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Abstract. In this paper, we introduce the notions of multiplicative interior operators
(mi-operators, for short), additive closure operators (ac-operators, for short) and hedges
in quasi-pseudo-MV algebras which will generalize the related contents in pseudo-MV
algebras. First we discuss the relationship between mi-operators and ac-operators in
a quasi-pseudo-MV algebra and investigate the properties of mi-operators in quasi-
pseudo-MV algebras. Second we define and study hedges in quasi-pseudo-MV algebras.
We also show that mi-operators are hedges. Finally, the properties of filters and weak
filters in a quasi-pseudo-MV algebra with hedge are discussed.
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1. Introduction

Quasi-pseudo-MV algebras (qpMV-algebras, for short) were introduced in [4]
as the generalizations of both pseudo-MV algebras [9] and quasi-MV algebras
[11]. Considering that qpMV-algebras may play an important role in studying
many-valued fuzzy logic and quantum computational logic, many properties of
qpMV-algebras have been investigated in [3, 4, 5, 6, 7].

The notions of hedges were defined as operators acting on fuzzy subsets by
Zadeh in order to describe linguistic hedges such as “very”, “more or less”,
“much”, and so on [18]. In his paper, some examples were given to handle how
to define hedges as operators. However, any sort of axiomatization was not con-
sidered. In [1], authors defined a hedge as operator on a complete lattice. The
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hedge in their definition is a mapping f which needs satisfy four axioms: (1)
f(1) = 1, (2) f(x) ≤ x, (3) f(x → y) ≤ f(x) → f(y) and (4) f(f(x)) = x. Au-
thors also pointed out that this definition of hedge was indeed a truth function
of logical connective “very true”. On the other hand, the concepts of very true
operators (vt-operators, for short) were introduced by Hajek on BL-algebras
and the algebraic structures were called BLvt-algebras [10]. A vt-operator is
a mapping f which also contains four axioms: (1) f(1) = 1, (2) f(x) ≤ x,
(3) f(x → y) ≤ f(x) → f(y) and (4′) f(x ∨ y) ≤ f(x) ∨ f(y). A compari-
son of these two definitions indicates that they have the same axioms except
the last one. Hence, a mapping which satisfies the axioms (1)(2)(3) is called
a weak vt-operator [13, 15]. Moreover, on any commutative residuated lattice,
Liu and Wang defined a vt-operator which is a weak vt-operator with the axiom
(4′) and a hedge which is a weak vt-operator with the axiom (4), respectively
[13]. Consequently, the concepts of vt-operators and hedges had been extended
to other logical algebras such as pseudo-MV algebras [12], basic algebras [2],
MTL-algebras [17], equality algebras [16], pseudo-BCK algebras [8] and so on.
We need to point out that although authors named after vt-operators on some
algebras, these operators are defined to satisfy the axiom (4), in other words,
they are indeed “hedges” following the idea in [13]. In addition, the notions of
multiplicative interior operators and additive closure operators were introduced
to MV-algebras as the generalizations of topological Boolean algebras [14]. In-
dependent of their original motivation, any multiplicative interior operator is a
hedge in an MV-algebra from the purely algebraic viewpoint. Thus, it is natu-
ral to ask whether the concepts of multiplicative interior operators and hedges
can be generalized to a qpMV-algebra for the more general results and new
applications.

In this paper, we introduce the notions of multiplicative interior operators,
additive closure operators and hedges on a qpMV-algebra and investigate the
new algebraic structure. The paper is organized as follows. In Section 2, we
recall some definitions and results which will be used in what follows. In Section
3, we introduce the notions of multiplicative interior operators (mi-operators,
for short) and additive closure operators (ac-operators, for short) in qpMV-
algebras which will generalize the related contents in pseudo-MV algebras. We
discuss the relationship between mi-operators and ac-operators and investigate
some properties of mi-operators in qpMV-algebras. In Section 4, we define and
study hedges in qpMV-algebras. We also show that mi-operators are hedges.
The properties of filters and weak filters in a qpMV-algebra with hedge are
discussed.

2. Preliminary

In this section, we recall some definitions and results which will be used in the
following. We list the definition and the related properties of a quasi-pseudo-MV
algebra and recall the hedges on residuated lattices.
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Definition 2.1 ([4]). An algebra A = ⟨A;⊕,− ,∼ , 0⟩ of type ⟨2, 1, 1, 0⟩ is called a
quasi-pseudo-MV algebra (qpMV-algebra, for short), if it satisfies the following
axioms, for any x, y, z ∈ A,

(QPMV 1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z;

(QPMV 2) 0− = 0∼;

(QPMV 3) x⊕ 0 = 0⊕ x;

(QPMV 4) x⊕ 0− = 0− = 0− ⊕ x;

(QPMV 5) (x− ⊕ y−)∼ = (x∼ ⊕ y∼)−;

(QPMV 6) x−∼ = x = x∼−;

(QPMV 7) y⊕ (x−⊕ y)∼ = (y⊕x∼)−⊕ y = x⊕ (y−⊕x)∼ = (x⊕ y∼)−⊕x;

(QPMV 8) (x⊕ 0)− = x− ⊕ 0 and (x⊕ 0)∼ = x∼ ⊕ 0;

(QPMV 9) x⊕ y ⊕ 0 = x⊕ y.

A qpMV-algebra in which the binary operation ⊕ is commutative and the
unary operations − and ∼ coincide, is a quasi-MV algebra (qMV-algebra, for
short). On the other hand, a qpMV-algebra satisfying the axiom x⊕ 0 = x is a
pseudo-MV algebra (psMV-algebra, for short).

On any qpMV-algebra A, we can define some operations, for any x, y ∈ A:

x⊙ y = (x− ⊕ y−)∼;
x ∨ y = x⊕ (y− ⊕ x)∼;
x ∧ y = (x− ∨ y−)∼;
x → y = x− ⊕ y;
x⇝ y = y ⊕ x∼.

We can also define a relation x ≤ y iff x∨y = y⊕0, or equivalently, x∧y = x⊕0.
This is a quasi-ordering relation [4]. Moreover, if x ≤ y and y ≤ x, then
x⊕ 0 = y ⊕ 0.

Below we list some properties of these operations and the relation. The
proofs can be seen in [3, 4].

Proposition 2.1. Let A be a qpMV-algebra. Then, for any x, y, z ∈ A,

(P1) 0⊕ 0 = 0 and 1⊕ 0 = 1;

(P2) x ∧ y = (x → y)⊙ x = x⊙ (x⇝ y);

(P3) 1 → x = 1⇝ x;

(P4) x ∨ y = (x ∨ y)⊕ 0 = (x⊕ 0) ∨ y = x ∨ (y ⊕ 0),

x ∧ y = (x ∧ y)⊕ 0 = (x⊕ 0) ∧ y = x ∧ (y ⊕ 0);

(P5) x → y = (x → y)⊕ 0 = (x⊕ 0) → y = x → (y ⊕ 0),

x⇝ y = (x⇝ y)⊕ 0 = (x⊕ 0)⇝ y = x⇝ (y ⊕ 0);

(P6) x ≤ y iff x → y = 1 iff x⇝ y = 1;

(P7) 0 ≤ x ≤ 1;

(P8) x ≤ 1 → x and 1 → x ≤ x;

(P9) x ≤ y iff y− ≤ x− iff y∼ ≤ x∼;

(P10) x → y ≤ (y → z)⇝ (x → z) and x⇝ y ≤ (y ⇝ z) → (x⇝ z);

(P11) x → y ≤ (z → x) → (z → y) and x⇝ y ≤ (z ⇝ x)⇝ (z ⇝ y);
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(P12) x ≤ y → x and x ≤ y ⇝ x;
(P13) x⊙ y ≤ z iff x ≤ y → z iff y ≤ x⇝ z;
(P14) If x ≤ y, then y → z ≤ x → z and y ⇝ z ≤ x⇝ z;
(P15) If x ≤ y, then z → x ≤ z → y and z ⇝ x ≤ z ⇝ y;
(P16) (x ∨ y)− = x− ∧ y− and (x ∨ y)∼ = x∼ ∧ y∼,

(x ∧ y)− = x− ∨ y− and (x ∧ y)∼ = x∼ ∨ y∼;
(P17) (x∨y) → z = (x → z)∧ (y → z) and (x∨y)⇝ z = (x⇝ z)∧ (y ⇝ z),

z → (x∨y) = (z → x)∨(z → y) and z ⇝ (x∨y) = (z ⇝ x)∨(z ⇝ y);
(P18) z → (x∧y) = (z → x)∧ (z → y) and z ⇝ (x∧y) = (z ⇝ x)∧ (z ⇝ y),

(x∧y) → z = (x → z)∨(y → z) and (x∧y)⇝ z = (x⇝ z)∨(y ⇝ z).

Given that A is a qpMV-algebra and consider the set R(A) = {x ∈ A|x⊕0 =
x}. Then, we have that R(A) is a non-empty subset of A by Proposition 2.1
and elements in R(A) are called regular. Moreover, RA = ⟨R(A);⊕,− ,∼ , 0⟩ is
a pseudo-MV subalgebra of A. We recall that a qpMV-algebra in which 0 = 1
is called flat. Then, we can show the following result.

Theorem 2.1 ([4]). For any qpMV-algebra A, there exist a pseudo-MV algebra
M and a flat qpMV-algebra F such that A can be embedded into the direct
product M× F.

Let A be a qpMV-algebra. A non-empty subset F of A is called a filter
of A, if, for any x, y ∈ A, the following conditions are satisfied (F1) 1 ∈ F ;
(F2) if x, y ∈ F , then x ⊙ y ∈ F ; (F3) if x ∈ F and y ∈ A with x ≤ y, then
y ∈ F . A non-empty subset F of A is called a weak filter of A, if, for any
x, y ∈ A, the following conditions are satisfied (WF1) 1 ∈ F ; (WF2) if x, y ∈ F ,
then x ⊙ y ∈ F ; (WF3) if x ∈ F and y ∈ A, then y ⊕ x ∈ F and x ⊕ y ∈ F .
Moreover, a (weak) filter F is called normal, if x → y ∈ F iff x⇝ y ∈ F , for any
x, y ∈ A. Finally, we recall that a congruence θ on A is called filter congruence,
if ⟨x⊙ 1, y ⊙ 1⟩ ∈ θ can imply ⟨x, y⟩ ∈ θ, for any x, y ∈ A.

The filter is the dual notion of an ideal in any qpMV-algebra. In [6], we have
proved that there exists a bijective correspondence between normal ideals and
ideal congruences on a qpMV-algebra. On the basis of the proof, we can get the
following result.

Theorem 2.2. Let A be a qpMV-algebra, F be a normal filter of A and θ be a
filter congruence on A. Then,

(1) f(F ) = {⟨x, y⟩ ∈ A2|x → y ∈ Fand y → x ∈ F} is a filter congruence
on A;

(2) g(θ) = {x ∈ A|⟨x, 1⟩ ∈ θ} is a normal filter of A;
(3) g(f(F )) = F ;
(4) f(g(θ)) = θ.

3. Interior and closed operators

MV-algebras with multiplicative interior operators (interior MV-algebras) or
additive closure operators (closure MV-algebras) were introduced in [14]. In fact,
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a multiplicative interior operator (or an additive closure operator) on an MV-
algebra generalizes that of a topological interior operator (or closure operator)
on a Boolean algebra. In this section, we generalize these notions to qpMV-
algebras.

Definition 3.1. Let A be a qpMV-algebra and f : A → A be a mapping. Then,
f is called a multiplicative interior operator (mi-operator, for short) on A, if
the following conditions are satisfied, for any x, y ∈ A,

(MI1) f(1) = 1;

(MI2) f(x) ≤ x;

(MI3) f(x⊙ y) = f(x)⊙ f(y);

(MI4) f(f(x)) = f(x).

The pair (A, f) is called an interior qpMV-algebra. For any x ∈ A, the
element f(x) is called the interior of x. An element x ∈ A is called open, if
f(x) = x.

Similarly, we have the following definition.

Definition 3.2. Let A be a qpMV-algebra and g : A → A be a mapping. Then,
g is called an additive closure operator ( ac-operator, for short) on A, if the
following conditions are satisfied, for any x, y ∈ A,

(AC1) g(0) = 0;

(AC2) x ≤ g(x);

(AC3) g(x⊕ y) = g(x)⊕ g(y);

(AC4) g(g(x)) = g(x).

The pair (A, g) is called a closure qpMV-algebra. For any x ∈ A, the element
g(x) is called the closure of x. An element x ∈ A is called closed, if g(x) = x.

Proposition 3.1. Let A be a qpMV-algebra and f be an mi-operator on A.
Then, the mappings f−

∼ defined by f−
∼ (x) = (f(x∼))− and f∼

− defined by f∼
− (x) =

(f(x−))∼, for any x ∈ A, are ac-operators on A.

Proof. We only check the case of f−
∼ . The other can be proved similarly.

(AC1) We have f−
∼ (0) = (f(0∼))− = (f(1))− = 1− = 0.

(AC2) Since f−
∼ (x) = (f(x∼))− and f(x∼) ≤ x∼ by (MI2), we have x ≤

f−
∼ (x) by (P10).

(AC3) We have f−
∼ (x ⊕ y) = (f((x ⊕ y)∼))− = (f(x∼ ⊙ y∼))− = (f(x∼) ⊙

f(y∼))− = (f(x∼))− ⊕ (f(y∼))− = f−
∼ (x)⊕ f−

∼ (y).

(AC4) We have f−
∼ (f−

∼ (x)) = f−
∼ ((f(x∼))−) = (f(f(x∼)))− = (f(x∼))− =

f−
∼ (x).

Dually, we get the following result.

Proposition 3.2. Let A be a qpMV-algebra and g be an ac-operator on A.
Then, the mappings g−∼ defined by g−∼(x) = (g(x∼))− and g∼− defined by g∼−(x) =
(g(x−))∼, for any x ∈ A, are mi-operators on A.
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As shown above, there exist the corresponding relations between mi-operators
and ac-operators on a qpMV-algebra, thus we will only discuss mi-operators in
the rest.

Proposition 3.3. Let A be a qpMV-algebra and f be an mi-operator on A.
Then, for any x, y ∈ A,

(1) f keeps regular elements, i.e., if x = x⊕ 0, then f(x) = f(x)⊕ 0;

(2) f(0) = 0;

(3) f(x−) ≤ (f(x))− and f(x∼) ≤ (f(x))∼;

(4) If x ≤ y, then f(x) ≤ f(y);

(5) f(x → y) ≤ f(x) → f(y) and f(x⇝ y) ≤ f(x)⇝ f(y).

Proof. (1) Since x = x ⊕ 0 iff x = x ⊙ 1, for any x ∈ A, we get the result by
(MI3) and (MI1).

(2) Since 0 ≤ f(0) ≤ 0 by (MI2), we have f(0)⊕ 0 = 0⊕ 0. Note that 0 is a
regular element, it turns out that f(0) = 0 by (1).

(3) By (MI2), we have f(x) ≤ x, so x− ≤ (f(x))−. Using (MI2) again, we
have f(x−) ≤ x−, it turns out that f(x−) ≤ (f(x))− by the transitivity. The
other can be proved similarly.

(4) If x ≤ y, then x ⊙ 1 = x ∧ y = y ⊙ (y ⇝ x). On the one hand, we have
f(x ⊙ 1) = f(x) ⊙ f(1) = f(x) ⊙ 1 ≥ f(x) by (MI3) and (MI1). On the other
hand, we have f(x∧ y) = f(y⊙ (y ⇝ x)) = f(y)⊙ f(y ⇝ x) ≤ f(y)⊙ 1 ≤ f(y).
Hence, f(x) ≤ f(y).

(5) Since (x → y) ⊙ x = x ∧ y ≤ y, we have f((x → y) ⊙ x) = f(x →
y)⊙ f(x) ≤ f(y) by (MI3) and (4), so f(x → y) ≤ f(x) → f(y). The other can
be proved similarly.

Proposition 3.4. Let A be a qpMV-algebra and f be an mi-operator on RA.
Then, f can be extended to an mi-operator on A.

Proof. For any x ∈ A, define f̄(x) =

{
f(x), x ∈ R(A),

f(x⊕ 0), x ∈ A \R(A).
Then, f̄ is

an mi-operator on A. Indeed, f̄(1) = f(1) = 1, so the condition (MI1) is true.
Now, we check the conditions (MI2)-(MI4).

(MI2) If x ∈ R(A), then f̄(x) = f(x) ≤ x. If x /∈ R(A), then f̄(x) =
f(x⊕ 0) ≤ x⊕ 0 ≤ x.

(MI3) If x, y ∈ R(A), then f̄(x⊙ y) = f(x⊙ y) = f(x)⊙ f(y) = f̄(x)⊙ f̄(y).
If x ∈ R(A) and y /∈ R(A), then f̄(x ⊙ y) = f(x ⊙ y) = f(x ⊙ (y ⊕ 0)) =
f(x)⊙ f(y ⊕ 0) = f̄(x)⊙ f̄(y). If x /∈ R(A) and y ∈ R(A), the proof is similar
as above. If x, y /∈ R(A), then f̄(x ⊙ y) = f(x ⊙ y) = f((x ⊕ 0) ⊙ (y ⊕ 0)) =
f(x⊕ 0)⊙ f(y ⊕ 0) = f̄(x)⊙ f̄(y).

(MI4) If x ∈ R(A), then f̄(f̄(x)) = f(f(x)) = f(x) = f̄(x). If x /∈ R(A),
then f̄(x) = f(x⊕0) = f(f(x⊕0)) and f̄(f̄(x)) = f̄(f(x⊕0)) = f(f(x⊕0)⊕0) =
f(f(x⊕ 0)), so f̄(f̄(x)) = f̄(x).
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In [14], authors showed that for a complete MV-algebra, every topological
closure operator on the Boolean algebra of additively idempotent elements can
be extended to a closure operator on the whole MV-algebra. Since the set of
additively idempotent elements in a pseudo-MV algebra is also a Boolean algebra
[9], we can extend the result to a complete pseudo-MV algebra. Suppose that
M = ⟨M ;⊕,− ,∼ , 0, 1⟩ is a pseudo-MV algebra and denote B(M) = the set
of additive idempotent elements in M . Then, B(M) = ⟨B(M);∨,∧, 0, 1⟩ is a
Boolean algebra, where x ∨ y = x⊕ (y− ⊕ x)∼ and x ∧ y = (x− ∨ y−)∼, for any
x, y ∈ B(M).

Lemma 3.1. Let M be a interior complete pseudo-MV algebra and f be a
topological interior operator on B(M). Then, there is an mi-operator on M
such that its restriction on B(M) is equal to f .

Proposition 3.5. Let A be a qpMV-algebra and RA be its interior complete
pseudo-subalgebra of A. If f is a topological interior operator on the Boolean
algebra B(RA), then there is an mi-operator on A such that its restriction on
B(R(A)) is equal to f .

Proof. Follows from Proposition 3.4 and Lemma 3.1.

Proposition 3.6. Let A be a qpMV-algebra and f1, f2 be mi-operators on A.
Then, f1 ≤ f2 iff f1f2|R(A) = f1|R(A).

Proof. Suppose that f1 ≤ f2. Then, for any x ∈ A, we have f1(x) ≤ f2(x).
By (MI4) and Proposition 3.3(4), f1(x) = f1(f1(x)) ≤ f1(f2(x)) = (f1f2)(x).
Meanwhile, since f2(x) ≤ x, it follows that (f1f2)(x) = f1(f2(x)) ≤ f1(x) using
Proposition 3.3(4) again. Thus, f1(x)⊕ 0 = f1f2(x)⊕ 0. By Proposition 2.1(1),
if x ∈ R(A), then (f1f2)(x) = f1(x), i.e., f1f2|R(A) = f1|R(A). Conversely,
if f1f2|R(A) = f1|R(A), then, for any x ∈ A, we have f1(x) ≤ f1(x ⊕ 0) =
(f1f2)(x⊕ 0) ≤ f2(x⊕ 0) ≤ f2(x), so f1 ≤ f2.

Following the proof of Proposition 3.6, we can get the result.

Proposition 3.7. Let A be a qpMV-algebra and f1, f2 be isotone mappings on
A. If f1 and f2 restricted on RA are mi-operators, then f1 ≤ f2 iff f1f2|R(A) =
f1|R(A).

Proposition 3.8. Let A be a qpMV-algebra and f1, f2 be isotone mappings on
A. If f1 and f2 restricted on RA are mi-operators, then the following conditions
are equivalent:

(1) f1f2|R(A) = f2f1|R(A);
(2) f1f2|R(A) and f2f1|R(A) are mi-operators;
(3) f1f2f1f2|R(A) = f1f2|R(A) and f2f1f2f1|R(A) = f2f1|R(A).

Proof. (1)⇒(2) For any x ∈ R(A), we have (f1f2)(1) = 1 and (f1f2)(x) ≤
f2(x) ≤ x. Moreover, (f1f2)(x⊙ y) = f1(f2(x)⊙ f2(y)) = (f1f2)(x)⊙ (f1f2)(y)
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and (f1f2)((f1f2)(x)) = (f1f2f1f2)(x)) = (f1f1)(f2f2)(x) = (f1f2)(x). Hence,
f1f2|R(A) is an mi-operator. The case of f2f1|R(A) can be proved similarly.

(2)⇒(3) Since f1f2 ≤ f1f2 and f2f1 ≤ f2f1, we have the result by Proposi-
tion 3.7.

(3)⇒(1) On the one hand, for any x∈R(A), we have (f1f2)(x)=(f1f2f1f2)(x)
≤ (f2f1f2)(x) ≤ (f2f1)(x). On the other hand, for any x ∈ R(A), we have
(f2f1)(x) = (f2f1f2f1)(x) ≤ (f1f2f1)(x) ≤ (f1f2)(x). Hence, we get f1f2|R(A) =
f2f1|R(A).

Let A be a qpMV-algebra and f be any mi-operator on A. We denote the
set of all open elements of A by Of (A) = {x ∈ A|f(x) = x}.

Theorem 3.1. Let A be a qpMV-algebra and f1, f2 be mi-operators on A. If
Of1(A) = Of2(A), then f1|R(A) = f2|R(A).

Proof. For any x ∈ A, since f1(f1(x)) = f1(x), we have f1(x) ∈ Of1(A) =
Of2(A), it follows that f2(f1(x)) = f1(x). Similarly, we have f1(f2(x)) = f2(x).
Since f1(x) ≤ x, we get f2(f1(x)) ≤ f2(x), it turns out that f1(x) ≤ f2(x).
Meanwhile, since f2(x) ≤ x, we get f1(f2(x)) ≤ f1(x), it turns out that f2(x) ≤
f1(x). Hence, f1(x)⊕ 0 = f2(x)⊕ 0 which means that f1(x⊕ 0) = f2(x⊕ 0) and
then we get f1|R(A) = f2|R(A).

4. Hedges in quasi-pseudo-MV algebras

In this section, we introduce the notion of hedge in a qpMV-algebra and show
some basic properties of it. We also investigate some properties of (weak) fil-
ters in qpMV-algebras with hedges and discuss the relationship between normal
filters and filter congruences on qpMV-algebras with hedges.

Definition 4.1. Let A be a qpMV-algebra and h : A → A be a mapping. Then,
h is called a weak hedge in A, if the following conditions are satisfied, for any
x, y ∈ A,

(H1) h(1) = 1;
(H2) h(x) ≤ x;
(H3) h(x → y) ≤ h(x) → h(y) and h(x⇝ y) ≤ h(x)⇝ h(y).
If a weak hedge h satisfies (H4) h(h(x)) = h(x), then it is called a hedge

in A. The pair (A, h) is called a qpMV-algebra with hedge. Moreover, if a
hedge h keeps regular elements, then it is called a strong hedge in A and the
pair (A, h) is called a qpMV-algebra with strong hedge.

Example 4.1. Let F be a flat qpMV-algebra and h : F → F be a mapping
satisfying h(1) = 1 and h(x) ≤ x, for any x ∈ F . Then, h is a weak hedge in F.
In fact, since 1 = 0 and x⊕ y = x⊕ y⊕ 0 = x⊕ y⊕ 1 = 1, we have that x → y,
x⇝ y, h(x) → h(y) and h(x)⇝ h(y) are equal to 1. Hence, the condition (H3)
is satisfied. Moreover, if the condition (H4) is also satisfied, then it is a hedge
in F and also a strong hedge in F.
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Example 4.2. Let A be a qpMV-algebra. It is easy to see that the identity
mapping IdA is a hedge in A. That is to say that any qpMV-algebra can be
regarded as a qpMV-algebra with hedge.

Example 4.3. Let A be a qpMV-algebra and satisfy x ≤ y or y ≤ x, for any
x, y ∈ A. We define a mapping h : A → A by h(1) = 1 and h(x) = 0, for any
x < 1. Then, h is a hedge in A.

Example 4.4. Let A be a qpMV-algebra in which the operations are defined

as follows:

⊕ 0 a b 1
0 0 b b 1
a b 1 1 1
b b 1 1 1
1 1 1 1 1

and

′

0 1
a a
b b
1 0

. In fact, it is a quasi-MV algebra

[11]. Define h(1) = 1, h(0) = 0, h(a) = h(b) = a. Then, h is a hedge in A.

Example 4.5. Let (M, h1) be a pseudo-MV algebra with hedge and (F, h2) be
a flat qpMV-algebra with hedge. Then, M×F is a qpMV-algebra. If we define
h(⟨x, y⟩) = (h1(x), h2(y)), for any ⟨x, y⟩ ∈ M × F , then h is a hedge in M× F.

Remark 4.1. Following from Proposition 3.3, it is immediate to see that any
mi-operator on a qpMV-algebra is a hedge. However, the converse is not true in
general. In Example 4.4, we calculate h(b⊙ 1) = h(b⊕ 0) = a and h(b)⊙h(1) =
a ⊙ 1 = a ⊕ 0 = b, which imply that h(b ⊙ 1) ̸= h(b) ⊙ h(1), so h is not an
mi-operator on A.

Proposition 4.1. Let A be a qpMV-algebra and h be a weak hedge in A. Then,
for any x, y ∈ A,

(1) h(0)⊕ 0 = 0;
(2) If h(x) = 1, then x⊕ 0 = 1;
(3) If x ≤ y, then h(x) ≤ h(y);
(4) If h(x) ≤ h(y), then h(x) ≤ y;
(5) h(x−) ≤ (h(x))− and h(x∼) ≤ (h(x))∼;
(6) h(x)⊙ h(y) ≤ h(x⊙ y);
(7) h(x⊕ 0)⊕ 0 = h(x)⊕ 0.
If h is a hedge in A, then
(8) h(x) ≤ h(y) iff h(x) ≤ y;
(9) Im(h) = Fixh(A) = {x ∈ A|h(x) = x};
(10) If h is surjective, then h = IdA.

Proof. (1) By (H2), we have h(0) ≤ 0. And 0 ≤ h(0), it turns out that
h(0)⊕ 0 = 0.

(2) Since 1 = h(x) ≤ x and x ≤ 1, we have x⊕ 0 = 1.
(3) Since x ≤ y, we have x → y = 1. By (H1) and (H3), we get 1 = h(1) =

h(x → y) ≤ h(x) → h(y). Note that, h(x) → h(y) is a regular element and
h(x) → h(y) ≤ 1, we have h(x) → h(y) = 1, so h(x) ≤ h(y).
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(4) Since h(x) ≤ h(y) and h(y) ≤ y by (H2), we have h(x) ≤ y.

(5) Since x− ≤ (1 → x)− = (1 → x) → 0, we have h(x−) ≤ h((1 → x) →
0) ≤ h(1 → x) → h(0) ≤ h(x) → h(0) = h(x) → (h(0) ⊕ 0) = h(x) → 0 ≤
(h(x))− using (H3) and (1). The other can be proved similarly.

(6) Since x⊙ y ≤ x⊙ y, we have x ≤ y → (x⊙ y), it turns out that h(x) ≤
h(y → (x⊙ y)) ≤ h(y) → h(x⊙ y) by (3) and (H3), so h(x)⊙ h(y) ≤ h(x⊙ y).

(7) Since x ≤ x⊕0 and x⊕0 ≤ x, we have h(x) ≤ h(x⊕0) and h(x⊕0) ≤ h(x)
by (3), so h(x)⊕ 0 = h(x⊕ 0)⊕ 0.

(8) If h(x) ≤ y, then h(x) = h(h(x)) ≤ h(y) by (3). The converse follows
from (4).

(9) For any x ∈ Im(h), then there exists a ∈ A such that x = h(a), it
follows that h(x) = h(h(a)) = h(a) = x, so x ∈ Fixh(A). Conversely, for any
x ∈ Fixh(A), then h(x) = x, we have x ∈ Im(h).

(10) If h is surjective, then Im(h) = A = Fixh(A) by (9), it follows that
h(x) = x = IdA(x), for any x ∈ A, so h = IdA.

Proposition 4.2. Let A be a qpMV-algebra and h be a hedge in RA. Then, h
can be extended to a hedge in A.

Proof. For any x ∈ A, define h̄(x) =

{
h(x), x ∈ R(A);
h(x⊕ 0), x ∈ A \R(A).

Then, h̄ is

a hedge in A. Indeed, h̄(1) = h(1) = 1, so the condition (H1) is true. Now, we
check the conditions (H2)-(H4).

(H2) For any x ∈ A, if x ∈ R(A), then h̄(x) = h(x) ≤ x. If x /∈ R(A), then
h̄(x) = h(x⊕ 0) ≤ x⊕ 0 ≤ x. Hence, h̄(x) ≤ x.

(H3) We only prove the first one. The other can be proved similarly. If
x, y ∈ R(A), then h̄(x → y) = h(x → y) ≤ h(x) → h(y) = h̄(x) → h̄(y). If
x ∈ R(A) and y /∈ R(A), then h̄(x → y) = h(x → y) = h(x → (y ⊕ 0)) ≤
h(x) → h(y⊕ 0) = h̄(x) → h̄(y). If x /∈ R(A) and y ∈ R(A), the proof is similar
as above. If x, y /∈ R(A), then h̄(x → y) = h(x → y) = h((x⊕ 0) → (y ⊕ 0)) ≤
h(x⊕ 0) → h(y ⊕ 0) = h̄(x) → h̄(y).

(H4) If x ∈ R(A), then h̄(h̄(x)) = h(h(x)) = h(x) = h̄(x). If x /∈ R(A), then
h̄(x) = h(x ⊕ 0) = h(h(x ⊕ 0)) and h̄h̄(x) = h̄(h(x ⊕ 0)) = h(h(x ⊕ 0) ⊕ 0) =
h(h(x⊕ 0)), so h̄(h̄(x)) = h̄(x).

Definition 4.2. Let (A, h) be a qpMV-algebra with hedge and F be a (weak)
filter of A. Then, F is called an (weak) h-filter of (A, h), if h(F ) ⊆ F . In
addition, if F is a (weak) h-filter of (A, h) and satisfies x → y ∈ F iff x⇝ y ∈
F , for any x, y ∈ A, then it is called a normal (weak) h-filter of (A, h).

Definition 4.3. Let (A, h) be a qpMV-algebra with hedge and θ be a congru-
ence on A. Then, θ is called a congruence on (A, h), if ⟨x, y⟩ ∈ θ implies
⟨h(x), h(y)⟩ ∈ θ, for any x, y ∈ A. In addition, if θ is a congruence on (A, h)
and ⟨x⊙ 1, y ⊙ 1⟩ ∈ θ can imply ⟨x, y⟩ ∈ θ, for any x, y ∈ A, then it is called a
filter congruence on (A, h).
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Theorem 4.1. Let (A, h) be a qpMV-algebra with hedge. Then, there exists a
bijection between normal h-filters and filter congruences on (A, h).

Proof. Let F be a normal h-filter of (A, h). Then, θF = {⟨x, y⟩ ∈ A2|x → y ∈
F and y → x ∈ F} is a filter congruence on A by Proposition 2.2. Moreover,
since F is a h-filter of (A, h), we have h(x → y) ∈ F and h(y → x) ∈ F .
By (H3), we have h(x → y) ≤ h(x) → h(y) and h(y → x) ≤ h(y) → h(x),
it follows that h(x) → h(y) ∈ F and h(y) → h(x) ∈ F , so ⟨h(x), h(y)⟩ ∈ θF .
Conversely, let θ be a filter congruence on (A, h). Then, Fθ = {x ∈ A|⟨x, 1⟩ ∈ θ}
is a normal filter of A using Proposition 2.2 again. Moreover, for any x ∈ Fθ,
we have ⟨h(x), 1⟩ = ⟨h(x), h(1)⟩ ∈ θ, so h(x) ∈ Fθ. The left is obtained by
Proposition 2.2.

Let (A, h) be a qpMV-algebra with hedge and F be a normal h-filter of
(A, h). Then, A/F = {x/F |x ∈ A} where x/F = {y ∈ A|x → y ∈ F and y →
x ∈ F} is a quotient set with respect to F . We define some operations as
follows: (x/F ) ⊕ (y/F ) = (x ⊕ y)/F , (x/F )− = x−/F and (x/F )∼ = x∼/F .
Then, A/F = ⟨A/F ;⊕,− ,∼ , 0/F, 1/F ⟩ is a pseudo-MV algebra by [6].

Theorem 4.2. Let (A, h) be a qpMV-algebra with hedge and F be a normal
h-filter of (A, h). Define h̄ : A/F → A/F by h̄(x/F ) = h(x)/F , for any x ∈ A.
Then, (A/F, h̄) is a pseudo-MV algebra with hedge.

Proof. It is easy to see that h̄ is well-defined. Now, we check that the condi-
tions (H1-H4) are satisfied. Obviously, h̄(1/F ) = h(1)/F = 1/F and h̄(x/F ) =
h(x)/F ≤ x/F . For any x/F, y/F ∈ A/F , we have h̄(x/F → y/F ) = h̄((x →
y)/F ) = h(x → y)/F ≤ (h(x) → h(y))/F = h(x)/F → h(y)/F = h̄(x/F ) →
h̄(y/F ). Similarly, we have h̄(x ⇝ y) ≤ h̄(x) ⇝ h̄(y). Finally, we have
h̄(h̄(x/F )) = h(h(x))/F = h(x)/F = h̄(x/F ).

Proposition 4.3. Let (A, h) be a qpMV-algebra with strong hedge. Then, ker(h)
is a weak h-filter of (A, h).

Proof. Obviously, 1 ∈ ker(h). For any x, y ∈ ker(h), then h(x) = h(y) = 1, we
have h(x⊙y) ≥ h(x)⊙h(y) = 1⊙1 = 1, so h(x⊙y) = 1 and then x⊙y ∈ ker(h).
Let x ∈ ker(h) and y ∈ A. Then, 1 = h(x) ≤ h(x ⊕ y), we have h(x ⊕ y) = 1,
so x ⊕ y ∈ ker(h). Similarly, we have y ⊕ x ∈ ker(h). Hence, ker(h) is a weak
filter of (A, h). Moreover, for any x ∈ ker(h), we have h(h(x)) = h(1) = 1, so
h(x) ∈ ker(h). Hence, ker(h) is a weak h-filter of (A, h).

Since any mi-operator is a strong hedge in a qpMV-algebra, we have the
following result.

Corollary 4.1. Let (A, f) be an interior qpMV-algebra. Then, ker(f) is a weak
f -filter of (A, f).



630 ZHAOYING CHEN and WENJUAN CHEN

Definition 4.4. Let (A, h1) and (B, h2) be qpMV-algebras with hedges and
φ : A → B be a mapping. Then, φ is called a qpMV-algebra with hedge
homomorphism, if it satisfies the following conditions, for any x, y ∈ A,

(HH1) φ(1) = 1;

(HH2) φ(x⊕ y) = φ(x)⊕ φ(y);

(HH3) φ(x−) = (φ(x))−;

(HH4) φ(x∼) = (φ(x))∼;

(HH5) φ(h1(x)) = h2(φ(x)).

Proposition 4.4. Let (A, h1) and (B, h2) be qpMV-algebras with hedges and φ
be a homomorphism from (A, h1) to (B, h2). Then, the following conditions are
equivalent:

(1) φ(x⊕ y) = φ(x)⊕ φ(y);

(2) φ(x ∨ y) = φ(x) ∨ φ(y);

(3) φ(x ∧ y) = φ(x) ∧ φ(y);

(4) φ(x⊙ y) = φ(x)⊙ φ(y);

(5) φ(x → y) = φ(x) → φ(y);

(6) φ(x⇝ y) = φ(x)⇝ φ(y).

Proof. (1) ⇒ (2) We have φ(x∨y) = φ(y⊕(x−⊕y)∼) = φ(y)⊕φ((x−⊕y)∼) =
φ(y)⊕ (φ(x− ⊕ y))∼ = φ(y)⊕ (φ(x)− ⊕ φ(y))∼ = φ(x) ∨ φ(y).

(2) ⇒ (3) We have φ(x ∧ y) = φ((x− ∨ y−)∼) = (φ(x− ∨ y−))∼ = (φ(x)− ∨
φ(y)−)∼ = φ(x) ∧ φ(y).

(3) ⇒ (1) Since x⊕y = x⊕ (y∧x∼), we have φ(x⊕y) = φ(x)⊕φ(y∧x∼) =
φ(x)⊕ (φ(y) ∧ φ(x)∼) = (φ(x)⊕ φ(y)) ∧ (φ(x)⊕ φ(x)∼) = φ(x)⊕ φ(y).

(1) ⇔ (4) Since x ⊙ y = (x− ⊕ y−)∼ and x ⊕ y = (x− ⊙ y−)∼, we get the
result.

(1) ⇔ (5) Since x → y = x− ⊕ y and x⊕ y = x∼ → y, we get the result.

(1) ⇔ (6) Analogously.

Recall that a h-subalgebra (S, h) of a qpMV-algebra with hedge (A, h), if S
is a subalgebra of A and h(S) ⊆ S.

Theorem 4.3. Let (A, h1) and (B, h2) be qpMV-algebras with hedges and φ be
a homomorphism from (A, h1) to (B, h2). Then,

(1) If (S, h1) is a h1-subalgebra of (A, h1), then (φ(S), h2) is a h2-subalgebra
of (B, h2);

(2) If φ is surjective and F is a weak h1-filter of (A, h1), then φ(F ) is a
weak h2-filter of (B, h2);

(3) If F is a (weak) h2-filter of (B, h2), then φ−1(F ) is a (weak) h1-filter of
(A, h1);

(4) ker(φ) = {x ∈ A|φ(x) = 1} is a normal weak h1-filter of (A, h1).

Proof. (1) It is easy to show that φ(S) is a subalgebra of B. Moreover, for any
φ(x) ∈ φ(S) where x ∈ S, we have h2(φ(x)) = φ(h1(x)) ∈ φ(S).
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(2) Since 1 ∈ F , we have 1 = φ(1) ∈ φ(F ). Let x, y ∈ φ(F ). Then,
there exist m,n ∈ F such that φ(m) = x and φ(n) = y, it turns out that
x ⊙ y = φ(m) ⊙ φ(n) = φ(m ⊙ n) ∈ φ(F ). Now, let x ∈ φ(F ) and y ∈ B.
Because φ is surjective, there exist m ∈ F and n ∈ A such that x = φ(m)
and y = φ(n). We have x ⊕ y = φ(m) ⊕ φ(n) = φ(m ⊕ n) ∈ φ(F ). Similarly,
y ⊕ x = φ(n ⊕ m) ∈ φ(F ). Hence, φ(F ) is a weak filter of (B, h2). For any
φ(x) ∈ φ(F ) where x ∈ F , we have h2(φ(x)) = φ(h1(x)) ∈ φ(F ), so φ(F ) is a
weak h2-filter of (B, h2).

(3) We only prove the case of filters. The case of weak filters can be proved
similarly. Obviously, φ(1) = 1 ∈ F , so 1 ∈ φ−1(F ). For any x, y ∈ φ−1(F ),
then there exist a, b ∈ F such that φ(x) = a and φ(y) = b, it follows that
φ(x ⊙ y) = φ(x) ⊙ φ(y) = a ⊙ b ∈ F , so x ⊙ y ∈ φ−1(F ). Let x ∈ φ−1(F )
and y ∈ A with x ≤ y. Then, there exists a ∈ F such that φ(x) = a and
a = φ(x) ≤ φ(y). Because a ∈ F , we have φ(y) ∈ F , so y ∈ φ−1(F ). For any
x ∈ φ−1(F ), there exists a ∈ F such that φ(x) = a, then we have φ(h1(x)) =
h2(φ(x)) = h2(a) ∈ F , so h1(x) ∈ φ−1(F ). Hence, φ−1(F ) is a h1-filter of
(A, h1).

(4) Obviously, 1 ∈ ker(φ). For any x, y ∈ ker(φ), we have φ(x ⊙ y) =
φ(x) ⊙ φ(y) = 1 ⊙ 1 = 1, so x ⊙ y ∈ ker(φ). Let x ∈ ker(φ) and y ∈ A. Then,
φ(x⊕y) = φ(x)⊕φ(y) = 1⊕φ(y) = 1 and φ(y⊕x) = φ(y)⊕φ(x) = φ(y)⊕1 = 1,
it follows that x ⊕ y ∈ ker(φ) and y ⊕ x ∈ ker(φ). For x ∈ ker(φ), we have
φ(h1(x)) = h2(φ(x)) = h2(1) = 1, so h1(x) ∈ ker(φ). Hence, ker(φ) is a weak
h1-filter of (A, h1). Finally, for any x, y ∈ A, we have x → y ∈ ker(φ) iff
φ(x → y) = 1 iff φ(x) → φ(y) = 1 iff φ(x) ≤ φ(y) iff φ(x) ⇝ φ(y) = 1 iff
φ(x⇝ y) = 1 iff x⇝ y ∈ ker(φ). So ker(φ) is normal.

Corollary 4.2. Let (A, h1) and (B, h2) be qpMV-algebras with strong hedges
and φ be a homomorphism from (A, h1) to (B, h2). Then,

(1) φ−1(ker(h2)) is a weak h1-filter of (A, h1);

(2) If φ is surjective, φ(kerh1) is a weak h2-filter of (B, h2).

Let (A, h) be a qpMV-algebra with hedge and F be a normal h-filter of
(A, h). Then, (A/F, h̄) is a pseudo-MV algebra with hedge by Theorem 4.2.
Define π : A → A/F by x 7→ x/F , for any x ∈ A. Then, we have the following
result.

Proposition 4.5. Let (A, h) be a qpMV-algebra with hedge and F be a normal
h-filter of (A, h). Then,

(1) π is a homomorphism from (A, h) to (A/F, h̄) and kerπ = F ;

(2) π−1(ker h̄) ⊆ h−1(F );

(3) π(kerh) ⊆ ker(h̄).

Proof. (1) It is easy to check that π is a homomorphism (A, h) to (A/F, h̄).
For any x ∈ ker(π), then π(x) = x/F = 1/F , it turns out that 1 → x ∈ F . Since
1 → x ≤ x, we have x ∈ F , so ker(π) ⊆ F . For any x ∈ F , then 1 → x ∈ F



632 ZHAOYING CHEN and WENJUAN CHEN

and x → 1 = 1 ∈ F , we have 1 ∈ x/F , so 1/F ⊆ x/F . Conversely, for any
y ∈ x/F , then y → x ∈ F and x → y ∈ F . Because x ∈ F , we have y ∈ F , it
turns out that y → 1 = 1 ∈ F and 1 → y ∈ F , so y ∈ 1/F and x/F ⊆ 1/F .
Thus, 1/F = x/F which means that x ∈ ker(π), we have F ⊆ ker(π). Hence,
ker(π) = F .

(2) For any x ∈ π−1(ker h̄), then π(x) ∈ ker(h̄), so 1/F = h̄(π(x)) =
π(h(x)) = h(x)/F and then 1 → h(x) ∈ F . Since 1 → h(x) ≤ h(x), we
have h(x) ∈ F , so x ∈ h−1(F ). Hence, π−1(ker h̄) ⊆ h−1(F ).

(3) For any x ∈ π(ker(h)), there exists m ∈ ker(h) such that π(m) = x, then
we have h̄(x) = h̄(π(m)) = π(h(m)) = π(1) = 1/F , so x ∈ ker(h̄) and then
π(kerh) ⊆ ker(h̄).
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