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Abstract. Restriction semigroups are common generalizations of ample semigroups
and inverse semigroups. The main aim of this paper is to probe restriction semigroups
with certain congruence properties. In this paper we give some characterizations of
restriction semigroups each of whose proper (2, 1, 1)-congruences are reduced, so called
H-reduced restriction semigroups. In particular, the classification of congruence-free
restriction semigroups is obtained; that is, it is proved that a restriction semigroup is
congruence-free if and only if it is either a simple group or an H-reduced restriction
semigroup without nontrivial reduced restriction monoid (2, 1, 1)-congruences. These
results extend and enrich the related results of inverse semigroups.
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1. Introduction

Inverse semigroups play an important role in the theory of semigroups. Many
authors have tried to generalize inverse semigroups. Restriction semigroups
are non-regular generalizations of inverse semigroups. They are semigroups
equipped with two additional unary operators which satisfy certain identities. In
particular, each inverse semigroup determines a restriction semigroup in which
the unary operations assign the idempotents aa−1 and a−1a, respectively, to
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any element a. The class of restriction semigroups is just the variety of algebras
generated by these restriction semigroups obtained from inverse semigroups, see
[8]. Restriction semigroups (formerly, called weakly E-ample semigroups) have
arisen from a number of mathematical perspectives. For a detailed introduction
of the history and basic properties of restricted semigroups, please refer to [13]
and [18].

So far, a number of important results of the rich structure theory of inverse
semigroups have been recast in the broader setting of restriction semigroups;
see [11, 9, 10, 21, 25, 16]. In theory of inverse semigroups, congruences play
an important role. Because restriction semigroups are generalizations of inverse
semigroups, it is natural to probe the congruence theory of restriction semi-
groups. This is the main aim of this paper. It is an important property that
any quotient of an inverse semigroup over a congruence is also inverse. This
property is a key to study the congruence theory of inverse semigroups in the
present ways. Unfortunately, the quotient of a restriction semigroup over a gen-
eral congruence need not be still a restriction one (see [15]). So, we only consider
the (2, 1, 1)-congruences on a restriction semigroup. Indeed, we are inspired by
the results of El Qallali in [4] on congruences on an ample semigroup, formerly
called type-A semigroups. This is because any ample semigroup is a special
restriction semigroup.

We proceed as follows: after some preliminaries, in Section 3, we obtain
some trace characterizations of (2, 1, 1)-congruences on a restriction semigroup.
In Section 4, we consider restriction semigroups all of whose proper (2, 1, 1)-
congruences are reduced, called H-reduced restriction semigroups. It is inter-
esting that an H-reduced restriction semigroup must be an ample semigroup.
Moreover, we determine when a restriction semigroup is H-reduced (Theorem
4.1). This result extends those of Tucci in [26] on inverse semigroups all of whose
proper homomorphic images are groups. Section 5 is devoted to congruence-free
restriction semigroups. So-called a congruence-free restriction semigroup is a re-
striction semigroup whose (2, 1, 1)-congrunces are only the identity relation and
the universal relation. Such semigroups are analogue of congruence-free inverse
semigroups. For congruence-free inverse semigroups, see [22, 27]. In [23], Munn
further researched congruence-free regular semigroups. Indeed, any congruence-
free inverse semigroup is fundamental; for fundamental inverse semigroups, see
[20, 24]. It is proved that a semigroup S is a congruence-free restriction semi-
group if and only if S is either a simple group, or an H-reduced restriction
semigroup without nontrivial reduced (2, 1, 1)-congruences (Theorem 5.1). Our
results enrich and extend the related results on inverse semigroups, or ample
semigroups.

2. Preliminaries

We recall some concepts and notations, which are used in the sequel without
mentions.
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2.1 Restriction semigroups

A left restriction semigroup is defined to be an algebra of type (2, 1), more
precisely, an algebra S = (S, ·, +) where (S, ·) is a semigroup and + is a unary
operator such that the following identities are satisfied:

(x+)+ = x+, x+x = x, x+y+ = y+x+,

(x+y)+ = x+y+, (xy)+ = (xy+)+, xy+ = (xy+)+x.
(2.1)

A right restriction semigroup is dually defined, that is, it is an algebra (S, ·, ∗)
satisfying the duals of the identities (2.1). If S = (S, ·, +, ∗) is an algebra of
type (2, 1, 1) where S = (S, ·, +) is a left restriction semigroup and S = (S, ·, ∗)
is a right restriction semigroup and the identities

(2.2) (x+)∗ = x+, (x∗)+ = x∗

hold, then it is called a restriction semigroup. By definition, the defining prop-
erties of a restriction semigroup are left-right dual. Therefore in the sequel dual
definitions and statements will not be explicitly formulated. It is well known
that in a restriction semigroup, we always have

(2.3) (xy)+ = (xy+)+ and (xy)∗ = (x∗y)∗

(for example, see [13]).
Among restriction semigroups, the notions of subalgebra, homomorphism,

congruence and factor algebra are understood in type (2, 1, 1), which is empha-
sised by using the expressions (2, 1, 1)-subsemigroup, (2, 1, 1)-morphism, (2, 1, 1)-
congruence and (2, 1, 1)-factor semigroup, respectively. A restriction semigroup
with identity element 1 and such that 1+ = 1 = 1∗ is also called a restriction
monoid.

Let S be a restriction semigroup. By (2.2), we have

{x+ : x ∈ S} = {x∗ : x ∈ S}.

This set is called the set of projections of S and denoted by P (S). Again by (2.1)
and its dual, P (S) is a (2, 1, 1)-subsemigroup of S which is indeed a semilattice.
We call a restriction semigroup to be reduced if P (S) is a singleton. In this case,
the unique element of P (S) is the identity element of S. As in [16], we define

C = {(u, v) ∈ S × S : u+ = v+, u∗ = v∗}.

2.2 Ample semigroups

The relations R∗ and L∗ are generalizations of the usual Green’s relations R and
L, respectively. Elements a and b of a semigroup T is related byR∗ (respectively,
L∗) if and only if they are related by R (respectively, L) in some oversemigroup
of T . Equivalently, we have

(a, b) ∈ R∗ if and only if xa = ya ⇔ xb = yb for any x, y ∈ T 1
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and

(a, b) ∈ L∗ if and only if ax = ay ⇔ bx = by for any x, y ∈ T 1.

A semigroup T is an ample semigroup if the following conditions are satisfied:

(i) for any a ∈ T , the R∗-class R∗
a of T containing a exists uniquely one

idempotent a+;

(ii) for any a ∈ T , the L∗-class L∗
a of T containing a exists uniquely one

idempotent a+;

(iii) the set E(T ) of idempotents of T becomes a commutative subsemigroup;
that is, E(T ) is a semilattice under the multiplication of T ;

(iv) for any a ∈ T, e ∈ E(T ), ea = a(ea)∗ and ae = (ae)+a.

Ample semigroups are formerly called as type A semigroups. It is well known
that any inverse semigroup is an ample semigroup and any ample semigroup
can be viewed as a subsemigroup of some inverse semigroup. Indeed, an inverse
semigroup is just an ample semigroup being regular.

For an ample semigroup T , we have that e+ = e = e∗ for all e ∈ E(T ).
By definition, it is easy to see that T is a restriction semigroup with unary
operators:

+ : T → T ; a 7→ a+

and
∗ : T → T ; a 7→ a∗,

and in this case,

(i) P (T ) = E(T );

(ii) (2, 1, 1)-congruences are just admissible congruences on T ;

(iii) (2, 1, 1)-homomorphisms are just admissible homomorphisms on T ;

(iv) any reduced (2, 1, 1)-congruence is indeed a cancellative monoid congru-
ence;

(v) C = H∗, where H∗ = L∗ ⊓R∗.

Consequently, any ample semigroup is a restriction semigroup S in which for
any a ∈ S, a+R∗aL∗a∗.

In what follows, we view an ample semigroup as a restriction semigroup with
the unary operations as above.

Recall that a left (right) ideal J of a semigroup T is a left (right) ∗-ideal of
T if J = ⊔x∈JL

∗
x (J = ⊔y∈JR

∗
y), where L∗

x (R∗
x) is the L∗-class (the R∗-class)

of S containing a. Moreover, an ideal of T is a ∗-ideal of T if it is both a left
∗-ideal and a right ∗-ideal.
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2.3 Unary polynomials

Given a set X of variables, by a term in X we mean a formal expression built
up from the elements of X by means of the operational symbols— the binary
operational sysmbol · and the unary operational symbols + and ∗— in finitely
many steps. For example, the left and right hand sides of equalities in (2.1)-
(2.3) are terms in variables x, y. If we work with an associative binary operation
then we delete the unnecessary parenthesis from terms. If S is a restriction
semigroup then we introduce a nullary operational symbols for every element
s in S, and for simplicity, denote it also by s. By a polynomial of S we mean
an expression obtained in a way similar to terms, but from variables and these
operational symbols. A polynomial can also be interpreted in the way that
such nullary operational symbols are substituted for certain variables in a term.
For simplicity, later on we just say that elements of S are substituted for the
variables. As it is usual for semigroups, we allow to substitute also 1 ∈ S1

for several, but not all, variables to indicate that the variables in question be
deleted from the term. For example, if 1 is substituted for variable y in the terms
xyz and zy∗(x∗y)+ then the terms obtained are xz and z(x∗)+, respectively. A
unary polynomial of S is a polynomial with at most one variable. Their set is
denoted by P1(S).

If t = t(x1, x2, · · · , xn) is a term or p = p(x1, x2, · · · , xn) is a polynomial
in the variables x1, x2, · · · , xn, and we substitute elements s1, s2, · · · , sn of S1

with {s1, · · · , sn} ∩ S ̸= ∅ for the variables, then we can evaluate the expres-
sion so obtained in S1. The result is an element of S which is denoted by
tS(s1, s2, · · · , sn) and pS(s1, s2, · · · , sn), respectively. Notice that the evalu-
ation is compatible with the interpretation of the substitution of 1 ∈ S1 for
variables. The polynomial function of S corresponding to the polynomial p is
the mapping

pS : Sn → S, (s1, s2, · · · , sn) 7→ p(s1, s2, · · · , sn),

which is also denoted by pS(x1, x2, · · · , xn).
An identity is a formal equality t = u of two terms, considered with a

common set of variables. A restriction semigroup satisfies the identity t = u if

tS(s1, s2, · · · , sn) = uS(s1, s2, · · · , sn),

for any s1, s2, · · · , sn ∈ S.
Let τ be a relation on a restriction semigroup S. If c, d ∈ S are such that

c = pS(a), d = pS(b),

for some p ∈ P1(S), where either (a, b) or (b, a) belongs to τ , we say that c is

connected to d by a polynomial τ -transition, in notation, c
p→ d. We denote by

τ# the (2, 1, 1)-congruence on S generated by τ .
A well-known universal algebraic fact implies the following description, due

to Szendrei (see [25]).
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Lemma 2.1. Let S be a restriction semigroup and τ a relation on S. Then for
any c, d ∈ S, cτ#d if and only if c = d or there is a sequence

c = c1
p→ c2

p→ · · · p→ cn = d

of polynomial τ -transitions.

3. Congruences

In this section, we need to obtain some characterizations of (2, 1, 1)-congruence
on restricted semigroups. Let S be a restriction semigroup. For a (2, 1, 1)-
congruence ρ on S, we have the restriction ρ|P (S) of ρ to P (S) which is called
the projection trace of ρ, denoted by Ptrρ. It is easy to see that Ptrρ is a
congruence on P (S).

Definition 3.1. A congruence τ on P (S) is projection-normal if for any e, f ∈
P (S) and x ∈ S, (ex)∗τ(fx)∗ and (xe)+τ(xf)+ whenever eτf .

Corollary 3.1. If ρ is a (2, 1, 1)-congruence on S, then Ptrρ is projection-
normal.

Proof. Let e, f ∈ P (S) and x ∈ S. If eρf , then exρfx, xeρxf , so that

(ex)∗ρ(fx)∗, (xe)+ρ(xf)+,

therefore Ptrρ is projection-normal.

Lemma 3.1. Let τ be a projection-normal congruence on P (S) and u, v ∈ S.
Then the following statements are equivalent:

(i) u∗τv∗, ue = ve for some e ∈ P (S), eτu∗;

(ii) u+τv+, fu = fv for some f ∈ P (S), fτu+.

Proof. (i)⇒(ii). Because S is a restriction semigroup, ue = ve implies that
(ue)+u = (ve)+v and (ue)+ = (ve)+. And, by the normality of τ , eτu∗ im-
plies that (ue)+τ(uu∗)+ = u+; similarly, (ve)+τv+. Together with the foregoing
proof: (ue)+ = (ve)+, we have u+τv+ and (ii) holds.

(ii)⇒(i). It is similar as (i)⇒(ii).

Proposition 3.1. For a projection-normal congruence τ on P (S), the relation

τmin = {(u, v) ∈ S × S : u∗τv∗, ue = ve for some e ∈ P (S), eτu∗}

is the smallest (2, 1, 1)-congruence on S such that Ptrτmin = τ .
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Proof. It is routine to check that τmin is an equivalence relation. Let u, v, t ∈ S
with (u, v) ∈ τmin, then u∗τ v∗, ue = ve for some e ∈ P (S) and eτ u∗, so that
tue = tve. Moreover,

(tu)∗ = (tu)∗u∗τ(tu)∗e = (tue)∗ = (tve)∗ = (tv)∗e

and (tv)∗ = (tv)∗v∗τ(tv)∗e. Therefore, (tu)∗τ(tv)∗. Notice that

(tu)∗e = (tue)∗ = (tve)∗ = (tv)∗e,

we observe that

(tu)(tu)∗e = tue = tve = (tv)(tv)∗e = (tv)(tu)∗e.

Together with (tu)∗e ∈ P (S), we have now proved that (tu, tv) ∈ τmin. On the
other side, we have

ue = ve ⇒ uet = vet ⇒ ut(et)∗ = vt(et)∗.

By the normality of τ , eτu∗ implies that (et)∗τ(u∗t)∗ = (ut)∗, so that (et)∗τ(ut)∗.
Similarly, (et)∗τ(vt)∗. Therefore (ut)∗τ(vt)∗. We have now proved that (ut, vt) ∈
τmin. Therefore, τmin is congruence.

Also, (u∗)∗ = u∗τv∗ = (v∗)∗, u∗e = (ue)∗ = (ve)∗ = u∗e and eτu∗ = (u∗)∗.
By definition, these three formula can derive that u∗τminv

∗. Similarly, by Lemma
3.1, u+τminv

+. Consequently, τmin is indeed a (2, 1, 1)-congruence.
For any e, f ∈ P (S), if eτf , then by the normality of τ , (eu)∗τ(fu)∗ and

(ue)+τ(uf)+. Notice that efτe and eef = fef , we can observe that eτminf .
Conversely, if eτminf then by definition, eτf. Hence, Ptrτmin = τ .

Suppose now that ρ is a (2, 1, 1)-congruence on S such that Ptrρ = τ , and
(u, v) ∈ τmin for some u, v ∈ S, then u∗τv∗, ue = ve for some e ∈ P (S), eτu∗.
It follows that (u∗, e), (v∗, e) ∈ ρ. Therefore, u = uu∗ρue = veρvv∗ = v. Hence
τmin ⊆ ρ and τmin is the smallest (2, 1, 1)-congruence on S such that Ptrτmin =
τ .

By Lemma 3.1, the following corollary is an immediate consequence of Propo-
sition 3.1.

Corollary 3.2. The congruence τmin of Proposition 3.4 has also the following
from:

τmin = {(u, v) ∈ S × S : u+τv+, fu = fv for some f ∈ P (S), fτu+}.

By a projection separating (2, 1, 1)-congruence on S, we mean a (2, 1, 1)-
congruence ρ on S in which for any e, f ∈ P (S), if eρf , then e = f . Gould [11]
pointed out that for a restriction semigroup S, the relation

µS = {(u, v) ∈ S × S : u+ = v+ and (eu)∗ = (ev)∗ for all e ∈ P (S)}
= {(u, v) ∈ S × S : u∗ = v∗ and (uf)+ = (vf)+ for all f ∈ P (S)}
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is the greatest projection separating (2, 1, 1)-congruence on S and µS ⊆ C.
Sometime, we write also µS as µ(S). By definition, a (2, 1, 1)-congruence ρ
on S is projection-separating if and only if Ptrρ = idP (S) where idP (S) denotes
the identity relation on P (S).

For a projection-normal congruence τ on P (S), we define

τmax = {(u, v) ∈ S × S : (eu)∗τ(ev)∗ and (ue)+τ(ve)+ for any e ∈ P (S)}.

Lemma 3.2. Let τ be a projection-normal congruence on P (S). Then for any
u, v ∈ S, the following statements are equivalent:

(i) (u, v) ∈ τmax;

(ii) (eu)∗τ(fv)∗ and (ue)+τ(vf)+, for any e, f ∈ P (S) with eτf ;

(iii) (uτmin, vτmin) ∈ µS/τmin
.

Proof. (i)⇒(ii). For any e, f ∈ P (S) with eτf , we have (ev)∗τ(fv)∗ by normal-
ity. If (u, v) ∈ τmax, then (eu)∗τ(ev)∗ so that (eu)∗τ(fv)∗; similarly, (ue)+τ(vf)+.

(ii)⇒(i). It is clear.

(i)⇔(iii). It follows from the following implications:

(u, v) ∈ τmax ⇔ (eu)∗τ(ev)∗ and (ue)+τ(ve)+ for any e ∈ P (S);

⇔ (eu)∗τmin = (ev)∗τmin and (ue)+τmin = (ve)+τmin

for any e ∈ P (S);

⇔ ((eu)τmin)
∗ = ((ev)τmin)

∗ and ((ue)τmin)
+ = ((ve)τmin)

+

for any e ∈ P (S);

⇔ (eτmin · uτmin)
∗ = (eτmin · bτmin)

∗ and

(uτmin · eτmin)
+ = (vτmin · eτmin)

+ for all e ∈ P (S);

⇔ (uτmin, vτmin) ∈ µ(S/τmin).

We complete the proof.

Proposition 3.2. Let τ be a projection-normal congruence on P (S). Then,
τmax is the greatest (2, 1, 1)-congruence on S such that Ptrτmax = τ .

Proof. It is routine to check that τmax is an equivalence relation. Let u, v, t ∈ S
with (u, v) ∈ τmax, e ∈ P (S). Then (eu)∗τ(ev)∗ and by the normality of τ , it
follows that

(eut)∗ = ((eu)∗t)∗τ((ev)∗t)∗ = (evt)∗.

Notice that (te)† ∈ P (S), we have

(ute)+ = (u(te)+)+τ(v(te)+)+ = (vte)+.

Therefore, (ut, vt) ∈ τmax; similarly, (tu, tv) ∈ τmax. Hence, τmax is a congruence.



642 ZHIQIN ZHANG, JUNYING GUO and XIAOJIANG GUO

It is obvious that τ ⊆ τmax. Let e, f, g ∈ P (S). If fτmaxg, then efτeg.
Take in turn e = f and e = g to get fτfg, gfτg. As fg = gf, now fτg. Thus,
Ptrτmax = τ .

If (u, v) ∈ τmax, then (uτmin, vτmin) ∈ µ(S/τmin). But, µ(S/τmin) and τmin

are (2, 1, 1)-congruence, so (u∗τmin, v
∗τmin) ∈ µ(S/τmin) and (u+τmin, v

+τmin) ∈
µ(S/τmin). By Lemma 3.2, these show that (u∗, v∗) ∈ τmax and (u+, v+) ∈ τmax.
Therefore, τmax is a (2, 1, 1)-congruence.

Finally, we let ρ be a (2, 1, 1)-congruence on S such that Ptrρ = τ . If
(u, v) ∈ ρ, then for any e ∈ P (S), (eu, ev) ∈ ρ and (ue, ve) ∈ ρ. It follows
that ((eu)∗, (ev)∗), ((ue)+, (ve)+) ∈ ρ. Thus (eu)∗τ(ev)∗, (ue)+τ(ve)+. Hence
ρ ⊆ τmax and the proof is completed.

In what follows, we call a (2, 1, 1)-congrunce ρ on S a reduced (2, 1, 1)-
congruence if S/ρ is a reduced restriction monoid. The following proposition
gives a characterization of reduced (2, 1, 1)-congruences.

Proposition 3.3. Let ρ be a (2, 1, 1)-congruence on S. Then ρ is a reduced
(2, 1, 1)-congruence on S if and only if Ptrρ = P (S)× P (S).

Proof. Suppose that ρ is a reduced (2, 1, 1)-congruence on S, then S/ρ is a
reduced restriction monoid. This means that |P (S/ρ)| = 1. Obviously, for any
e, f ∈ P (S), eρ = fρ. Thus P (S)× P (S) ⊆ Ptrρ. Hence Ptrρ = P (S)× P (S).

Conversely, suppose that Ptrρ = P (S) × P (S), then for any e, f ∈ P (S),
eρ = fρ. This shows that |{eρ : e ∈ P (S)}| = 1. On the other hand, if
aρ (a ∈ S) is a projection of S/ρ, then as ρ is a (2, 1, 1)-congruence on S,
aρ = (aρ)+ = a+ρ. So, P (S/ρ) = {eρ : e ∈ P (S)}. Therefore |P (S/ρ)| = 1, and
so S/ρ is a reduced restriction monoid. Hence ρ is a reduced (2, 1, 1)-congruence
on S.

Denote ω = P (S) × P (S). It is obvious that ω is a normal congruence
on P (S). So, by Proposition 3.3, ωmin and ωmax are both reduced (2, 1, 1)-
congruences. Again by Propositions 3.1 and 3.2, we have the following corollary.

Corollary 3.3. Let S be a restriction semigroup. Then

(i) ωmin is the smallest reduced (2, 1, 1)-congruence on S;

(ii) ωmax = S × S.

Evidently, the identity relation ∆ on P (S) is a normal congruence on P (S).
It is not difficult to see that for a restriction semigroup S, we have

(i) ∆min is the identity relation on S;

(ii) ∆max = µS .

Proposition 3.4. Let S be a restriction semigroup. If ρ is a (2, 1, 1)-congruence
on S, then P (S/ρ) = {eρ : e ∈ P (S)}.
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Proof. Obviously, {eρ : e ∈ P (S)} ⊆ P (S/ρ). If aρ (a ∈ S) is a projection of
S/ρ, then aρ = (aρ)+ = a+ρ, so that P (S/ρ) ⊆ {eρ : e ∈ P (S)}. Therefore,
P (S/ρ) = {eρ : e ∈ P (S)}.

4. H-reduced restriction semigroups

In this section, we give the definition of H-reduced restricted semigroups.

Definition 4.1. A semigroup S is an H-reduced restriction semigroup if

(i) S is not a reduced restriction monoid;

(ii) |S| ≥ 2;

(iii) any (2, 1, 1)-congruence ρ on S is either the identical relation or a reduced
(2, 1, 1)-congruence.

Notice that a restriction semigroup is reduced if and only if its set of pro-
jections is a singleton. So, it is easy to know that for any H-reduced restriction
semigroup S, we have always |P (S)| ≥ 2.

By a 0-J ∗-simple semigroup, we mean a semigroup with zero element 0 and
satisfying the conditions as follows:

(i) S2 ̸= {0};

(ii) S and {0} are the only ∗-ideals of S.

And, we call a 0-J ∗-simple semigroup having no zero element to be a J ∗-simple
semigroup. Equivalently, a semigroup S with zero element is 0-J ∗-simple if and
only if S2 ̸= {0} and

J ∗ = {(0, 0)} ⊔ (S\{0})× (S\{0});

if and only if S2 ̸= {0} and aJ ∗b for any nonzero elements a, b of S. Also, it
is easy to see that a semigroup is J ∗-simple if and only if J ∗ is the universal
relation on S.

Take after Gould, we call a restriction semigroup S to be fundamental if the
maximum projection-separating (2, 1, 1)-congruence µ is the identity relation.
In [11], Gould proved that any fundamental restriction semigroup is isomorphic
to some full (2, 1, 1)-subsemigroup of the Munn semigroup on its projection
semilattice. According to a result of Fountain in [6], any full subsemigroup of an
inverse semigroup must be an ample semigroup. Because any Munn semigroup
is an inverse semigroup, this shows that any fundamental restriction semigroup
is always an ample semigroup.

By Definition 4.1, we have the following corollary.

Corollary 4.1. Any H-reduced restriction semigroup is a 0-J ∗-simple ample
semigroup which is fundamental.
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Proof. Let S be an H-reduced restriction semigroup. If the projection sepa-
rating (2, 1, 1)-congruence µS is not the identity relation, then µS is a reduced
(2, 1, 1)-congruence, and by Proposition 3.4, |P (S/µS)| = |{eµS : e ∈ P (S)}|.
But µS is projection-separating, so |{eµS : e ∈ P (S)}| = |P (S)|. Therefore
1 = |P (S/µS)| = |P (S)|, so that P (S) is a singleton. It follows that S is a re-
duced restriction semigroup, contrary to Definition 4.1. Thus µS is the identity
relation on S, so that S is a fundamental restriction semigroup. Now by the
foregoing arguments before Corollary 4.1, S is an ample semigroup.

Now let U be a ∗-ideal of S and U ̸= S. Then by [14, Lemma 2.2], the Rees
congruence RU := U × U ⊔ idS is a (2, 1, 1)-congruence on S, where idS is the
identity relation on S.

(i) When the Rees congruence RU is the identity relation. In this case, U =
{0}.

(ii) If RU is not the identity relation, then by hypothesis, RU is a reduced
(2, 1, 1)-congruence, and so S/RU is a trivial semigroup, since S/RU is a
restriction semigroup with zero element and the projection set of a reduced
restriction semigroup is a singleton. Therefore U = S.

However S has only two ∗-ideals: {0} and S. This means that S is a 0-J ∗-simple
semigroup.

We arrive now at the main result of this section.

Theorem 4.1. Let S be a restriction semigroup such that |P (S)| > 1. Then
S is an H-reduced restriction semigroup if and only if the following statements
hold:

(FA) S is a fundamental ample semigroup;

(HR) for any e, f, h ∈ P (S) with e > f , there is a sequence

e = e1
p→ e2

p→ · · · p→ en = h

of polynomial τ -transitions, where

(i) e1, e2, · · · , en ∈ P (S);

(ii) τ = {(e, f)}.

Proof. Suppose that Conditions (FA) and (HR) hold. Let ρ be a (2, 1, 1)-
congruence on S, and ρ ̸= S × S. We consider the following two cases:

(1) If Ptrρ = idP (S), then ρ is a projection-separating (2, 1, 1)-congruence, so
ρ ⊆ µS . But S is fundamental, then µS = idS and thus ρ is the identity
congruence on S.
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(2) Assume that Ptrρ ̸= idP (S). Then there is e, h ∈ P (S) such that e ̸= h
and (e, h) ∈ ρ. It follows that (e, eh) ∈ ρ.

(a) If e = eh, then e < h. Now by Lemma 2.1, Condition (HR) implies
that for any g ∈ P (S), (h, g) ∈ τ# where τ = {(h, e)}. But τ ⊆ ρ, so
τ# ⊆ ρ. Accordingly, (g, h) ∈ ρ. This means that P (S)× P (S) ⊆ ρ.
Now by Proposition 3.3, ρ is a reduced (2, 1, 1)-congruence on S.

(b) Assume that e ̸= eh. We have that eh < e. Applying the arguments
on e, h to e, eh, we can get that ρ is a reduced (2, 1, 1)-congruence
on S.

Consequently, S is an H-reduced restriction semigroup.
Conversely, suppose that S is an H-reduced restriction semigroup. Notice

that µS is a (2, 1, 1)-congruence on S. By hypothesis, µS = idS or µS is reduced.

(A) If the first case holds, then S is a fundamental restriction semigroup. So,
S is isomorphic to a full subsemigroup of the Munn semigroup on P (S).
But the Munn semigroup is an inverse semigroup, so any full subsemigroup
of the Munn semigroup is always an ample semigroup. Therefore S is a
fundamental ample semigroup.

(B) If the second case is true, then PtrµS is the universal relation on P (S).
But µS is projection-separating, so |P (S)| = 1, contrary to the hypothesis
that |P (S)| ≥ 2.

However, S is a fundamental ample semigroup.
Let e, f, h ∈ P (S) be such that e > f . Consider the relation τ = {(e, f)}

on S, we know easily that τ# is not the identity on S. By definition, τ# is a
reduced (2, 1, 1)-congruence on S. It follows that (e, h) ∈ τ#. Now by Lemma
2.1, there is a sequence

e = c1
p→ c2

p→ · · · p→ cn = h

of polynomial τ -transitions. Let pi ∈ P1(S) with i = 1, 2, · · · , n and such that

c1 =pS1 (a1), p
S
1 (b1) = c2 = pS2 (a2), p

S
2 (b2) = c3 = pS3 (a3), · · ·

pSn−1(bn−1) = cn−1 = pSn(an), p
S
n(bn) = cn,

(4.1)

where either (ai, bi) or (bi, ai) belong to τ . Now let qi(x) = (pi(x))
+. Obviously,

qi(x) ∈ P1(S). Notice that e = e+ = c+1 and h = h+ = c+n . By (4.1), we can
obtain that

c+1 =(pS1 (a1))
+, (pS1 (b1))

+ = c+2 = (pS2 (a2))
+, (pS2 (b2))

+ = c+3 = (pS3 (a3))
+, · · ·

(pSn−1(bn−1))
+ = c+n−1 = (pSn(an))

+, (pSn(bn))
+ = c+n ;

that is,

e = c+1 =qS1 (a1), q
S
1 (b1) = c+2 = qS2 (a2), q

S
2 (b2) = c+3 = qS3 (a3), · · ·

qSn−1(bn−1) = c+n−1 = qSn (an), q
S
n (bn) = c+n = h,

(4.2)
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where qSk (x) = (p+k (x))
+ ∈ P1(S) for k = 1, 2, · · · , n. It results Condition

(HR).

By a proper congruence on S, we mean a congruence ρ on S with ρ ̸= S×S.
Let S be an inverse semigroup. It is easy to see that any congruence on S is

always a (2, 1, 1)-congruence on S. Notice that for any congruence ρ on S, ρ is
a group congruence on S if and only if E(S)×E(S) ⊆ ρ. We can observe that ρ
is a group congruence if and only if ρ is reduced. Now, the following corollary is
an immediate consequence of Theorem 4.1, which is essentially the main result
in [26].

Corollary 4.2. Let S be an inverse semigroup which is not a group. Then every
proper congruence of S is a group congruence if and only if S is a fundamental
inverse semigroup satisfying Condition (HR).

5. Congruence-free restriction semigroups

In this section, we shall discuss congruence-free restriction semigroups.

Definition 5.1. A restriction semigroup S is congruence-free if any (2, 1, 1)-
congruence on S is either the universal congruence or the identity congruence.

Let S be a congruence-free restriction semigroup. Notice that the universal
relation is a reduced restriction monoid. By definition, any (2, 1, 1)-congruence
on a congruence-free restriction semigroup S is either the identity relation or
a reduced (2, 1, 1)-congruence. So, S is either a reduced restriction semigroup
or an H-reduced restriction semigroup. On the other hand, also by definition,
the greatest projection separating (2, 1, 1)-congruence µS is the identity relation
on S. So, S is a fundamental restriction semigroup. Furthermore, S is a full
(2, 1, 1)-subsemigroup of the Munn semigroup on P (S), so that S is an ample
semigroup. Assume, in addition, that S is a reduced restriction semigroup.
Obviously, S is a monoid with identity 1. Consider that an ample semigroup may
be viewed as a restriction semigroup in which for any element a, a+R∗aL∗a∗,
this shows that for any a ∈ S, aH∗1. That is, S is an H∗-class containing
an idempotent 1. By a result of Fountain in [7], S is a cancellative monoid.
Therefore we have the following corollary.

Corollary 5.1. If S is a congruence-free restriction semigroup, then S is either
a cancellative monoid or an H-reduced restriction semigroup.

Lemma 5.1. Let S be a restriction semigroup. Then every (2, 1, 1)-congruence
on S is either a projection separating (2, 1, 1)-congruence or a reduced (2, 1, 1)-
congruence if and only if S satisfies Condition (HR).

Proof. Suppose that S satisfies (HR). Indeed, in the proof of the sufficiency of
Theorem 4.1, we have proved that any proper (2, 1, 1)-congruence on S is either
projection-separating or reduced. It results the sufficiency.
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Conversely, suppose that every (2, 1, 1)-congruence on S is either a projection-
separating (2, 1, 1)-congruence or a reduce (2, 1, 1)-congruence. For e, f, g ∈
P (S) with e > f , we consider the relation τ = {e, f}. It is easy to see that τ# is
not a projection-separating (2, 1, 1)-congruence on S, since the projection trace
of a projection-separating congruence on S is the identity relation on P (S).
Furthermore, τ# is a reduced (2, 1, 1)-congruence on S. Again by the proof of
the necessity of Theorem 4.1, we may obtain that S satisfies Condition (HR).
The proof is finished.

Lemma 5.2. Let T be a cancellative monoid with identity 1. Then T is a
congruence-free restriction semigroup if and only if T is a simple group.

Proof. Suppose that T is a congruence-free restriction semigroup, and denote
by U(T ) the set of all units of T . Then U(T ) is a subgroup of T , and T\U(T )
is an ideal of T . It is easy to see that ρ = (T\U(T )) × (T\U(T )) ⊔ idU(T )

is a (2, 1, 1)-congruence on T . But T is congruence-free, so ρ is the identity
relation on T . It follows that T\U(T ) is the zero element of T . This means
that T = U(T )0 (the semigroup obtained from U(T ) by adjoining a zero). Thus
T = U(T ) since T is cancellative. Moreover by [19, Proposition 8.2 (i), p.32], T
is a simple group.

Conversely, by [19, Proposition 8.2 (i), p.32], it is clear that a simple group
is a congruence-free restriction semigroup.

We now give the main result of this section.

Theorem 5.1. A semigroup S is a congruence-free restriction semigroup if and
only if S is either a simple group or an H-reduced restriction semigroup without
nontrivial reduced (2, 1, 1)-congruences.

Proof. Suppose that S is congruence-free. By Corollary 5.1, S is either a
cancellative monoid or an H-reduced restriction semigroup. If S is a cancellative
monoid, then by Lemma 5.2, S is a simple group. If S is an H-reduced restriction
semigroup, then any (2, 1, 1)-congruence on S is either the identity relation or
a reduced (2, 1, 1)-congruence (including the universal relation), so that S has
no nontrivial reduced (2, 1, 1)-congruences.

Conversely, if S is an H-reduced restriction semigroup without nontrivial
reduced (2, 1, 1)-congruences, then S has only the identity relation and the uni-
versal relation. It follows that S is congruence-free. Assume that S is a simple
group. By [19, Proposition 8.2 (i), p.32], any congruence on S is of the form:
ρN = {(g, h) ∈ S × S : gh−1 ∈ N} where N is a normal subgroup of S. This
shows that S is congruence-free.

By definition, a restriction semigroup is inverse if and only if it is regular.
The following corollary is an easy consequence of Theorem 5.1 and essentially
the main result of Munn in [22].
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Corollary 5.2. A semigroup S is a congruence-free inverse semigroup if and
only if S is either a simple group or a fundamental inverse semigroup satisfying
Condition (HR) and without nontrivial group congruences.

The following example is due to Tucci; for detail, see [26].

Example 5.1. Let N be the set of all non-negative integers. On S = N × N,
define a multiplication by

(m,n)(p, q) = (m− n+max(n, p), q − p+max(n, p)).

It is well known that under the above multiplication, S is an inverse semigroup.
Indeed, S is the bicyclic semigroup. By [26, Corollary 7], S is a congruence-free
restriction semigroup.

6. Conclusion

With the development of semigroup theory, restriction semigroups have become
a hot topic in semigroup theory. This paper is based on Tucci ’s inverse semi-
groups all of whose proper homomorphic images are groups in [26]. Moreover,
EI Qallali’s results in [4] on congruences on an ample semigroups give us great
inspiration. In this paper, we discuss the properties of some congruences on re-
striction semigroups and obtain the classification of congruence-free restriction
semigroups. Finally, we hope these conclusions will be helpful to the study of
restriction semigroups.
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