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Separation coordinates in a Hamiltonian quartic system
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Abstract. The separability of Hamiltonian integrable systems has been the object of a
considerable amount of attention in the last decades. Over the years several techniques
have been proposed to deal with this difficult problem. In this paper we make use of the
method of the Kowalewski’s Conditions. To illustrate the effectiveness of the method
we consider the Hénon-Heiles system known as HH4 1:6:8. This system is integrable
in two cases. For one of them, separated only in some particular cases, we provide the
separation coordinates in the generic form. The other case remains unsolved.
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1. Introduction

Hénon-Heiles (HH) systems are Hamiltonian systems in R4 endowed with the
standard symplectic form dp1 ∧ dx + dp2 ∧ dy. The Hamiltonian function has
the form

H =
1

2
(p1

2 + p2
2) + V (x, y),

where V is a polynomial function. There are four nontrivial integral cases with
quartic potential that can be “generalized” adding inverse terms without de-
stroying the integrability in the Liouville sense. This means that every one
of these systems possesses an integral of the motion called K. The most gen-
eral forms of H and K, for all the integrable HH systems, have been given by
Hietarinta [3].

Once proved the Liouville integrability of these systems, the question arises
of an explicit integration of the equations of motion. The most efficient way
to bring the systems to quadratures is to find coordinates that separate the
Hamilton-Jacobi equation. This is such a difficult task that, after decades of
efforts, only one of the four quartic systems has been separated in the generic
form [2]. In this paper we will deal with the so called HH4 1:6:8 system only (1,
6, 8 are the coefficients of the quartic monomials). The Hamiltonian function is

(1) H =
p1

2

2
+

p2
2

2
+ x4 +6x2y2 +8 y4 +ω

(
x2 + 4 y2

)
+

a

y2
+

b2

x2
− c2

2x6
+ ey,

where ω, a, b, c and e are arbitrary constants.
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The function K for this system is quite complicated [3]:

K = p1
4 + 2 p1

2

(
2x4 + 12x2y2 + 2ω x2 + 2

b2

x2
− c2

x6
+ 2ey

)
− 4xp1p2

(
4x2y + e

)
+ 4x4p2

2

+ 4
b4

x4
+ 8 b2x2 + 16 b2y2 + 4ω2x4 + 8ω x6 + 16ω x4y2 + 4x8(2)

+ 16x6y2 + 16x4y4 + 8
ax4

y2
− c2

(
4
b2

x8
− c2

x12
+ 4

ω

x4
+ 4

1

x2
+ 24

y2

x4

)
+ 2e

(
4
b2y

x2
− ex2 − 4x4y − 8x2y3 − 4ω x2y

)
.

The reader can easily check that the Poisson bracket of H and K is

{H,K} = −
4e

(
2ax8p1 − 3 c2xy3p2 + 6 c2y4p1

)
x7y3

and this lets us with two cases of integrability:

� Case I: a = c = 0

� Case II: e = 0.

The first case has been solved only under the additional hypothesis be = 0
[13] and e = 2

√
2 b [12]; the separation coordinates for the generic case remain

unknown.
Case II has been studied in the particular case e = c = ab = 0 [8]. The

authors wrote, about adding the term in x−6 or the linear term: “it would be
interesting to extend our approach to these cases although we anticipate serious
technical difficulties”. The aim of this paper is to show that these difficulties
can be bypassed looking at the problem from a different perspective. Using
the method of the Kowalewski Conditions (KC) we will be able to provide the
separation coordinates, for Case II, in the generic form.

2. The method of the vector field Z

Let’s introduce quickly the method adopted in the following calculations. A
comprehensive presentation, with all the necessary proofs that are omitted here,
can be found in [7] and [10].

Separable Hamiltonian systems come equipped with a torsionless recursive
tensor N (Nijenhuis tensor), compatible with the Poisson tensor P , i.e. forming
a so called PN manifold. If the manifold is 4-dimensional and N has two
functionally independent eigenvalues, then they are the separation coordinates
of the system (under suitable hypotheses, see below and [5]).

The explicit calculation of the tensor N can be quite cumbersome except in
some simple cases [11]. Nevertheless, the essential remark is that N acts on the
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vector fields tangent to the Lagrangian foliation given by H = c1 and K = c2,
so that one can simply calculate the eigenvalues of the restriction of N to the
bi-dimensional foliation. This restricted tensor, given a basis on the leaves,
reduces to a 2x2 matrix M called the Control Matrix. In the basis associated
with the flows of the Hamiltonian vector fields XH and XK , this matrix has the

form M =

(
m1 m2

m3 m4

)
. The Kowalewski Conditions (KC), introduced by F.

Magri in [6], characterize the entries of the matrix M . These functions verify
four differential constraints if and only if1 the eigenvalues of M are separation
coordinates:

(3)

XH(m3) = XK(m1)

XH(m4) = XK(m2)

XH(m1m3 +m3m4) = XK(m2
1 +m2m3)

XH(m2m3 +m2
4) = XK(m1m2 +m2m4)

and the involutivity of the trace and the determinant if we want the eigenvalues
of M to be canonical coordinates:

(4) {m1 +m4,m1m4 −m2m3} = 0.

This is a system of 5 differential equations in 4 unknown functions and it
is, in general, difficult to solve. A possible strategy to attack this problem is
outlined in the following steps:

1. We start looking for two “Fundamental Functions” F and G verifying

(5) XH(G) = XK(F )

and
dF ∧ dG ∧ dH ∧ dK ̸= 0.

We can see (F,G,H,K) as non-canonical coordinates associated to the
Lagrangian foliation. We use these coordinates to write the Control Matrix
in the simplified form:

(6) M =

(
AF +B 1
AG+ C D

)
where A, B, C and D are constant of the motion. In this way the first two
equations in (3) are automatically satisfied and the constants A, B, C, D
have to be chosen in such a way that the other equations are verified too.
One could say that the method of the Fundamental Functions reduces the
problem to the search of two functions only: F and G. An example of
application of this method can be found in [9].

1. There are some additional technical conditions that are clearly verified in the present case.
The complete Theorem can be found in [6] or [9].
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2. The next step consists in introducing a “potential function” V and the
canonical vector field Z associated to V : Z = XV . The functions F and
G can be generated by V in the following way:

(7) F = Z(H) G = Z(K)

and equation (5) is still verified for any choice of V [10].

3. Unfortunately the method of the potential function seems excessively re-
strictive and many interesting problems don’t fall under this scheme (sev-
eral examples are given in [10]). The set of all possible fields Z must
be enlarged. The idea is to use the constants a, b and c present in the
Hamiltonian functions as variables, and turn the symplectic system into a
Poisson one in R7 with coordinates (p1, p2, x, y, a, b, c). This is easily ob-
tained adding three lines and columns of zeros to the matrix representing
the standard Poisson tensor and extending the canonical vector field Xf ,

associated to a function f , to X̃f :

X̃f =

(
−∂f

∂x
,−∂f

∂y
,
∂f

∂p1
,
∂f

∂p2
, 0, 0, 0

)T

.

In this framework, the vector field Z can be extended with extra terms in
this way

(8) Z = XV + w1
∂

∂a
+ w2

∂

∂b
+ w3

∂

∂c

where w1, w2 and w3 are constants.

At the end of the process, the problem is reduced to the determination of a
single function V and, eventually, a few constants w1, w2 and w3.
We are now ready to solve the generic Case II.

3. The separation coordinates for Case II

According to the discussion in the Introduction we replace e = 0 in (1) and (2).
Our problem is to calculate the separation coordinates of this system without
imposing any additional restriction to the remaining constants a, b and c.

Writing Z in the extended form (8), we can calculate the Fundamental Func-
tions with (7) and finally obtain the Control Matrix in the simplified form (6).

Now, we have to replace m1, . . . ,m4 into the KC (3). The first two equations
are verified for any choice of the potential function and constants [10]. The
second couple of KC are verified with V = c/(2x2) and the constant w1 =
0, w2 = b/2 and w3 = c. Therefore, the vector field Z has the simple form

(9) Z =
c

x3
∂

∂p1
+

b

2

∂

∂b
+ c

∂

∂c
.
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This vector field contains all the essential information needed to separate
the system. Finally we still have to choose the constants of motion A, B, C
and D in order to verify (4). The results can be summarized in the following

Theorem 3.1. Consider the integrable Hamiltonian system (1)-(2) with e = 0.
Let Z be the vector field in (9) and F and G the functions in (7). Then, the
Control Matrix of the system takes the form

(10) M =

(
−16F + 8H 1
−16G+ 16K 8H

)
i.e. the eigenvalues of (10) are canonical separation coordinates for both H and
K.

Proof. The functions F and G can be calculated directly with (7):

F =
b2x4 + p1cx

3 − c2

x6

and

G =
1

x12

[
8 b2x14 + 8 cx13p1 +

(
16 b2y2 − 16 cyp2

)
x12 + 8 c

(
6y2 + ω

)
p1x

11

+
(
4 b2p1

2 − 8 c2
)
x10 + 4 cx9p1

3 +
(
−48 c2y2 − 8ωc2 + 8 b4

)
x8

+ 8 b2cx7p1 − 4 c2x6p1
2 − 12 c2b2x4 − 4 c3x3p1 + 4 c4

]
.

Replacing these functions in (10) one can find the explicit form ofm1, . . . ,m4.
According to the results in [6], it is enough to prove that these functions verify
the KC (3), as well as the condition of canonicity (4). All these conditions can
be easily checked with a software like Maple.

Remark 3.1. Different Control Matrices can be obtained using more compli-
cated entries, for instance quadratic functions in F and G:

M ′ =

(
−16F 2 +G F

−16FG+ 16KF G

)
.

The eigenvalues of M ′ provide a different set of separation coordinates. These
coordinates reduce to the ones found by Ravoson et al. [8] in the case a = c = 0.

A similar method can be applied to Case I too and provides an alternative
way to calculate the separation coordinates for the degenerate cases be = 0
[10]. In [12] we find the separation coordinates under the particular condition
e = 2

√
2 b. The idea was to guess the form of the potential function V tak-

ing example from these particular cases. However the application of the theory
to the general case presents some difficulties: it seems that neither linear nor
quadratic functions in F and G verify all conditions (3) and (4). Finding sepa-
ration coordinates for Case I in the generic form remains an open problem.
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On the other hand, separation coordinates in Case II could be found without
any additional condition on the coefficients and the potential function is as
simple as V = c/(2x2). This system represents, in our opinion, one of the
most convincing examples of the effectiveness of the method of the KC. The
complete separation of the system goes beyond the scopes of the paper and
requires additional work. Nevertheless this paper could be considered as a first
step in that direction.
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