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Abstract. In this paper, we prove some properties of oscillation for a class of fractional
damped differential equations using generalized Riccati transformation and inequality
technique, we prove some new oscillatory criteria. Recent results in the literature are
generalized and significant improved. Example is shown to illustrate our main results.
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1. Introduction

Consider the oscillation of the following fractional damped differential equations

(1.1) [r(t)(Dα
−y)

η(t)]′ − p(t)(Dα
−y)

η(t)− q(t)f(

∫ ∞

t
(v − t)−αy(v)dv) = 0,

where α ∈ (0, 1) is a constant, and η > 0 is a quotient of odd positive integers.
The differential operator Dα

−y is the Liouville right-sided fractional derivation
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of order α for y defined by (Dα
−y)(t) = − 1

Γ(1−α) ·
d
dt

∫∞
t (v − t)−αy(v)dv for

t ∈ R+ := (0,+∞). Here Γ is the gamma function Γ(t) =
∫∞
0 vt−1e−vdv for

t ∈ R+. We assume that conditions hold:

(H1) r(t), p(t) and q(t) are positive continuous functions on [t0,∞) for a cer-

tain t0 > 0. The functionf : R → R is a continuous function such that f(u)
uη ≥

G for a certain constant for G > 0 and for all u ̸= 0.

By a solution of (1.1) we mean a nontrivial function y ∈ C(R+, R) such
that

∫∞
t (v − t)−αy(v)dv ∈ C1(R+, R), r(t)(Dα

−y)
η(t) ∈ C1(R+, R) and (1.1)

hold for t > 0. We focus on those solutions of (1.1) which exist on R+ such
that sup{|y(t)| : t > t∗} > 0 for any t∗ ≥ 0. A solution y of (1.1) is said to
be called oscillatory if it is neither eventually positive nor eventually negative.
Otherwise it is nonoscillatory. Equation (1.1) is said to be oscillatory if all its
solutions are oscillatory.

Due to its important applications on many fields, such as viscoelasticity,
electrochemistry, control, porous media, electromagnetic, etc, (see, forexample,
[1− 12]), in last decade, a lot of attentions has been focused on the study of the
stability and properties of solutions for fractional differential equations, see, for
example, [13-21].

In particular, Chen [2] studied oscillatory properties of solutions to the fol-
lowing fractional differential equations

(∗) [r(t)(Dα
−y)

η(t)]′ − q(t)f(

∫ ∞

t
(v − t)−αy(v)dv) = 0,

for t > 0, where Dα
−y denotes the Liouville right-sided fractional derivative of

order α with the form

(Dα
−y)(t) =

1

Γ(1− α)
· d

dt

∫ ∞

t
(v − t)−αy(v)dv,

for t ∈ R+ := (0,∞). By using Riccati transformation technique the authors
obtained some sufficient conditions, which guarantee that every solution of the
equation is oscillatory.

Zhang [18] considered the oscillation of the nonlinear fractional damped frac-
tional differential equations

[a(t)(Dα
−x(t))

γ ]′ + p(t)(Dα
−x(t))

γ − q(t)f(

∫ ∞

t
(ξ − t)−αx(ξ)dξ) = 0, t ∈ [t0,∞),

where Dα
−x(t) denotes the Liouville right-sided fractional derivative of order α

of x. By using a generalized Riccati function and the inequality technique, he
established some new criteria.

Qi and Huang [19] studied the oscillation behavior of the equation:

(a(t)[r(t)Dα
−x(t)]

′)′ + p(t)[r(t)Dα
−x(t)]

′ − q(t)f(

∫ ∞

t
(ξ − t)−αx(ξ)dξ) = 0,



608 YUNHUI ZENG, ZHIHONG WANG and ANNING WANG

where Dα
−x(t) also denotes the Liouville right-sided fractional derivative and

established some sufficient conditions for the oscillation of the equation.
However, as much as we know, very little is known on the oscillation of frac-

tional damped differential equations. Only a few of papers have been published
on the oscillation theory of fractional damped differential equations, such as
[3,4,16-18].

In this paper, we will establish some new oscillation criteria for (1.1), by a
class of new function Φ(t, s, l) and H(t), generalized Riccati transformation and
inequality technique.

2. Preliminaries

In this section,we present the definitions of fractional integrals, fractional deriva-
tives and function Φ, which are used throughout this article. We also, give
several lemmas, which are useful in establishing our results.

Definition 2.1 (KiLbas et al. [7]). The Liouville right-sided fractional integral
of order β > 0 of a function g : R+ → R on the half-axis R+ is given by

(2.1) (Iβ−g)(t) :=
1

Γ(β)

∫ ∞

t
(v − t)β−1g(v)dv,

for t > 0, provided the right-hand side is pontwise defined on R+, where Γ is
the gamma function.

Definition 2.2 (Kilbas et al. [7]). The Liouville right-sided fractional derivative
of order β > 0 of a function g : R+ → R on the half-axis R+ is given by

(Dβ
−g)(t) = (−1)[β]

d[β]

dt[β]
(I

[β]−β
− g)(t)

= (−1)[β]
1

Γ([β]− β)
· d[β]

dt[β]

∫ ∞

t
(v − t)[β]−β−1g(v)dv,(2.2)

for t > 0, provided the right-hand side is pointwise defined on R+,where[β] :=
min{z ∈ Z : z ≥ β} is the ceilling function.

Definition 2.3 (Sun et al. [15]). We say that a function Φ = Φ(t, s, l) belongs
to the function class Y , denoted by Φ ∈ Y , if Φ ∈ (E,R), where E = {(t, s, l) :
t0 ≤ l ≤ s ≤ t < ∞},which satisfies Φ(t, t, l) = 0,Φ(t, l, l) = 0,Φ(t, s, l) ̸=
0 for l < s < t, and has the partial derivative ∂Φ

∂s on E such that ∂Φ
∂s is locally

integrable with respect to s in E.

Definition 2.4 (Sun et al. [15]). Let Φ ∈ Y, g ∈ C1([t0,+∞), R), the operator
T [∗; l, t] is defined by

(2.3) T [g; l, t] =

∫ t

l
Φ2(t, s, l)g(s)ds,
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for t ≥ s ≥ l ≥ t0 and g(s) ∈ C[t0,∞),and the function φ = φ(t, s, l) is defined
by

(2.4)
∂Φ(t, s, l)

∂s
= φ(t, s, l)Φ(t, s, l).

It is easy to verify that T [∗; l, t] is a linear operator and satisfies

(2.5) T [g′; l, t] = −2T [gφ; l, t].

Lemma 2.1. Let y be a solution of (1.1) and

(2.6) A(t) :=

∫ ∞

t
(v − t)−αy(v)dv,B(t) = e

∫∞
t

p(s)
r(s)

ds
,

for α ∈ (0, 1) and t > 0, then

(2.7) [A(t)B(t)]′ = −Γ(1− α)(Dα
−y)(t)B(t)− p(t)

r(t)
A(t)B(t),

for α ∈ (0, 1) and t > 0.

Proof. From(2.6) and(2.2), for α ∈ (0, 1) and t > 0, we obtain

[A(t)B(t)]′ = A′(t)B(t) +A(t)B′(t)

= Γ(1− α) · 1

Γ(1− α)

d

dt

∫ ∞

t
(v − t)−αy(v)dv.B(t)

−
∫ ∞

t
(v − t)−αy(v)dv · p(t)

r(t)
.B(t)

= −Γ(1− α)[(−1)[α]
1

Γ([α]− α)
· d[α]

dt[α]

∫ ∞

t
(v − t)[α]−α−1y(v)dv]B(t)

− p(t)

r(t)
A(t)B(t)

= −Γ(1− α)(Dα
−y)(t)B(t)− p(t)

r(t)
A(t)B(t).

The proof is complete.

Lemma 2.2 (Hardy et al. [15]). If X and Y are nonnegative, then

mXY m−1 −Xm ≤ (m− 1)Y m,

for m > 1, where the equality holds if and only if X = Y .
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3. Main result

Theorem 3.1. Suppose that (H1) and

(3.1)

∫ ∞

t0

r
− 1

η (s)B
1− 1

η (s)ds = ∞

hold. Furthermore, assume that there exists a positive function b(t) ∈ C1[t0,∞)
such that

(3.2) lim
t→∞

sup

∫ t

t0

[Gb(s)q(s)B(s)−
r(s)B(s)[b

′
+(s)]

η+1

(η + 1)(η+1)[Γ(1− α)b(s)]η
]ds = ∞,

where b
′
+(s) = max{b′(s), 0}, then every solution of (1.1) is oscillatory.

Proof. Suppose that y is a non-oscillatory solution of (1.1). Without loss of
generality, we may assume that y(t) is an eventually positive solution of(1.1).
Then, there exists t1 ∈ [t0,∞) such that

(3.3) y(t) > 0 and A(t)B(t) > 0,

for t ∈ [t1,∞), where A(t), B(t) is defined as in (2.6). Therefore, it follows from
(1.1) that

[r(t)(Dα
−y)

η(t)B(t)]′ = [r(t)(Dα
−y)

η(t)]′B(t)− p(t)(Dα
−y)

η(t)B(t)

= q(t)f(A(t))B(t) > 0,(3.4)

for t ∈ [t1,∞).
Thus, r(t)(Dα

−y)
η(t)B(t) is strictly increasing on [t1,∞) and is eventually

of one sign. Since r(t) > 0, B(t) > 0 for t ∈ [t1,∞) and η > 0 is a quotient of
odd positive integers,we see that (Dα

−y)(t) is eventually of one sign. We now
claim

(Dα
−y)(t) < 0,

for t ∈ [t1,∞).
If not, then (Dα

−y)(t) is eventually positive and there exists t2 ∈ [t1,∞) such
that (Dα

−y)(t2) > 0. Since r(t)(Dα
−y)

η(t)B(t) is strictly increasing on [t1,∞), it
is clear that

r(t)(Dα
−y)

η(t)B(t) ≥ r(t2)(D
α
−y)

η(t2)B(t2) := a1 > 0,

for t ∈ [t2,∞). Therefore, from (2.4), we have

− [A(t)B(t)]′

Γ(1− α)B(t)
= −

−Γ(1− α)(Dα
−y)(t)B(t)− p(t)

r(t)A(t)B(t)

Γ(1− α)B(t)

= (Dα
−y)(t) +

A(t)p(t)

Γ(1− α)r(t)

≥ (Dα
−y)(t) ≥ (

a1
r(t)B(t)

)
1
η = a

1
η

1 r
− 1

η (t)B
− 1

η (t),
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and, then, we have

− [A(t)B(t)]′

Γ(1− α)
≥ a

1
η

1 r
− 1

η (t)B
1− 1

η (t),

for t ∈ [t2,∞).
Integrating both sides of the last inequality from t2 to t, we have∫ t

t2

r
− 1

η (s)B
1− 1

η (s)ds ≤ −A(t)B(t)−A(t2)B(t2)

a
1
η

1 Γ(1− α)

≤ A(t2)B(t2)

a
1
η

1 Γ(1− α)

< ∞,

for t ∈ [t2,∞).
Letting t → ∞, we see∫ ∞

t2

r
− 1

η (s)B
1− 1

η (s)ds ≤ A(t2)B(t2)

a
1
η

1 Γ(1− α)

< ∞.

This contradicts (3.1). Hence, (3.5) holds. Define the function w(t) by the
generalized Riccati substitution

(3.6) w(t) = b(t) ·
−r(t)(Dα

−y)
η(t)B(t)

(A(t))η
,

for t ∈ [t1,∞).
Then, we have w(t) > 0 for t ∈ [t1,∞). From (3.6),(1.1),(3.4) and (H1), it

follows that

w′(t) = b′(t) ·
−r(t)(Dα

−y)
η(t)B(t)

(A(t))η
+ b(t)[

−r(t)(Dα
−y)

η(t)B(t)

(A(t))η
]′

≤b
′
+(t) ·

−r(t)(Dα
−y)

η(t)B(t)

(A(t))η

+ b(t) ·

[−r(t)(Dα
−y)

η(t)B(t)]′(A(t))η

+ r(t)(Dα
−y)

η(t)B(t)η(A(t))η−1(−Γ(1− α)(Dα
−y)(t))

(A(t))2η

=
b
′
+(t)

b(t)
w(t) + b(t)[

−q(t)f(A(t))B(t)

(A(t))η

+ r(t)(Dα
−y)

η(t) ·
ηB(t)[−Γ(1− α)(Dα

−y)(t)]

(A(t))η+1

≤
b
′
+(t)

b(t)
w(t)−Gq(t)b(t)B(t)− ηΓ(1− α)b(t)r(t)B(t)[

w(t)

b(t)r(t)B(t)
]
1+ 1

η

= −Gq(t)b(t)B(t) +
b
′
+(t)

b(t)
w(t)− ηΓ(1− α)[b(t)r(t)B(t)]

− 1
ηw

1+ 1
η (t),(3.7)

for t ≥ t1, where b
′
+(t) is defined as in Theorem 3.1.
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Taking

m = 1 +
1

η
, X =

[ηΓ(1− α)]
1
mw(t)

[b(t)r(t)B(t)]
1

η+1

and

Y =
[
b
′
+(t)

b(t) ]
η[b(t)r(t)B(t)]

1
m

mη[ηΓ(1− α)]
η
m

,

from (3.7) and Lemma 2.2, we conclude that

w′(t) ≤ −Gq(t)b(t)B(t) +
r(t)B(t)[b

′
+]

η+1

(η + 1)η+1[Γ(1− α)b(t)]
,

for t ∈ [t1,∞).

Integrating both sides of the last inequality from t1 to t, we have∫ t

t1

[Gb(s)q(s)B(s)−
r(s)B(s)[b

′
+(s)]

η+1

(η + 1)(η+1)[Γ(1− α)b(s)]η
]ds ≤ w(t1)− w(t) < w(t1),

for t ∈ [t1,∞).

Letting

lim
t→∞

sup

∫ t

t1

[Gb(s)q(s)B(s)−
r(s)B(s)[b

′
+(s)]

η+1

(η + 1)(η+1)[Γ(1− α)b(s)]η
]ds < w(t1) < ∞,

which contradicts (3.2). The proof is complete.

Remark 3.1. Theorem 3.1 in [2] is a special case of Theorem 3.1 with p(t) = 0,
respectively. Theorem 3.1 improves and extend the results of Theorem 3.1.

Theorem 3.2. Suppose that (H1) and (3.1) hold. Let T0 ≥ t0,then there
exist a and b such that b > a > T0. Let

D(a, b) = {U(t) ∈ C1[a, b] : U(t) ̸= 0, t ∈ (a, b), U(a) = U(b) = 0}.

If there exist a function H(t) ∈ D(a, b) such that the following condition that
holds:

(3.8)

∫ b

a
Gb(s)q(s)B(s)ds >

∫ b

a

[Hη(s)(H ′(s) +
b
′
+(s)

(η+1)b(s))]
η+1b(s)r(s)B(s)

[Γ(1− α)Hη+1(s)]η
ds.

Then equation (1.1) is oscillatory.

Proof. Suppose that y(t) is a non-oscillatory solution of (1.1), Without loss of
generality, we may suppose that y(t) is an eventually positive solution of (1.1).
We proceed as in proof of Theorem 3.1 to get that (3.7) holds.
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Multiplying both sides of (3.7) by Hη+1(t) and integrating from a to b, by
H(a) = H(b) = 0, we obtain

∫ b

a
Hη+1(s)w′(s)ds ≤ −

∫ b

a
Gb(s)r(s)B(s)Hη+1(s)ds

+

∫ b

a

b
′
+(s)H

η+1(s)w(s)

b(s)
ds

−
∫ b

a
ηΓ(1− α)Hη+1(s)[b(s)r(s)B(s)]

− 1
ηw

1+ 1
η (s)ds(3.9)

and then we get

∫ b

a
Gb(s)r(s)B(s)Hη+1(s)ds ≤

∫ b

a
(η + 1)Hη(s)H ′(s)w(s)ds

+

∫ b

a

b
′
+(s)H

η+1(s)w(s)

b(s)
ds

−
∫ b

a
ηΓ(1− α)Hη+1(s)[b(s)r(s)B(s)]

− 1
ηw

1+ 1
η (s)ds

=

∫ b

a
[(η + 1)Hη(s)w(s)(H ′(s) +

b
′
+(s)H(s)

(η + 1)b(s)
)

− ηΓ(1− α)Hη+1(s)[b(s)r(s)B(s)]
− 1

ηw
1+ 1

η (s)]ds.(3.10)

Taking

m = 1 +
1

η
, X =

[ηΓ(1− α)Hη+1(s)]
1
mw(s)

[b(s)r(s)B(s)]
1

η+1

and

Y =
[(η + 1)Hη(s)(H ′(s) +

b
′
+(s)H(s)

(η+1)b(s) )]
η[b(s)r(s)B(s)]

1
m

mη[ηΓ(1− α)Hη+1(s)]
η
m

,

by (3.10) and Lemma2.2, we conclude that

(3.11)

∫ b

a
Gb(s)q(s)B(s)ds≤

∫ b

a

[Hη(s)(H ′(s)+
b
′
+(s)H(s)

(η+1)b(s) )]
η+1b(s)r(s)B(s)

[Γ(1−α)Hη+1(s)]η
ds,

which contradicts the condition (3.8). The proof is complete.

Remark 3.2. Theorem 3.2 is new because we introduce a new class of functions
H(t).
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Theorem 3.3. Suppose that (H1) and (3.1) hold. There exist a function Φ ∈
Y . Such that

lim
t→∞

sup

∫
−lt[Gq(s)b(s)B(s)

−
1
η [2φ+

b
′
+(s)

b(s) ]
η+1b(s)r(s)B(s)

(1+η
η )η+1[ηΓ(1− α)]η

]Φ2(t, s, l)ds > 0(3.12)

for each l ≥ T0 ≥ t0, where operator T defined by (2.3) and the function
φ = φ(t, s, l) is defined by (2.4). Then every solution y of (1.1) is oscillatory.

Proof. Suppose that y is a non-oscillatory solution of (1.1). Without loss of
generality,we can assume thatyis an eventually positive solution of (1.1). Simi-
larly in the proof of Theorem 3.1 to get (3.7) hold, and then we have

(3.13) Gq(t)b(t)B(t) ≤ −w′(t)+
b
′
+(t)

b(t)
w(t)−ηΓ(1−α)[b(t)r(t)B(t)]

− 1
ηw

1+ 1
η (t).

Applying T [∗;T0, t] to (3.13), we have

T [Gq(t)b(t)B(t);T0, t]

≤ T [−w′(t) +
b
′
+(t)

b(t)
w(t)− ηΓ(1− α)[b(t)r(t)B(t)]

− 1
ηw

1+ 1
η (t);T0, t]

= 2T [w(t)φ(t, s, l);T0, t] + T [
b
′
+(t)

b(t)
w(t)

− ηΓ(1− α)[b(t)r(t)B(t)]
− 1

ηw
1+ 1

η (t);T0, t]

= T [(2φ(t, s, l) +
b
′
+(t)

b(t)
)w(t)

− ηΓ(1− α)[b(t)r(t)B(t)]
− 1

ηw
1+ 1

η (t);T0, t],(3.14)

for t ∈ [T0,∞).
Taking

m = 1 +
1

η
, X =

[ηΓ(1− α)]
η

1+ηw(t)

[b(t)r(t)B(t)]
1

η+1

and

Y =
[2φ(t, s, l) +

b
′
+(t)

b(t) ]
η[b(t)r(t)B(t)]

η
η+1

(1+η
η )η[ηΓ(1− α)]

η2

1+η

,

by (3.14) and Lemma 2.2, we conclude that

T [Gq(t)b(t)B(t);T0, t]≤T [

1
η [2φ(t, s, l) +

b
′
+(t)

b(t) ]
η+1b(t)r(t)B(t)

(1+η
η )η+1[ηΓ(1− α)]η

;T0, t].
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Noting that (2.3) and then we have

T [Gq(t)b(t)B(t)−
1
η [2φ(t, s, l) +

b
′
+(t)

b(t) ]
η+1b(t)r(t)B(t)

(1+η
η )η+1[ηΓ(1− α)]η

;T0, t] ≤ 0.

Letting t → +∞, we have

lim
t→+∞

supT [Gq(t)b(t)B(t)−
1
η [2φ(t, s, l) +

b
′
+(t)

b(t) ]
η+1b(t)r(t)B(t)

(1+η
η )η+1[ηΓ(1− α)]η

;T0, t] ≤ 0,

and then

lim
t→∞

sup

∫ t

l
[Gq(s)b(s)B(s)−

1
η [2φ+

b
′
+(s)

b(s) ]
η+1b(s)r(s)B(s)

(1+η
η )η+1[ηΓ(1− α)]η

]Φ2(t, s, l)ds ≤ 0.

Which is a contradiction to (3.12). The proof is complete.

If we chose Φ(t, s, l) = ρ(s)(t−s)α(s− l)β for α, β > 1
2 and ρ(t) ∈ C1([t0,∞),

(0,∞)), then, we have

φ(t, s, l) =
ρ′(s)

ρ(s)
+

βt− (α+ β)s+ αl

(t− s)(s− l)
.

Thus, by Theorem 3.3, we have the following corollary.

Corollary 3.4. Suppose that(H1) and (3.1) hold. For each l ≥ t0, there exist
a function ρ(t) ∈ C1([t0,∞), R) and two constants α, β > 1

2 , such that

lim
t→∞

sup

∫ t

l
ρ2(s)(t− s)2α(s− l)2β[Gq(s)b(s)B(s)

−
1
η [2(

ρ′(s)
ρ(s) + βt−(α+β)s+αl

(t−s)(s−l) ) +
b
′
+(s)

b(s) ]
η+1b(s)r(s)B(s)

(1+η
η )η+1[ηΓ(1− α)]η

]Φ2(t, s, l)ds] > 0.(3.15)

All solutions of (1.1) is oscillatory.
Define

R(t) =

∫ t

l

p(s)

r(s)
ds, t ≥ l ≥ t0.

If we chose Φ(t, s, l) = ρ(s)(R(t) − R(s))α(R(s) − R(l))β for α, β > 1
2 and

ρ(t) ∈ C1([t0,∞), (0,∞)), then, we have

φ(t, s, l) =
ρ′(s)

ρ(s)
+

p(t)[βR(t)− (α+ β)R(s) + αR(l)]

r(s)(R(t)−R(s))(R(s)−R(l))
.

Thus, by Theorem 3.3, we have the following Theorem.
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Theorem 3.5. Suppose that(H1) and (3.1) hold. For each l ≥ t0, there exist
a function ρ(t) ∈ C1([t0,∞), R) and two constants α, β > 1

2 , such that

lim
t→∞

sup

∫ t

l
ρ2(s)(R(t)−R(s))2α(R(s)−R(l))2β[Gq(s)b(s)B(s)

−

1
η [2(

ρ′(s)
ρ(s) + βR(t)−(α+β)R(s)+αR(l)

(R(t)−R(s))(R(s)−R(l)) )

+
b
′
+(s)

b(s) ]
η+1b(s)r(s)B(s)

(1+η
η )η+1[ηΓ(1− α)]η

]Φ2(t, s, l)ds] > 0.(3.16)

The every solution of (1.1) is oscillatory.

Remark 3.4. Theorems 3.3-3.5 are new because we introduce a class of kernel
functions Φ = Φ(t, s, l) which is basically a product H(t, s)H(s, l) for a kernel
H(t, s) of Philos’type. On the other hand, when Eq. (1.1) becomes Eq. (*),
conditions (3.12), (3.15), (3.16) become simpler, and they are stronger (in many
case) than many exist oscillation conditions. Theorems 3.3, 3.4 improve and
extend the results Theorems 3.2, 3.3 in [2].

4. Examples

Example 4.1. Consider the fractional differential equation

(4.1) [
1

t6
(D

1
2
−y)

η(t)]′ − 1

t7
(D

1
2
−y)

η(t)− 1

t2
(

∫ ∞

t
(v − t)−

1
2 y(v)dv) = 0, t > 0,

where α = 1
2 , η > 0 is a quotient of odd positive integers and (η+1)η+1(Γ(12))

η >
1. In (4.1),r(t) = t−6, p(t) = t−7, q(t) = t−2, f(u) = u. Take t0 > 0, G = 1. Since

B(s) = exp(−
∫ t

t0

p(s)

r(s)
ds) = exp(−

∫ t

t0

1

s
ds) =

t0
t
,∫ ∞

t0

r
− 1

η (s)B
1− 1

η (s)ds =

∫ ∞

t0

s
6
η (

t0
s
)
1− 1

η ds = t
1− 1

η

0

∫ ∞

t0

s
7
η
−1

ds = ∞,

we find that(H1) and (3.1) hold. We will apply Theorem 3.1, and it remains to
satisfy the condition (3.2), taking b(s) = s2, we obtain

lim
t→∞

sup

∫ t

t0

[Gb(s)q(s)B(s)−
r(s)B(s)[b

′
+(s)]

η+1

(η + 1)(η+1)[Γ(1− α)b(s)]η
]ds

= lim
t→∞

sup

∫ t

t0

[s2 · 1

s2
· t0
s
−

s−6 · t0
s · (2s)η+1

(η + 1)(η+1)[Γ(12) · s2]η
]ds

= lim
t→∞

sup

∫ t

t0

[
t0
s
− s−η−6 · 2η+1 · t0

(η + 1)(η+1)[Γ(12)]
η
]ds = ∞

which implies that (3.2) hold. Therefore, by Theorem3.1 every solution of(4.1)
is oscillatory.
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