i j}$ is direct. Thus, their product will exhaust $1+\sum R_{0} u_{i} \oplus \sum R_{0} u_{i} u_{j}$, and we see that the proof for the case when p is odd is complete.

Now, assume that $p=2$. Then, for each $k=1, \ldots, r$, we see that $(1+$ $\left.\varepsilon_{k} u_{i}\right)^{2}=1+2 \varepsilon_{k} u_{i}+\varepsilon_{k}^{2} u_{i}^{2},\left(1+\varepsilon_{k} u_{i}\right)^{4}=1$, for $i=1, \ldots, d \leqslant s ;\left(1+\varepsilon_{k} u_{j}\right)^{2}=1$, for $j=d+1, \ldots, s$; and $\left(1+\varepsilon_{k} u_{i} u_{j}\right)^{2}=1$, for every $i \neq j=1, \ldots, d$.

For integers $h_{k i} \leqslant 4, l_{k j} \leqslant 2, m_{k i}$ and $n_{k i j} \leqslant 2$, we asset that

$$
\begin{aligned}
& \prod_{k=1}^{r} \prod_{i=1}^{d}\left(1+\varepsilon_{k} u_{i}\right)^{h_{k i}} \cdot \prod_{k=1}^{r} \prod_{j=d+1}^{s}\left(1+\varepsilon_{k} u_{j}\right)^{l_{k j}} \cdot \prod_{k=1}^{r} \prod_{i=1}^{d}\left(1+\varepsilon_{k} u_{i}^{2}\right)^{m_{k i}} \\
& \prod_{k=1}^{r} \prod_{i, j=1}^{d}\left(1+\varepsilon_{k} u_{i} u_{j}\right)^{n_{k i j}}=1
\end{aligned}
$$

will imply $h_{k i}=4$, for all $k=1, \ldots, r$; and $i=1, \ldots, d ; l_{k j}=2$, for all $k=1, \ldots, r$; and $j=d+1, \ldots, s ; m_{k i}=2$ for all $k=1, \ldots, r ;$ and $i=1, \ldots, d$; and $n_{k i j}=2$, for all $k=1, \ldots, r$; and $i, j=1, \ldots d$.

If we set

$$
\begin{aligned}
& D_{k i}=\left\{\left(1+\varepsilon_{k} u_{i}\right)^{h_{k i}}: h_{k i}=1, \ldots, 4\right\} \\
& E_{k j}=\left\{\left(1+\varepsilon_{k} u_{j}\right)^{l_{k j}}: l_{k j}=1,2\right\}, \\
& F_{k i}=\left\{\left(1+\varepsilon_{k} u_{i}^{2}\right)^{m_{k i}}: m_{k i}=1,2\right\}, \\
& G_{k i j}=\left\{\left(1+\varepsilon_{k} u_{i} u_{j}\right)^{n_{k i j}}: n_{k i j}=1,2\right\},
\end{aligned}
$$

for all $k=1, \ldots, r$, we see that $D_{k i}, E_{k j}, F_{k i}$ and $G_{k i j}$ are all subgroups of $1+\sum R_{0} u_{i} \oplus \sum R_{0} u_{i} u_{j}$ and that $D_{k i}$ are all of order 4 and the others are all of order 2 as indicated in their definition. Also, pairwise intersection of these subgroups is trivial.

The argument above will show that the product of the $d r$ subgroups $D_{k i}$, $(s-d) r$ subgroups $E_{k j}, d r$ subgroups $F_{k i}$ and the $r[d(d+1) / 2]$ subgroups $G_{k i j}$ is direct. Thus, their product will exhaust $1+\sum R_{0} u_{i} \oplus \sum R_{0} u_{i} u_{j}$, and we see that the proof for the case when $p=2$ is complete.

This completes our investigation of the structure of the group of units of commutative completely primary finite rings of characteristic p^{3} with unique maximal ideals \mathcal{J} such that $\mathcal{J}^{3}=(0), \mathcal{J}^{2} \neq(0)$ with given constraints on the generators for the ideals \mathcal{J} and \mathcal{J}^{2}.

Acknowledgement

The author would like to thank the anonymous referee(s) whose comments and suggestions improved the final version of this paper.

References

[1] C. J. Chikunji, On a class of finite rings, Comm. Algebra, 27 (1999), 50495081.
[2] C. J. Chikunji, On unit groups of commutative completely primary finite rings, Math. J. Okayama Univ., 50 (2008), 149-160.
[3] C. J. Chikunji, Unit groups of finite rings with products of zero divisors in their coefficient subrings, Publ. Inst. Math. (Beograd) (N.S.), 95 (2014), 215-220.
[4] W. E. Clark, A coefficient ring for finite non-commutative rings, Proc. Amer. Math. Soc., 33 (1972), 25-28.
[5] R. Raghavendran, Finite associative rings, Compositio Math., 21 (1969), 195-229.
[6] R. S. Wilson, On the structure of finite rings, Compositio Math., 26 (1973), 79-93.

Accepted: February 21, 2022

