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Abstract. In this paper, we prove that there exist no ruled hypersurfaces in a nonflat
complex space form satisfying the Fischer-Marsden equation. This answers partially an
open question posed by Venkatesha et al. in (Ann. Univ. Ferrara, 67 (2021), 203–216).
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1. Introduction

It is well known that there exist no Einstein real hypersurfaces in a nonflat
complex space form Mn(c) (cf. [2, 12]). Here by a nonflat complex space form
Mn(c) we refer to a complete and connected Kähler manifold with constant
holomorphic sectional curvature c ̸= 0 of complex dimension n ≥ 2. It is complex
analytically isometric to a complex projective space CPn(c) if c > 0 or a complex
hyperbolic space CHn(c) if c < 0. In geometry of real hypersurface, it has been
an active and interesting problem for a long time to research the existence and
classification of some geometric conditions which generalize Einstein condition.
For example, in 1979, Kon in [10] introduced pseudo-Einstein hypersurfaces and
later they became an important research subject (see many references related
with these hypersurfaces in [2, 12]). In 2009, Cho and Kimura in [4] first initiated
the study of Ricci soliton on real hypersurfaces. Here by a Ricci soliton defined
on a Riemannian manifold (M, g), we mean a triple (g, V, λ) (or shortly, a metric
g) satisfying

(1)
1

2
LV g +Ric = λg,

where V is a non-zero vector field, L is the Lie derivative and λ is a constant.
When V is a Killing vector field, then a Ricci soliton becomes an Einstein metric.
In particular, if V is the gradient of a smooth function f , then (1) becomes

(2) Hessf +Ric = λg,

and it is called a gradient Ricci soliton, where Hess denotes the Hessian operator.
Ricci solitons are fixed points of the Ricci flow and play very important roles in
modern differential geometry.
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It was proved by Cho and Kimura in [5] that there exist no Hopf hyper-
surfaces which admits a gradient Ricci soliton in a nonflat complex space form.
Some other studies involving Ricci solitons on real hypersurfaces can be seen
in [1, 8, 11]. These results motivate many other research in which some other
extensions of Einstein metrics were discussed. Next we exhibit some of them. A
Riemannian manifold (M, g) is said to admit a Miao-Tam critical metric if on
M there exists a smooth function f such that

(3) Hessf − (△f)g − fRic = g.

Note that (3) reduces to an Einstein metric when f is a nonzero constant, just
like that case in a gradient Ricci soliton. Applying Cho and Kimura’s techniques
in [5], Chen in [3] proved that there exist no Hopf real hypersurfaces with Miao-
Tam critical metric in a nonflat complex space form. Similarly, a Riemannian
manifold (M, g) is said to admit an m-quasi-Einstein metric if on M there exists
a smooth function f such that

(4) Hessf − 1

m
df ⊗ df +Ric = λg,

where m denotes a positive constant. Note that (4) reduces to still an Einstein
metric if f is a constant. Applying those techniques in [5], Cui and Chen in [6]
proved that there exist no Hopf real hypersurfaces with m-quasi Einstein metric
in nonflat complex space forms. A Riemannian manifold (M, g) is said to admit
Fischer-Marsden metric if on M there exists a smooth function f such that

(5) Hessf − fRic = (∆f)g,

The well known Fischer-Marsden conjecture states that a compact Riemannian
manifold is Einstein if it admits a non-trivial solution to equation (5) (cf. [7]).
In view of this, Fischer-Marsden equation (5) is also a nice extension of Einstein
metrics. Applying those techniques in [5], Venkatesha et al. in [13] proved that
there exist no complete Hopf hypersurfaces satisfying Fischer-Marsden equation
in a nonflat complex space form. In addition, Venkatesha et al. in [13] proposed
an open question:

Are there real hypersurfaces in nonflat complex space forms satisfying
Fischer-Marsden equation?

The present paper aims to investigate the above problem on a special hyper-
surface. We prove that there exist no ruled hypersurfaces in a nonflat complex
space form satisfying Fischer-Marsden equation. The proof of this result is given
in the last section of the paper.

2. Preliminaries

Let M be a real hypersurface immersed in a complex space form Mn(c) and N
be a unit normal vector field of M . We denote by ∇ the Levi-Civita connection
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of the metric g of Mn(c) and J the complex structure. Let g and ∇ be the
induced metric from the ambient space and the Levi-Civita connection of g
respectively. Then the Gauss and Weingarten formulas are given respectively
as the following:

(6) ∇XY = ∇XY + g(AX,Y )N, ∇XN = −AX,

for any X,Y ∈ X(M), where A denotes the shape operator of M in Mn(c). For
any vector field X tangent to M , we put

(7) JX = ϕX + η(X)N, JN = −ξ.

We can define on M an almost contact metric structure (ϕ, ξ, η, g) satisfying

ϕ2 = −id + η ⊗ ξ, η(ξ) = 1, ϕξ = 0,(8)

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ), η(X) = g(X, ξ),(9)

for anyX,Y ∈ X(M). If the structure vector field ξ is principal, that is, Aξ = αξ
at each point, where α = η(Aξ), then M is called a Hopf hypersurface and α is
called Hopf principal curvature.

Moreover, applying the parallelism of the complex structure (i.e., ∇J = 0)
of Mn(c) and using (6), (7) we have

(∇Xϕ)Y = η(Y )AX − g(AX,Y )ξ,(10)

∇Xξ = ϕAX,(11)

for anyX,Y ∈ X(M). Let R be the Riemannian curvature tensor ofM . Because
Mn(c) is of constant holomorphic sectional curvature c, the Gauss and Codazzi
equations of M in Mn(c) are given respectively as the following:

R(X,Y )Z =
c

4
{g(Y,Z)X − g(X,Z)Y + g(ϕY,Z)ϕX − g(ϕX,Z)ϕY

− 2g(ϕX, Y )ϕZ}+ g(AY,Z)AX − g(AX,Z)AY,
(12)

(13) (∇XA)Y − (∇Y A)X =
c

4
{η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ},

for any X,Y ∈ X(M). From the Gauss equation, the Ricci operator is given by

(14) Q =
c

4
((2n+ 1)id− 3η ⊗ ξ) + (traceA)A−A2.

3. Main results

Taking a regular curve γ in a nonflat complex space form Mn(c) with tangent
vector field X. There is a unique complex projective or hyperbolic hyperplane
at each point of γ such that it cuts γ so as to be orthogonal to both X and JX.
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The union of these hyperplanes is said to be a ruled real hypersurface ([9, 12]).
A ruled hypersurface cannot be Hopf and has some interesting characterizations.
For example, a real hypersurface in a nonflat complex space form is ruled if and
only if g(AX,Y ) = 0, for any vector fields X and Y orthogonal to ξ (cf. [9]). It
follows that

Aξ = αξ + βU,

AU = βξ,

AZ = 0, ∀ Z ∈ {ξ, U}⊥,
(15)

where α = g(Aξ, ξ), β is a smooth nowhere vanishing function and U is a unit
vector field parallel to ϕ∇ξξ. Putting (15) into (14) we have

Qξ =

(
1

2
(n− 1)c− β2

)
ξ,

QU =

(
1

4
(2n+ 1)c− β2

)
U,

QZ =
1

4
(2n+ 1)cZ, ∀ Z ∈ {ξ, U}⊥.

(16)

It follows directly that the scalar curvature is r = (n2 − 1)c − 2β2. We collect
some necessary properties of ruled hypersurfaces (cf. [9]) in the following lemma.

Lemma 3.1. On a ruled hypersurface the following relations are valid:

∇UϕU =

(
c

4β
− β

)
U, ∇ϕUU = 0,

U(β) = 0, ϕU(β) = β2 +
c

4
, W (β) = 0, ∀ W ∈ {ξ, U, ϕU}⊥.

(17)

Lemma 3.2. On a real hypersurface in a noflat complex space form satisfying
Fischer-Marsden equation, the following relation is valid:(

1

2(n− 1)
Y (fr)− c

4
Y (f)

)
X −

(
1

2(n− 1)
X(fr)− c

4
X(f)

)
Y

+ (X(f)QY − Y (f)QX) + f((∇XQ)Y − (∇Y Q)X)− c

2
g(X,ϕY )ϕDf(18)

+
c

4
(ϕX(f)ϕY − ϕY (f)ϕX) +AX(f)AY −AY (f)AX = 0,

for any vector field X,Y , where Df denotes the gradient of function f .

Proof. Note that the Fischer-Marsden equation (5) can be transformed into
the following

∇XDf = (∆f)X + fQX,

for any vector field X. Contracting the above equality over X gives that ∆f =
− fr

2(n−1) . Putting this into the above equality gives

∇XDf = − fr

2(n− 1)
X + fQX.
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Taking the derivative of this equality we obtain

∇Y ∇XDf = − 1

2(n− 1)
Y (fr)X − fr

2(n− 1)
∇Y X + Y (f)QX + f∇Y (QX),

for any vector fields X,Y . Applying this equality and previous one in definition
of the curvature tensor we have

R(X,Y )Df =
1

2(n− 1)
(Y (fr)X −X(fr)Y )

+X(f)QY − Y (f)QX + f(∇XQ)Y − f(∇Y Q)X.

(19)

On the other hand, replacing Z by Df in (12) we get

R(X,Y )Df =
c

4
(Y (f)X −X(f)Y + ϕY (f)ϕX − ϕX(f)ϕY )

+
c

2
g(X,ϕY )ϕDf +AY (f)AX −AX(f)AY.

Comparing the above equality with (19) gives (18).

With the help of (15), (16) and Lemma 3.1, by a direct calculation we have

(∇ξQ)U − (∇UQ)ξ = −2βξ(β)U − β2∇ξU.

Note that we have applied∇ξU ∈ {ξ, U}⊥ due to g(∇ξU, ξ) = 0 and g(∇ξU,U) =
0. Form now on, suppose that a real hypersurface in a nonflat complex space
form satisfies Fischer-Marsden equation. In (18), replacing X and Y by ξ and
U , respectively, we obtain an equality. Taking the ξ-component of this equality
gives

1

2(n− 1)
U(fr)− c

4
U(f)−

(
n− 1

2
c− β2

)
U(f) + β2U(f) = 0.

Substituting the scalar curvature r = (n2 − 1)c − 2β2 into the above equality
and applying Lemma 3.1, we get(

2n− 3

n− 1
β2 +

3

4
c

)
U(f) = 0.

Suppose that there exists a point p on the hypersurface such that U(f) ̸= 0
at p and hence on an open neighborhood Ω around p. Thus, working on Ω we
obtain 2n−3

n−1 β
2 + 3

4c = 0. Then β is a constant. Applying (17) again we obtain

β2 + c
4 = 0. Putting this into the previous one reduces to either n = 0 or c = 0,

a contradiction. Therefore, U(f) = 0 holds on the whole of the hypersurface.
With the help of (15), (16) and Lemma 3.1, by a direct calculation we have

(∇ξQ)ϕU − (∇ϕUQ)ξ =
2n+ 1

4
c∇ξϕU −Q∇ξϕU + 2β

(
β2 +

c

4

)
ξ.
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In (18), replacing X and Y by ξ and ϕU , respectively, we obtain an equality.
Taking the ξ-component of this equality gives

1

2(n− 1)
ϕU(fr)− c

4
ϕU(f)−

(
n− 1

2
c− β2

)
ϕU(f)

+
2n+ 1

4
cfg(∇ξϕU, ξ)− fg(Q∇ξϕU, ξ) + 2fβ(β2 +

c

4
) = 0.

Substituting the scalar curvature r = (n2 − 1)c − 2β2 into the above equality
and applying Lemma 3.1, we get

(20)

(
n− 2

n− 1
β2 +

3

4
c

)
ϕU(f) +

n− 3

n− 1
fβ3 − n+ 1

4(n− 1)
cfβ = 0.

With the help of (15), (16) and Lemma 3.1, by a direct calculation we have

(∇UQ)ϕU − (∇ϕUQ)U = β
(
β2 +

c

2

)
U.

In (18), replacing X and Y by U and ϕU , respectively, we obtain an equality.
Applying the fact U(f) = 0 and taking the U -component of this equality gives

1

2(n− 1)
ϕU(fr)− c

4
ϕU(f)−

(
2n+ 1

4
c− β2

)
ϕU(f)

+ fβ
(
β2 +

c

2

)
− c

4
ϕU(f)− c

2
ϕU(f) = 0.

Substituting the scalar curvature r = (n2 − 1)c − 2β2 into the above equality
and applying Lemma 3.1, we get

(21)

(
n− 2

n− 1
β2 − 3

4
c

)
ϕU(f) +

n− 3

n− 1
fβ3 +

n+ 1

2(n− 1)
cfβ = 0.

Subtracting (20) from (21) we obtain ϕU(f) = 1
2fβ because of c ̸= 0. Sub-

stituting this into (20) we get

3n− 8

2(n− 1)
β2 +

3

8
c− n+ 1

4(n− 1)
c = 0.

This means that β is a constant, and hence from Lemma 3.1 we have β2+ c
4 = 0.

Putting this into the above equality we arrive at a contradiction. Therefore, we
obtain the following result.

Theorem 3.1. There are no ruled hypersurfaces in nonflat complex space forms
satisfying Fischer-Marsden equation.

Remark 3.1. Hopf and ruled hypersurfaces are ones of the most classical real
hypersurfaces in a nonflat complex space form. Except for this two types of real
hypersurfaces, the existence and classification problems of general non-Hopf real
hypersurfaces satisfying Fischer-Marsden equation are still open questions.
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