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Abstract. Corona-virus disease (COVID-19) is caused by the novel-virus (SARS-
COV2). This disease mainly targets human respiratory system. COVID-19 (Coron-
avirus) has affected day to day life and is slowing down the global economy. This
pandemic has affected thousands of peoples, who are either sick or are being killed due
to the spread of this disease. In this paper we developed an eight compartmental model
with quarantine and treatment of COVID-19. After proposing the model, we analysed
the qualitative behaviors of the model, like the disease free and endemic equilibrium
points and their stability analysis. Moreover, we obtained the basic reproduction num-
ber using next-generation matrix method and we performed the sensitivity analysis
to identify the most affecting parameters in terms of disease control and spreed. To
investigate the detail effect of each major parameters, we performed numerical simula-
tion. We obtained that using both quarantine and treatment is best way to combating
COVID-19 in the community. Therefore, stakeholders and policy makers should work
both quarantine and treatment simultaneously in combating the pandemic from the
population.
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analysis, quarantine and treatment.

*. Corresponding author



568 H. TESSEMA ALEMNEH, I. HARUNA and G. TESHOME TILAHUN

1. Introduction

Since the outbreak in Wuhan, China, December, 2019, coronavirus disease
(COVID-19) caused by the novel coronavirus, has now become a global pan-
demic as declared by World Health Organization (WHO) [1] and the world is
presently battling with it [1, 2, 3]. The most common symptoms of COVID-19
are fever, fatigue, and dry cough [1]. Some patients may have ache and discom-
fort, nasal congestion, runny nose, sore throat, or diarrhea [3]. Such symptoms
occurs 2-14 days after exposure, most usually about 5 days [4].

The pandemic can be transmitted directly or indirectly from an infectious
person to a healthy person through the eyes, nose, mouth, and sometimes
through the ears through moisture content when coughing or sneezing [3]. Ac-
cording to the data reported by WHO (World Health Organization), on 13
August 2020, the reported laboratory confirmed that the number of affected
humans reached more than 25.9 million including more than 0.86 million death
cases and more than 18.2 million recovers are recorded [5]. The government
of different countries have been implementing diverse control measures such
as imposing strict, mandatory lockdowns other measures such as individuals
maintaining individual social distancing, avoiding crowded events, imposing a
maximum number on individuals in any religious and social, the use of face
masks while in public, use of sanitizers in any contact many in the markets and
etc [6, 7, 8] to mitigate the spread of this pandemic.

Mathematical models have long been used as tools in gaining insight into
the dynamics of infectious diseases [9, 10]. Several mathematical models have
already been formulated for the population dynamics of COVID-19 in several
countries [4, 11, 12, 6, 13, 14]. From this studies, Tang et al. [15] consid-
ered, an SEIR-type mathematical model to estimate the transmission risk of
COVID-19 and its implication. The study in [6] , formulated a model for novel
coronavirus disease 2019 (COVID-19) in Lagos, Nigeria and shown the effect of
control measures, specifically the common social distancing, use of face mask
and case detection on the dynamics of COVID-19. Khan et.al,[16], formulated
a fractional mathematical model for the dynamics of COVID-19 with quaran-
tine and isolation. D.K Mamo [13], developed SHEIQRD coronavirus pandemic
spread model. He Identified that isolation of exposed and infected individuals,
reduction of transmission, and stay-at-home return rate can mitigate COVID-
19 pandemic. In this study, we developed a model by incorporating the hos-
pitalize/quarantine and home treatment subclasses as well as home quarantine
subclasses.

2. Model description and formulation

In this study the total population, N(t), at time, t is divided into eight subpopu-
lations; Susceptible,S(t),Stay-home susceptables, Sh(t), Exposed, E(t), Asymp-
tomatic, A(t), Infected, I(t), home Treatment, T (t), Hospitalized/quarantine,
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Q(t) and Recovered, R(t). The Susceptible are recruited into the population
at a constant rate, Π. It is assumed that β1 and β2 are the contact rate of
susceptible individuals with asymptomatic and infected individuals respectively
and they move to the exposed compartment. We also assumed that suscepti-
ble individuals stay at home at a rate of υ and at a rate of τ peoples move
from stay at home for due to different reasons and susceptible to the pandemic.
Finishing the incubation period, the exposed individuals becomes infected at a
rate of γ. From this αγ proportion become asymptomatic and the rest (1−α)γ
become infectious. Through diagnosis σδ proportion asymptomatic individuals
got positive and join quarantine/hospitalized. The rest (1 − σ)δ proportion of
asymptomatic individuals recover from the disease. Also from infected indi-
viduals, cε fraction of individuals move to hospitalized. The others are taking
treatment at their home at a rate (1− c)ε. However, when the pandemic for the
treated individuals become savior ϕρ fraction move the quarantine/hospitalized.
The remaining fractions recovers with the home treatment. Infected individuals
recover at a rate of ω and quarantine individuals recover from the pandemic a
rate k. The asymptomatic, infectious, treated and quarantine individuals die
due to the disease at a rate ϱ1, ϱ2, ϱ3, ϱ4 respectively. The whole population have
an average death rate of µ. For more information, Table 2 shows the descrip-
tion of model parameters. The flow diagram of the model is shown in Figure 1
below. Therefore, based on the above asumptions, the model is governed by the

Figure 1: Compartmental flow diagram of the pandemic COVID 19 transmission
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following system of differential equation:

(1)



dS

dt
= Π+ τSh − (β1A+ β2I)S − (υ + µ)S,

dSh
dt

= υ S − (τ + µ)Sh,

dE

dt
= (β1A+ β2I)S − (γ + µ)E,

dA

dt
= αγ E − (ϱ1 + δ + µ)A,

dI

dt
= (1− α) γ E − (ϱ2 + ω + ε+ µ) I,

dT

dt
= (1− c) ε I − (ϱ3 + ρ+ µ)T,

dQ

dt
= σ δ A+ cεI + ϕρT − (ϱ4 + k + µ)Q,

dR

dt
= ωI + (1− σ) δ A+ kQ+ (1− ϕ)ρ T − µR,

with the initial condition

(2) S(0) = S0 ≥ 0, E(0) = E0 ≥ 0 I(0) = I0 ≥ 0, R(0) = R0 ≥ 0.

3. Model analysis

3.1 Invariant region

In this section, a region in which solutions of the model are uniformlly bounded
is the proper subset of Ω ∈ R8

+. The total population at any time t is given by
N = S+Sh+E+A+I+T +Q+R and dN

dt = Π−ϱ1A−ϱ2I−ϱ3T −ϱ4Q−µN .
In the absence of mortality due to COVID-19 pandemic, it becomes

(3)
dN

dt
≤ Π− µN.

Solving equation (3), we obtain 0 ≤ N ≤ Π
µ . Therefore, the feasible solution set

of the system in equation (1) is the region given by:

(4) Ω =

{
(S, Sh, E,A, I, T,Q,R) ∈ R8

+ : N ≤ Π

µ

}
.

3.2 Positivity of solutions

Theorem 3.1. If the initial conditions of the model are nonnegative in the
feasible set Ω, then the solution set (S(t), Sh(t), E(t), A(t), I(t), Q(t), T (t), R(t))
of system (1) is positive for future time t ≥ 0.
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Proof. We let τ = sup{t > 0 : S0(ζ) ≥ 0, Sh0(ζ) ≥ 0, E0(ζ) ≥ 0, A0(ζ) ≥
0, I0(ζ) ≥ 0, T0(ζ) ≥ 0, Q0(ζ) ≥ 0, R0(ζ) ≥ 0 for all ζ ∈ [0, t]}. Since S0(t) ≥
0, Sh0(t) ≥ 0, E0(t) ≥ 0, A0(t) ≥ 0, I0(t) ≥ 0, T0(t) ≥ 0, Q0(t) ≥ 0, R0(t) ≥ 0
then τ > 0. If τ < ∞, then automaticaly S0(t) or Sh0(t) or E0(t) or A0(t) or
I0(t) or T0(t) or Q0(t) or R0(t) is equal to zero at τ . Taking the first equation
of the model (1)

(5)
dS

dt
= Π− (β1A+ β2I)S − (υ + µ)S.

Then, using the variation of constants formula the solution of equation (5) at τ
is given by:

S(τ) = S(0) exp

[
−
∫ τ

0
((β1A+ β2I)S + (υ + µ)S) (S)dS

]
+

∫ τ

0
Π. exp

[
−
∫ τ

S
((β1A+ β2I)S + (υ + µ)S) (ζ)dζ

]
dS > 0.

Moreover, since all the variables are positive in [0, τ ], hence, S(τ) > 0. It can
be shown in a similar way that Sh(τ) > 0, E(τ) > 0, A(τ) > 0 I(τ) > 0, T (τ) >
0, Q(τ) > 0 and R(τ) > 0. Which is a contradiction. Hence, τ = ∞. Therefore,
all the solution sets are positive for t ≥ 0.

3.3 COVID-19 Free Equilibrium Point (CFEP)

COVID-19 free equilibrium point is the state at which the infection is not present
in the population and note that it has been eradicated. In the case of COVID 19
free the compartments E = I = A = 0. Hence, equating zero for the remaining
equations in (1) leads the COVID-19 free equilibrium point and given by:

(6) E0 = (
π

µ
,

υπ

µ(γ + µ)
, 0, 0, 0, 0, 0, 0).

3.4 Basic reproduction number

To analyze the stability of the equilibrium points, the basic reproduction number
R0 of the model is important. It is obtained using the next-generation matrix
method [17, 18]. The first step is rewrite the model equations, starting with
newly infective classes:

(7)



dE
dt = (β1A+ β2I)S − (γ + µ)E,
dA
dt = αγ E − (ϱ1 + δ + µ)A,
dI
dt = (1− α) γ E − (ϱ2 + ω + ε+ µ) I,
dT
dt = (1− c) ε I − (ϱ3 + ρ+ µ)T,
dQ
dt = σ δ A+ cεI + ϕρT − (ϱ4 + k + µ)Q,
dR
dt = ωI + (1− σ) δ A+ kQ+ (1− ϕ)ρ T − µR.
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Then, by the principle of next-generation matrix, the Jacobian matrices at DFE
is given by

F =



0 β1Π
µ

β2Π
µ 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



V =



γ + µ 0 0 0 0 0
−αγ ψ1 0 0 0 0

− (1− α) γ 0 ψ2 0 0 0
0 0 − (1− c) ϵ ψ3 0 0
0 −σ δ −cϵ 0 ψ4 0
0 − (1− σ) δ −ω −ϕ ρ −k µ


,

where

ψ1 = ϱ1 + δ + µ, ψ2 = ϱ2 + ω + ϵ+ µ,

ψ3 = ϱ3 + θ + µ+ φ+ ϵ+ µ, ψ4 = ϱ4 + k + ρ+ µ.

Therefore, the basic reproduction number is the spectral radius of the next-
generation matrix FV−1, is given us

(8) R0 =
((1− α) (δ + ϱ1 + µ)β2 + (ϵ+ ω + ϱ2 + µ)αβ1) γΠ

µ (γ + µ+ υ) (δ + ϱ1 + µ) (ϵ+ ω + ϱ2 + µ)
.

Which is a threshold parameter that represents the average number of infection
caused by one infectious individual when introduced in the susceptible popula-
tion [17] in its infectious life time.

3.5 Local stability of DFEP

Theorem 3.2. The DFEP point is locally asymptotically stable if R0 < 1 and
unstable if R0 > 1.

Proof. The Jacobian matrix, evaluated at the disease-free equilibrium E0, we
get:

J =



−µ− υ τ 0 − β1(τ+µ)Π
(τ+µ+υ)µ − β2(τ+µ)Π

(τ+µ+υ)µ 0 0 0

υ −τ − µ 0 0 0 0 0 0

0 0 −γ − µ β1(τ+µ)Π
(τ+µ+υ)µ

β2(τ+µ)Π
(τ+µ+υ)µ 0 0 0

0 0 αγ −ψ1 0 0 0 0
0 0 (1− α) γ 0 −ψ2 0 0 0
0 0 0 0 (1− c) ϵ −ψ3 0 0
0 0 0 σ δ cϵ ϕ ρ −ψ4 0
0 0 0 (1− σ) δ ω (1− ϕ) ρ k −µ


,
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where

ψ1 = ϱ1 + δ + µ, ψ2 = ϱ2 + ω + ϵ+ µ,

ψ3 = ϱ3 + θ + µ+ φ+ ϵ+ µ, ψ4 = ϱ4 + k + ρ+ µ.

The first five eigenvalues are listed as:

−µ,−(τ + µ),−ψ3,−ψ4,−µ.

The other eigenvalues are obtained from the characteristic polynomial:

P(λ) = λ3 + φ1λ
2 + φ2λ+ φ3 = 0.(9)

where

φ1 = ψ1 + ψ2 + γ + µ,

φ2 =
−Παγ β1 + (1− α)Π γ β2 + γ µψ1 + γ µψ2 + ψ1µ

2 + ψ2µ
2 + ψ2µψ1

µ
,

φ3 = −Παγ β1ψ2 −Παγ β2ψ1 +Π γ β2ψ1 − γ µψ1ψ2 − µ2ψ1ψ2

µ
.

To check the positivity of the eigenvalues, We used Routh-Hurwitz criteria and
by this principle equation (9) has strictly negative real root iff ψ1 > 0 , ψ2 > 0
and ψ3 > 0. Clearly we see that ψ1 > 0 and ψ2 > 0 because they are the sum
of positive parameters. Then taking the third equation,

ψ3 = (ε+ ρ+ µ) (δ + µ) [1−R0] > 0

Hence the DFEP is locally asymptotically stable if R0 < 1.

3.6 Global stability of DFEP

In this section, we investigate global asymptotic stability of the disease free
equilibrium using the theorem of Castillo-Chavez [19, 14]. We rewrite model in
equation (1) as:

(10)

{
dZ
dt = F (Z, Y ),
dY
dt = G(Z, Y ), G(Z, 0) = 0,

where Z=(S, Sh, R) ∈ R3 denotes uninfected populations and Y = (E,A, I, T,Q)
∈ R5 denotes the infected population. E0 = (Z∗, 0) represents the DFEP of this
system. List two conditions as:

(i) For dZ
dt = F (Z, 0), Z∗ is globally asymptotically stable.

(ii) dY
dt = DYG(Z, 0)Y,−Ĝ(Z, Y ), Ĝ(Z, Y ) ≥ 0 for all (Z, Y ) ∈ Ω.
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If DFEP satisfies the above two conditions, we conclude that E0 is globally
asymptotically stable and according to Castillo-Chavez [19] and the following
theorem holds.

Theorem 3.3. The equilibrium point E0 = (Z∗, 0) of the system (10) is globally
asymptotically stable if R0 < 1 and the conditions (i) and (ii) are satisfied.

Proof. We start the proof by defining new variables and dividing the system
into subsystems. Z = (S,R,Q) and Y = (E,A). From equation (10) we have
two functions G(Z, Y ) and F (Z, Y ) given by:

F(X,Y) =

 Π+ φSh − (β1A+ β2I)S − (υ + µ)S
υ S − (τ + µ)Sh

ωI + (1− σ) δ A+ kQ+ (1− ϕ)ρ T − µR


and

G(Z,Y) =


(β1A+ β2I)S − (γ + µ)E
αγ E − (ϱ1 + δ + µ)A

(1− α) γ E − (ϱ2 + ω + ε+ µ) I
(1− c) ε I − (ϱ3 + ρ+ µ)T

σ δ A+ cεI + ϕρT − (ϱ4 + k + µ)Q

 .

Now, we consider the reduced system dZ
dt = F (Z, 0) from condition (i)

(11)


dS
dt = Π+ τSh − (υ + µ)S,
dSh
dt = υ S − (τ + µ)Sh,
dR
dt = −µR.

We note that this asymptomatic dynamics is independent of the initial condi-
tions in Ω , therefore the convergence of the solutions of the reduced system
equation (11) is global in Ω. We compute

G(Z, Y ) = DYG(Z
∗, 0)Y − Ĝ(Z;Y )

and show that Ĝ(Z;Y ) ≥ 0. Now,

DYG(Z
∗, 0)

=


−γ − µ β1(τ+µ)Π

(τ+µ+υ)µ
β2(τ+µ)Π
(τ+µ+υ)µ 0 0

αγ −ϱ1 − δ − µ 0 0 0

(1− α) γ 0 −ϱ2 − φ− ω − ϵ− µ 0 0
0 0 (1− c) ϵ −ϱ3 − ρ− µ 0
0 σ δ cϵ ϕ ρ −ϱ4 − k − µ

 .

And, we get

Ĝ(X,Y ) =



(
Π
µ − S

)
(β1A+ β2I)

0
0
0
0

 .
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Here, since Π
µ = S0 ≥ S, Hence, it is clear that Ĝ(Z, Y ) ≥ 0 for all (Z,Y)

∈ Ω. Therefore, by LaSalle’s invariance principle [20] this proves that DFE is
globally asymptotically stable for R0 < 1. From this result, we can say that the
model exhabits forward bifurication. In other words, for R0 < 1 the DFEP and
EEP does not co-exist.

3.7 The endemic equilibrium point (EEP)

For endemic equilibrium point of the model we denote it by E∗ and E∗ =
(S∗, S∗

h, E
∗, A∗, I∗, T ∗, Q∗, R∗) ≥ 0. The COVID-19 pandemic model has a

unique endemic equilibrium and it can be obtained by equating each equation
of the model equal to zero. i.e

dS

dt
=
dSh
dt

=
dA

dt
=
dI

dt
=
dT

dt
=
dQ

dt
=
dR

dt
= 0.

Then, we obtain

(12)



S∗ = (γ+µ)[δ(ε+ω+ϱ2+µ)+µ(ω+ϱ1+ϱ2+µ)+ε(ϱ1+µ)+ϱ1(ω+ϱ2)]
γ[(1−α)(δ+ϱ1+µ)β2+(ε+ω+ϱ2+µ)αβ1]

S∗
h = υ(γ+µ)[δ(ε+ω+φ+ϱ2+µ)+µ(ω+ϱ1+ϱ2+µ)+ε(ϱ1+µ)+ϱ1(ω+ϱ2)]

γ(τ+µ)[(1−α)(δ+ϱ1+µ)β2+(ε+ω+ϱ2+µ)αβ1]

E∗ = ξ1
γξ2

A∗ = αξ1
(ϱ1+δ+µ)ξ2

I∗ = (1−α)ξ1
(ϱ2+ω+ε+µ)ξ2

T ∗ = (α−1)(c−1)εξ1
(ϱ2+ω+ε+µ)(ρ+ϱ3+µ)ξ2

Q∗ = σδA∗+cεI∗+ϕρT ∗

ϱ4+k+µ

R∗ = ωI∗+(1−α)δA∗+kQ∗+(1−ϕ)ρT ∗

µ ,

where

ξ1 = (δ + ϱ1 + µ)(α− 1)Πγβ2 − (ε+ ω + ϱ2 + µ)Παγβ1

+ µ(γ + µ)[δ(ε+ ω + ϱ2 + µ) + ε(ϱ1 + µ) + µ(ω + ϱ1 + ϱ2 + µ)

+ ϱ1(ω + φ+ ϱ2)],

ξ2 = (γ + µ)[δβ2(α− 1)− αεβ1]− (ω + ϱ2 + µ)(γ + µ)αβ1

+ (α− 1)(γ + µ)(ϱ1 + µ)β2.

3.8 Sensitivity analysis

We used the normalized forward sensitivity index definition to go through sensi-
tivity analysis on the basic parameters [21] as done in [22, 23]. The Normalized
forward sensitivity index of a variable, R0, that depends differentiably on a
parameter, p, is defined as: ΛR0

p = ∂R0
∂p × p

R0
for p represents all the basic

parameters. Here, we have R0 = ((1−α)(δ+ϱ1+µ)β2+(ϵ+ω+ϱ2+µ)αβ1)γΠ
µ(γ+µ+υ)(δ+ϱ1+µ)(ϵ+ω+ϱ2+µ) . For the
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sensitivity index of R0 to the parameters:

ΛR0
β1

=
∂R0

∂β1
× β1

R0
=

(ϵ+ ω + ϱ2 + µ)αβ1
(1− α) (δ + ϱ1 + µ)β2 + (ϵ+ ω + ϱ2 + µ)αβ1

> 0,

ΛR0
β2

=
∂R0

∂β2
× β2

R0
=

(1− α) (δ + ϱ1 + µ)β2
(1− α) (δ + ϱ1 + µ)β2 + (ϵ+ ω + ϱ2 + µ)αβ1

> 0,

ΛR0
α =

∂R0

∂α
× α

R0
=

α (− (δ + ϱ1 + µ)β2 + (ϵ+ ω + ϱ2 + µ)β1)

(1− α) (δ + ϱ1 + µ)β2 + (ϵ+ ω + ϱ2 + µ)αβ1
< 0.

Similarly, we can work for the other parameters. The sensitivity indices of the
basic reproductive number with respect to main parameters are found in Table 1.

Table 1: Sensitivity indecies table.

Parameter symbol Sensitivity indecies

β1 +ve
β2 +ve
γ +ve
σ1 -ve
σ2 -ve
k -ve
ε -ve
δ -ve
ω -ve
µ -ve

4. Numerical simulations

Analytic studies cannot be complete without numerical verification of the re-
sults. In this section, we present computer simulation of some solutions of the
system (1). Besides verification of our analytical outcomes, these numerical
simulations are very significant from practical point of view. To illustrate the
results, we used parameter values in the Table 2 .

From Figure 2, we find the positve indices parameters. These parameters
(β1, β2, and γ) show that they have great impact on expanding the disease
in the community if their values are increasing. This is because that the ba-
sic reproduction number increases as their values increase, so that the average
number of secondary cases of infection increases in the community. Therfore,
stakeholders should take action to decrease the effect of the pandemic.
Figure 3, shows those parameters in which their sensitivity indices are negative
(δ, ω, ε, k, and µ) and the increment of the parameters have an effect of mini-
mizing the burden of the disease in the community. Therefore, research advice
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Table 2: Description of parameters of the model (1)

Parameter Description Value Source
Π Ricuirement rate of individuals 150 Assumed
β1 Transmission rate from asymptomatic to susceptible individuals 0.00000115 [16]
β2 Transmission rate from infected to susceptible individuals 0.003 [16]
ρ Individuals who leave from treatment subpopulation 0.2 [16]
δ Proportion of exposed individuals leaving the compartment 0.2 [16]
ε Individuals who leave leave from the infected subpopulation 0.001 [16]
τ Proportion of exposed individuals who join infected compartment 0.07 [13, 24]
υ Proportion of exposed individuals who join infected compartment 0.005 [13]
µ Natural death rate the population 0.016 [13]
k Recovery rate of individuals under quarantine 0.2 [16]
ϱ1 Induced death rate of asymptomatic individuals 0.002 Assumed
ϱ2 Induced death rate of infected individuals 0.0002 [16, 24]
ϱ3 Induced death rate of individuals under treatment 0.0303 Assumed
ϱ4 Induced death rate of individuals under quarantine 0.0103 [16]
γ Exposed individuals that become infectious 0.143 [16, 24]
ϕ Proportion of individuals under treatment who join quarantine 0.3 [16]
c Proportion of infected individuals who join quarantine 0.5 [16]
ω Fraction of infected individuals that are immune 0.00023 [16]
σ Fraction of asymptomatic individuals that are immune 0.01 [16]
α Fraction of exposed individuals that become asymptomatic 0.1 [16]

(a) (b)

(c)

Figure 2: The positive indices parametres

for stakeholders to work on increasing negative indices parameters to fight the
pandemic persistence.
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(a) (b)

(c) (d)

Figure 3: The negative indices parameters

4.1 Impact of γ on infected population

From Figure 4, as we incease the rate of the number of exposed population to
infected and asymptomatic stage increases the number of total infected individ-
uals in the population. Thus, the closing of government offices fully or partially
was an important decision to control the spread of the pandemic.

4.2 Impact of hospitalizing and treatment (ε) on infected population

As we see from the Figure 5, by increasing the value of ε, the number of infected
people is decreasing due to an increase number of hospitalize/quarantine and
treantment of infectives at home. This is due to the reason that infectious
individuals plays an important role in the infection generation, and therefore,
the people should use every control mechanisms and should be educated to
avoid the interaction with such people and ready for testing. Therefore, the
government should work testing and diagnosis to reduce the infectious number
from the population by quarantine/ hospitalize or and treantment of infectives
at home.
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Figure 4: Impact of γ on Infected population

Figure 5: Impact of ε on Infected population

Figure 6, presents the dynamics of the mode with and without quaran-
tine/hospitalize and treatment. From the figure, one can see that, using quaran-
tine/hospitalize and treatment, it is possible to increase the number of recovered
individuals. Therefore, here stakeholders should work on using those combating
ways to fight the pandemic. A comparison figure is shown to see the effects on th
number of total recovered individuals, as seen in the Figure 7. It is evident from
figure that from the individual management techniques hospitalize/quarantine
infective individuals is better than taking treatment at home. However, instead
of using them separately, it is best to use the integration of both techniques to
produce a big number of recovered population from the pandemic.
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Figure 6: Comparison between with and without quarantine & Treatment

Figure 7: Comparison between quarantine only, Treatment only, with and with-
out quarantine & Treatment

5. Conclusions

In this paper an SEAIR deterministic model with quarantine and treatment
for the transmission dynamics of the pandemic COVID-19 was formulated. The
mathematical results for the model were shown. The basic reproduction number
R0 was computed and the stability of equilibria points was investigated. Using
Castillo-Chavez theorem, the disease free equilibrium point globally asymptot-
ically stable whenever the R0 < 1 was proven. We consider some parameters
and their effect on the model graphically, which can be regarded as the con-
trols for disease eradication. Also we show the effect of using quarantine and
treatment in geting better number of recovered individuals. Therefore, as it is
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shown in the figure, stakeholders should apply both quarantine and treatment
simultaneously in cambating the pandemic.
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