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Abstract. A graph is one-regular and arc-transitive if its full automorphism group acts
on its arcs regularly and transitively, respectively. In this paper, we classify connected
one-regular graphs of prime valency and order 20p for each prime p. As a result there
is only one infinite family of such graphs, that is, the cycle C20p with valency two.
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1. Introduction

Throughout this paper graphs are assumed to be finite, simple, connected and
undirected. For group-theoretic concepts and graph-theoretic terms not defined
here we refer the reader to [20, 22] and [1, 2], respectively. Let G be a permu-
tation group on a set Ω and v ∈ Ω. Denote by Gv the stabilizer of v in G, that
is, the subgroup of G fixing the point v. We say that G is semiregular on Ω if
Gv = 1 for every v ∈ Ω and regular if G is transitive and semiregular.

For a graph X, denote by V (X), E(X) and Aut(X) its vertex set, its edge
set and its full automorphism group, respectively. A graph X is said to be G-
vertex-transitive if G ≤ Aut(X) acts transitively on V (X). X is simply called
vertex-transitive if it is Aut(X)-vertex-transitive. An s-arc in a graph is an
ordered (s + 1)-tuple (v0, v1, · · · , vs−1, vs) of vertices of the graph X such that
vi−1 is adjacent to vi for 1 ≤ i ≤ s, and vi−1 ̸= vi+1 for 1 ≤ i ≤ s − 1.
In particular, a 1-arc is just an arc and a 0-arc is a vertex. For a subgroup
G ≤ Aut(X), a graph X is said to be (G, s)-arc-transitive or (G, s)-regular if
G is transitive or regular on the set of s-arcs in X, respectively. A (G, s)-arc-
transitive graph is said to be (G, s)-transitive if it is not (G, s+1)-arc-transitive.
In particular, a (G, 1)-arc-transitive graph is called G-symmetric. A graph X
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is simply called s-arc-transitive, s-regular or s-transitive if it is (Aut(X), s)-arc-
transitive, (Aut(X), s)-regular or (Aut(X), s)-transitive, respectively.

We denote by Cn and Kn the cycle and the complete graph of order n,
respectively. Denote by D2n the dihedral group of order 2n. As we all know
that there is only one connected 2-valent graph of order n, that is, the cycle
Cn, which is 1-regular with full automorphism group D2n. Let p and q be two
primes. Classifying s-transitive and s-regular graphs has received considerable
attention. The classification of s-transitive graphs of order p and 2p was given in
[5] and [7], respectively. Liu [15] characterized prime-valent arc-transitive basic
graphs of order 4p or 4p2. Li [14] and Chen [6] classified prime-valent one-regular
graph of order 8p and 12p, respectively. Pan [19] and Huang [13] classified the
pentavalent s-transitive graphs of order 4pq and 4pn for n a positive integer,
respectively. Pan [18] determined heptavalent symmetric graph of order four
times an odd square-free integer. Zhou [24] gave a complete classification of
cubic one-regular graphs of order twice a square-free integer.

For 2-valent case, s-transitivity always means 1-regularity, and for cubic
case, s-transitivity always means s-regularity by Miller [17]. However, for the
other prime-valent case, this is not true, see for example [10] for pentavalent
case and [11] for heptavalent case. Thus, the characterization and classification
of prime-valent s-regular graphs is very interesting and also reveals the s-regular
global and local actions of the permutation groups on s-arcs of such graphs. In
particular, 1-regular action is the most simple and typical situation. In this
paper, we classify prime-valent one-regular graph of order 20p for each prime p.

2. Preliminary results

Let X be a connected G-symmetric graph with G ≤ Aut(X), and let N be a
normal subgroup of G. The quotient graph XN of X relative to N is defined as
the graph with vertices the orbits of N on V (X) and with two orbits adjacent
if there is an edge in X between those two orbits. In view of [16, Theorem 9],
we have the following:

Proposition 2.1. Let X be a connected G-symmetric graph with G ≤ Aut(X)
and prime valency q ≥ 3, and let N be a normal subgroup of G. Then one of
the following holds:

(1) N is transitive on V (X);

(2) X is bipartite and N is transitive on each part of the bipartition;

(3) N has r ≥ 3 orbits on V (X), N acts semiregularly on V (X), and the
quotient graph XN is a connected q-valent G/N -symmetric graph.

To extract a classification of connected prime-valent symmetric graphs of
order 2p for a prime p from Cheng and Oxley [7], we introduce the graphs
G(2p, q). Let V and V ′ be two disjoint copies of Zp, say V = {0, 1, · · · , p − 1}
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and V ′ = {0′, 1′, · · · , (p − 1)′}. Let q be a positive integer dividing p − 1 and
H(p, q) the unique subgroup of Z∗

p of order q. Define the graph G(2p, q) to have
vertex set V ∪ V ′ and edge set {xy′ | x− y ∈ H(p, q)}.

Proposition 2.2. Let X be a connected q-valent symmetric graph of order
2p with p, q primes. Then X is isomorphic to K2p with q = 2p − 1, Kp,p or
G(2p, q) with q

∣∣ (p − 1). Furthermore, if (p, q) ̸= (11, 5) then Aut(G(2p, q)) =
(Zp ⋊ Zq)⋊ Z2; if (p, q) = (11, 5) then Aut(G(2p, q)) = PGL(2, 11).

Let p ̸= 5 be an odd prime. Then 20p = 4·5·p is four times a square-free
integer. From [18, Theorem 1.1], we have the following characterization about
the full automorphism groups of connected heptavalent symmetric graphs of
order 20p with p ̸= 5.

Proposition 2.3. Let p be an odd prime different from 5 and X a connected
heptavalent symmetric graphs of order 20p. Then, the full automorphism group
Aut(X) ∼= PSL(2, p), PGL(2, p), PSL(2, p)×Z2 or PGL(2, p)×Z2 with p ≡
1(mod 7).

The following proposition is the famous “N/C-Theorem”, see for example
[12, Chapter I, Theorem 4.5]).

Proposition 2.4. The quotient group NG(H)/CG(H) is isomorphic to a sub-
group of the automorphism group Aut(H) of H.

From [8, p.12-14] and [21, Theorem 2], we can deduce the non-abelian simple
groups whose orders have at most three different prime divisors.

Proposition 2.5. Let G be a non-abelian simple group. If the order |G| has
exactly three different prime divisors, then G is called K3-simple group and
isomorphic to one of the following groups.

Table 1: Non-abelian simple {2, 3, p}-groups

Group Order Group Order

A5 22 · 3 · 5 PSL(2, 17) 24 · 32 · 17
A6 23 · 32 · 5 PSL(3, 3) 24 · 33 · 13
PSL(2, 7) 23 · 3 · 7 PSU(3, 3) 25 · 33 · 7
PSL(2, 8) 23 · 32 · 7 PSU(4, 2) 26 · 34 · 5

The next proposition is proved originally by John Thompson, but now an
easy consequence of the Classification of Finite Simple Groups (see for example
[23, Chapter 1, Section 2]), that all finite non-abelian simple 3′-groups (whose
order is not divisible by 3) are Suzuki groups. This is well known in the sense
that it is mentioned frequently in the literature.
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Proposition 2.6. Any non-abelian finite simple group whose order is not di-
visible by 3 is isomorphic to a Suzuki group Sz(q) with q = 22n+1 and n ≥ 1. In
particular, the order of Sz(q) is q2(q2 + 1)(q − 1).

3. Classification

This section is devoted to classifying prime-valent one-regular graphs of order
20p for each prime p. Let q be a prime. In what follows, we always denote
by X a connected q-valent one-regular graph of order 20p. Set A = Aut(X),
v ∈ V (X). Then the vertex stabilizer Av

∼= Zq and hence |A| = 20pq.
Now, we first deal with the special case q ≤ 5. Clearly, any connected graph

of order 20p and valency two is isomorphic to the cycle C20p. Thus, for q = 2,
X ∼= C20p and A ∼= D40p. Let q = 3. By [24, Corollary 3.3], there exists no
cubic one-regular graph of order 4·5·p. Let q = 5. By [19, Theorem 3.1], [15,
Theorem 1.1] and [13], there exists no pentavalent one-regular graph of order
4·5·p. The next lemma is about the case q = 7.

Lemma 3.1. There exists no heptavalent one-regular graph of order 20p

Proof. Let X be a heptavalent one-regular graph of order 20p. Then q = 7
and |A| = 4·5·7·p = 140p. By Proposition 2.3, A ∼= PSL(2, p), PGL(2, p),
PSL(2, p)×Z2 or PGL(2, p)×Z2, where p ≡ 1(mod 7).

Suppose that A = PSL(2, p). Then |A| = 140p = 1
2p(p

2 − 1). It forces
that p2 = 281. Note that p2 is a prime square. However, 281 is a prime, a
contradiction.

Suppose that A = PGL(2, p) or PSL(2, p)×Z2. Then |A| = 140p = p(p2−1).
This implies that p2 = 141 = 3·47, a contradiction.

Suppose that A = PGL(2, p)×Z2. Then |A| = 140p = 2p(p2 − 1). An
easy calculation implies that p2 = 71, contrary to the fact that p2 is a prime
square.

To finish the classification, we treat the general case q > 7.

Lemma 3.2. Let q > 7. Then there exists no q-valent one-regular graph of
order 20p

Proof. Let X be a q-valent one-regular graph of order 20p. Then |A| = 20pq,
|V (X)| = 20p and Av

∼= Zq. If p = 2, then |V (X)| = 40. By [14, Theorem 3.3],
there exists no q-valent one-regular graph of order 40 with q > 7. If p = 3, then
|V (X)| = 60 = 12·5. By [6, Theorem 3.1], there exists no q-valent one-regular
graph of order 60 with q > 7. Next, we deal with p ≥ 5 and separate them into
two cases: p = 5 and p ≥ 7.

Case 1. Suppose that p = 5. Then |V (X)| = 20·5 and |A| = 22·52·q.

Note that q > 7. If A is not solvable, then A has a composition factor
isomorphic to a K3-simple group. By Proposition 2.5, every K3-simple group



698 QIAO-YU CHEN and SONG-TAO GUO

has divisor 3. It forces that 3
∣∣ |A|, a contradiction. Thus, A is solvable. LetN be

a minimal normal subgroup of A. Then N is also solvable and hence isomorphic
to Z2, Z2

2, Z5, Z2
5 or Zq. An easy calculation implies that the number of the

orbits of N acting on V (X) is at least 4. By Proposition 2.1, N is semiregular
on V (X) and so N ̸∼= Zq. Since there exists no regular graph of odd order and
odd valency, we have N ̸∼= Z2

2, and since there is no q-valent graph of order 4
with q > 7, we have that N ̸∼= Z2

5. It follows that N
∼= Z2 or Z5.

Assume that N ∼= Z2. Then XN is a q-valent symmetric graph of order
2·52. Recall that A is solvable. Thus, A/N is also solvable. Since q > 7, we
have that A/N has no normal subgroup of order q by Proposition 2.1, and since
there exists no regular graph of odd order and odd valency, we have that A/N
has no normal subgroup of order 2. The solvability of A/N implies that A/N
has a normal 5-subgroup, say M/N . With an easy calculation, we have that
|M/N | = 52 or 5.

Let |M/N | = 52. Then by Proposition 2.4, M/CM (N) ≲ Aut(N) ∼= Z1

because N ∼= Z2. It forces that M = CM (N). Let P be a Sylow 5-subgroup of
M . Then |P | = 52 and M = P×N . Since P is a normal Sylow 5-subgroup of
M , we have that P is characteristic in M . The normality of M in A implies that
P is also normal in A. By Proposition 2.1, XP is a q-valent symmetric graph
of order 4. However, any symmetric graphs of order 4 is isomorphic to either
the cycle C4 with valency 2 or the complete graph K4 with valency 3. This is
contrary to the fact that XP has valency q > 7.

Let |M/N | = 5. Then M has order 10. By elementary group theory, any
group of order 10 is isomorphic to either a cyclic group Z10 or a dihedral group
D10. Clearly, the former group has a normal subgroup of order 2 and the latter
group has no normal subgroup of order 2. Since M has a normal subgroup
N ∼= Z2, we have that M ∼= Z10 and M has a normal subgroup P ∼= Z5. Clearly,
P is a Sylow 5-subgroup of M . The normality of P in M forces that P is
characteristic in M , and since M is normal in A, we have that P is also normal
in A. By Proposition 2.1, XP is a q-valent symmetric graph of order 20 with
q > 7. Checking the list of symmetric graph of order up to 30 in [9], we have
that XP

∼= K20 with q = 19 and A/P ≲ Aut(K20) ∼= S20. An easy calculation
implies that |A/P | = 22·5·19. However, by Magma [3], S20 has no subgroup of
order 22·5·19, a contradiction.

Assume that N ∼= Z5. Then by Proposition 2.1, XN is a q-valent symmetric
graph of order 20, and by [9], XN

∼= K20 with q = 19. A similar argument as
the above paragraph we can deduce a contradiction.

Case 2. Suppose that p ≥ 7. Then |A| = 22·5·p·q with q > 7.

If A is non-solvable, then A must have a composition factor isomorphic to
a non-abelian simple group. Note that the order of A has exactly four different
prime divisors. Thus, this non-solvable composition factor is either K3-simple
group or K4-simple group. Since p ≥ 7 and q > 7, we have that 3 is not a divisor
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of |A|. By Propositions 2.5 and 2.6, the only possibilities are the Suzuki groups
Sz(22n+1) with n ≥ 1. This forces that

|Sz(22n+1)| = (22n+1)2((22n+1)2 + 1)(22n+1 − 1)
∣∣ |A|.

This is contrary to the fact that |A| = 22·5·p·q with p ≥ 7 and q > 7. Thus, A is
solvable. For convenience we still use N to denote a minimal normal subgroup
of A. Clearly, N is also solvable and N ∼= Z2, Z2

2, Z5, Zp, Zq or Z2
p with q = p.

Since |V (X))| = 20p, we have that N is not transitive and has at least 20 orbits
on V (X). By Proposition 2.1, N is semiregular on V (X), and so N ̸∼= Z2

p with
p = q. Since there exists no connected regular graph of odd order and odd
valency, we have that A has no normal subgroup of order 4 and so N ̸∼= Z2

2.
Thus, N ∼= Z2, Z5 or Zp.

Assume that N ∼= Zp. Then XN is a q-valent symmetric graph of order 20
and A/N ≲ Aut(XN ) by Proposition 2.1. Since q > 7, we have that XN

∼= K20

with q = 19 by [9] and A/N ≲ S20. Note that |A/N | = 22·5·19. However, by
Magma [3], S20 has no subgroup of order 22·5·19, a contradiction.

Assume that N ∼= Z5. Then XN is a q-valent symmetric graph of order 4p
and A/N ≲ Aut(XN ) by Proposition 2.1. The solvability of A forces that A/N
is also solvable. Recall that A has no normal subgroup of order 4, q or p2 with
p = q. Thus, A/N has normal subgroup M/N ∼= Zp or Z2. It follows that M is
a normal subgroup of A and has order 5p or 10. Again by Proposition 2.1, XM

is a q-valent symmetric graph of order 4 or 2p. For the former, XM
∼= C4 or

K4. Clearly, this is impossible because XM has valency q > 7. For the latter,
XM

∼= K2p, Kp,p or G(2p, q).

Let XM
∼= K2p. Then q = 2p − 1 and A/M ≲ S2p. Clearly, A/M has

order 2·p·q and is 2-transitive on V (XM ) because q = 2p − 1. By Burnside’s
Theorem [4, p.192, Theorem IX], any 2-transitive permutation group is either
almost simple or affine. The solvability of A forces that A/M is also solvable
and hence affine. It follows that A/M has a normal subgroup K/M ∼= Zp. Since
|M | = 10 and p ≥ 7, we have that K has a normal Sylow p-subgroup P ∼= Zp

by Sylow Theorem. The normality of the Sylow p-subgroup P in K forces that
P is characteristic in K. Thus, P is normal in A. Again by Proposition 2.1,
XP is a q-valent symmetric graph of order 20 and by [9], XP

∼= K20. A similar
argument as the above, we deduce that A/P has order 22·5·19 and can not be
embedded in S20, a contradiction.

Let XM
∼= Kp,p. Then p = q and |A/M | = 2p2. Since q = p > 7, we

have that A/M has a normal Sylow p-subgroup K/M by Sylow Theorem and
|K/M | = p2. It follows that |K| = 10·p2. Let P be a Sylow p-subgroup of
K. Then P has order p2 and again by Slow Theorem, P is normal and hence
characteristic in K. The normality of K in A forces that P is also normal in A.
Since |V (X)| = 20·p, we have that P acting on V (X) has 20 orbits and Pv

∼= Zp.
However, by Proposition 2.1, P must be semiregular on V (X), that is, Pv = 1,
a contradiction.
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Let XM
∼= G(2p, q). Then |A/M | = 2·p·q and by Proposition 2.2, A/M ∼=

(Zp⋊Zq)⋊Z2 with q
∣∣ (p − 1). This implies that A/M has a normal subgroup

K/M ∼= Zp. Since M has order 10, we have that K has a normal Sylow p-
subgroup P ∼= Zp by Sylow Theorem. Thus, P is characteristic in K and hence
normal in A. By Proposition 2.1, XP is a q-valent symmetric graph of order 20
and by [9], XP

∼= K20. Similarly, A/P has order 22·5·19 and by Magma [3], S20
has no subgroup of order 22·5·19, a contradiction.

Assume that N ∼= Z2. Then XN is a q-valent symmetric graph of order
2·5·p, |A/N | = 2·5·p·q and A/N ≲ Aut(XN ). Since A/N has order twice an odd
number, we have that A/N must have a normal subgroup M/N of index two.
Thus, |M/N | = 5·p·q and M also has order twice an odd number. It follows
that M is also has a normal subgroup K of index two and so |K| = 5·p·q. This
implies that |A : K| = 4 and K is also normal in A. Recall that A has no normal
subgroup of order 4, q or p2 with q = p. If p = q, then |K| = 5·p2. Since q > 7,
we have that K must a normal Sylow p-subgroup P by Sylow Theorem. It forces
that P is characteristic in K and hence normal in A. Clearly, P has order p2,
this is impossible. Thus, p ̸= q. Since K is solvable, we have that K must have
a normal subgroup H ∼= Z5, Zp or Zq. Note that 5, p and q are different primes.
Thus, H is characteristic in K and hence normal in A. Since Av

∼= Zq, we have
that H ̸∼= Zq. This implies that A has a normal subgroup H ∼= Z5 or Zp. Similar
arguments as the above, we can deduce that this is impossible.

Combining the above arguments with the cases q = 2, 3, 5, and Lemmas 3.1-
3.2, we have the following result.

Theorem 3.1. Let p, q be two primes and X a connected q-valent one-regular
graph of order 20p. Then X is isomorphic to the cycle C20p with valency 2 and
Aut(X) ∼= D40p.
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