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Abstract. Let G be a finite group and cd(G) be the set of irreducible character
degree of G. In this paper we prove that if p is a prime number, then the simple group
PSL(4,p2) are uniquely determined by its order and some its character degrees.
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1. Introduction

All groups considered are finite and all characters are complex characters. Let
G be a group. Denote by Irr(G) the set of all irreducible characters of G. Let
cd(G) be the set of all irreducible character degree of G.

Many authors were recently concerned with the following question:

What can be said about the structures of a finite group G , if some informa-
tion is known about the arithmetical structure of the degree of the irreducible
characters of G (see, [17,18]). A finite group G is called a K3-group if |G| has
exactly three distinct prime divisors.

Yan et al. [17] and [18] proved that all simple k3-group and the Mathieu
groups are uniquely determined by their orders and some its character degrees.

Also, Khosravi et al. in [9] and [10] proved that the simple groups PSL(2, p)
and PSL(2, p2) are uniquely determined by its order and its largest and second
largest irreducible character degrees, where p is an odd prime. Also, Hung
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and Thomson in [13] proved that the simple group PSL(4, q) whit q ≥ 13 are
determined by the set of their character degrees.

Let p be an odd prime number. In [14] the authors proved that the simple
group PSL(4, p) is uniquely by its order and some character degrees.

The goal of this paper is to introduce a new characterization for the finite
group PSL(4, p2), where p is prime, by its order and some its character degrees.
In fact we prove the following theorem.

Theorem 1.1 (Main Theorem). Let p > 7 be a prime. If G is a finite group
such that the following statements hold, then G is isomorphic to PSL(4, p2).

(i) |G| = |PSL(4, p2)|.
(ii) kp12 ∈ cd(G) if only if k = 1, where k is an integer number.

(iii) p2(p4 + p2 + 1) is the smallest nonlinear character degree of G.

(iv) {p2(p2 + 1)2(p4 + 1), (p2 + 1)(p4 + 1)} ⊂ cd(PSL(4, p2)).

2. Notation and preliminary

We know that if p is an odd prime, then

|PSL(4, p2)| = p12(p4 − 1)(p6 − 1)(p8 − 1)

(4, p2 − 1)

and let Φk denote the kth cyclotomic polynomial evaluated at p2. In particular,

Φ1 = p2 − 1,Φ2 = p2 + 1,Φ3 = p4 + p2 + 1,Φ4 = p4 + 1.

The data in [18] gives the character degree of PSL(4, q). From there, we are
able to extract the character degree of PSL(4, p2).These degrees are given in
Table 1. The word “possible” in the second column means that the condition
for the existence of corresponding degree in fairly complicated

{p12, p2Φ3, p
2Φ2

2Φ4,Φ2Φ4} ⊂ cd(PSL(4,2 p))

and the smallest nonlinear character degrees of PSL(4, p2) is p2Φ3.

If n is an integer and r is a prime number, then we write rα||n, when rα|n
but rα+1 | n. All other notations are standard and we refer to [1].

If N ⊴ G and θ ∈ Irr(N), then the inertia group of θ in G is IG(θ)={g ∈ G
| θg=θ }.

Lemma 2.1 (Thompson, [14], Lemma 2.3). Suppos that p is a prime and p |
χ(1) for every nonlinear χ ∈ Irr(G). Then, G has a normal p-complement.

Lemma 2.2 (Ghallgher’s Theorem, [8], Corollary 6.17). Let N ⊴ G and let
χ ∈ Irr(G) be such that χN = θ ∈ Irr(N). Then, the characters βχ for β ∈
Irr(GN ) are irreducible and distinct for distinct β and are all of the irreducible
constituents of θG.
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Lemma 2.3 (Ito’s Theorem, [3], Corollary 6.15). Let A ⊴ G be abelian. Then,
χ(1) divides |G : A| for all χ ∈ Irr(G).

Lemma 2.4 ([3], Theorems 6.2, 6.8, 11.29). Let N ⊴ G and let χ ∈ Irr(G). Let
θ be an irreducible constituent of χN , and suppose θ1 = θ,..,θt are the distinct
conjugates of θ in G. Then, χN=e

∑t
i=1 eiχi, where e=[χN , θ] and t=[G:IG

(θ)]. Also, θ(1)|χ(1) and χ(1)/θ(1)||G:N|.

Lemma 2.5 ([17], Lemma). Let G be nonsolvable group. Then, G has a normal
series 1 ⊴ H ⊴ K ⊴ G such that K/H is a direct product of isomorphic
nonabelian simple group and |G/K|||Out(K/H)|.

Lemma 2.6 ([3], Lemma 12.3 and Theorem 12.4). Let N ⊴ G be maximal such
that G/N is solvable and nonabelian. Then, one of the following holds.

(i) G/N is a r-group for some prime r. If χ ∈ Irr(G) and r | χ(1), then χτ
∈ Irr(G) for all τ ∈ Irr(G/N).

(ii) G/N is a Frobenius group with an elementary abelian Frobenius kennel
F/N .

Thus, |G : F | ∈ cd (G), |F : N | = rα, where a is the smallest integer such
that |G : F | | rα − 1. For every ψ ∈ Irr(F ), either |G : F |ψ(1) ∈ cd(G) or
|F : N ||ψ(1)2. If no proper multiple of |G : F | is in cd(G), then χ(1)||G : F | for
all χ ∈ Irr(G) such that r | χ(1).

Lemma 2.7 ([16], Lemma 2.3). In the context of (ii) of Lemma 2.5, we have

(i) If χ ∈ Irr(G) such that lcm(χ(1),|G : F |) does not divide any character
degree of G, then rα | χ(1)2

(ii) If χ ∈ Irr(G) such that no proper multiple of χ(1) is a degree of G, then
either |G : F | | χ(1) or rα|χ(1)2. Moreover if χ(1) is divisible by no nontrivial
proper character degree in G then |G : F | = χ(1) or ra|χ(1)2.

3. Proof of the main theorem

In this section we present the proof of Main theorem. In fact, we prove this
theorem by two steps:

Step 1. First we prove that G is a nonsolvable group.We show that G′ = G′′.
Assume by contradiction that G′ ̸= G′′ and let N ⊴ G be maximal such that
G/N is solvable and nonabelian.By Lemma 2.6, G/N is an r-group for some
prime r or G/N is a Frobenius group with an elementary abelian Frobenius
kernel F/N .

Case 1. G/N is an r-group for some prime r. Since G/N is nonabelian, there is
ψ ∈ Irr(G/N) such that ψ(1) = ra > 1. From the classification of prime power
degree representations of quasi-simple group in [12], we deduce that ψ(1) = ra

must be equal to the degree of the Steinberg character of H of degree p12 and
thus ra = p12, which implies that r = p. By Lemma 2.1, G possesses a nontrivial
irreducible character χ with p | χ(1). Lemma 2.4 implies that χN ∈ Irr(N).
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Using Ghallagher’s lemma, we deduce that χ(1)ψ(1) = p12χ(1) is a character
degree of G, which is impossible with the condition (ii) of main theorem.

Case 2. G/N is a Frobenius group whit an elementary abelian Frobenius kernel
F/N . Thus according to Lemma 2.6, |G : F | ∈ cd(G), |F : N | = ra, where a
is the smallest integer such that |G : F ||ra − 1. Let χ be a character of G of
degree p12. As no proper multiple of p12 is in cd(G), Lemma 2.6 implies that
either |G : F ||p12 or r = p. We consider two following subcases.

(a) |G : F ||p6. Then, |G : F | ∈ cd(G), by the assumption of the theorem,
this implies that no multiple of |G : F | is in cd(G). Therefore, by Lemma 2.6,
for every ψ ∈ Irr(G) either ψ(1)|p12 or r|ψ(1). Taking ψ to be characters of
degree p2Φ3 and p2Φ2

2Φ4, we obtain that r|ψ(1).This implies that r divides both
p2Φ3 and p2Φ2

2Φ4. This leads us to a contradiction since ( Φ3 , Φ2
2Φ4)=1.

(b) r = p. Thus |F : N | = pa and |G : F ||pa − 1. Let χ be a charac-
ter of G of degree p2Φ2

2Φ4 and ψ be a character of degree Φ2Φ4). It follows
that ψ(1)|χ(1) so that by Lemma 2.7, |G : F | = p2Φ2

2Φ4 or pa|p4Φ2
2Φ

2
4 which

implies that a ≤ 4, |G : F | ≤ p4 − 1. This leads us to a contradiction since
min{χ(1)|χ(1) > 1, χ ∈ Irr(G)} = p2Φ3.

Therefore, G is not a solvable group.

Step 2. Now, we prove that G is isomorphic to PSL(4, p2).

By the above discussion and using Lemma 2.5, we get that G has a normal
series 1 ⊴ H ⊴ K ⊴ G such that K/H is a direct product of m copies of a
nonabelian simple group S and |G/K|||Out(K/H)|. Also, p is a prime divisor of
|G| such that p12∥|G|

First, we prove that p ∤ |G/K|. On the contrary, let p||G/K|. We know
that Out(K/H) ∼= Out(S) ≀ Sm, which implies that p||Sm| or p||Out(S)|. If
P ||Sm|, then m ≥ p and so p12(p4 − 1)(p6 − 1)(p8 − 1) ≥ |K/H| ≥ 60p, which is
impossible. Hence p||Out(S)|. According to the orders of automorphism group
of alternating group and sporadic simple group, we implies that S is a simple
group of Lie type over GF (q), where q = pf0 . By assumption, p||Out(S)| = dfg,
where d, f , and g ≤ 3 are the orders of diagonal, field, and graph automorphisms
of S respectively. Using [2], we know that if S is a simple group of Lie type over
GF (q), then q(q2 − 1) ≤ S and so if p|f , then 2p(22p − 1) ≤ q(q2 − 1) ≤ |S| ≤
p12(p4− 1)(p6− 1)(p8− 1), which is a contradiction. Hence p|d. Since p > 7, we
get that S = An(q) and d = (n+ 1, q− 1) or S =2 An(q) and d = (n+ 1, q+ 1).
In each case we get that p|q − 1 and n ≥ 6 or p|q + 1 and n ≥ 6. Then, p13||S|,
which is a contradiction. Therefore, p ∤ |G/K|.

Now, we prove that p ∤ |H|. On the contrary, let p||H|. So there exist twelve
possibilities, pi∥|H| where 1 ≤ i ≤ 12.

Case 1. First, suppose that p∥|H|. Using the classification of finite simple
group we determine all simple groups S such that p5||S|5. Now, we consider two
subcases:

(i) Let m = 1. Then, p11||S| and |S||p11(p4 − 1)(p6 − 1)(p8 − 1).

If S ∼= An, then p ≤ n and n!|p12(p4−1)(p6−1)(p8−1). Which is impossible
since p > 7. Also, there is no sporadic simple group satisfying these condition.
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If S is a nonabelian simple group of Lie type over a field of characteristic
p, using the orders of the simple groups, we get that, there is no Lie group
satisfying these conditions.

Since the proofs for the other simple groups are similar, we state the proof
only for a few of them for convenience.

If S be a nonababelian simple group of Lie type over a field GF (q), where
p ∤ q. We claim that there is no simple group satisfying the above conditions.

If S ∼= Bn(q), where n ≥ 2, then p|q2j − 1, for some 1 ≤ j ≤ n. Therefore,
p ≤ qn + 1. Then, since q2i−1 ≤ q2i − 1, we get that

qn
2
.q2(1+2+...+n)−n ≤ |S| < p23 ≤ (qn + 1)23 ≤ q23n+23,

which implies that 2n2 < 23(n + 1). Therefore, n ∈ {2, 3, 4, ..., 12}. First let
n = 2. Then, p11|q4(q2 − 1)(q4 − 1).It implies that p11|(q − 1)2 or p11|(q + 1)2

or p11|q2 + 1, and so p11 < 2q2. On the other hand q4|(p− 1)3 or q4|(p+ 1)3 or
q4|(p2+1)2 or q4|(p2+p+1) or q4|(p2−p+1) , and so q4 < p5. Therefore, easily
we get a contradiction. If n ∈ {3, 4, 5, ..., 12}, similarly we get a contradiction.
If S ∼= Cn(q), where n ≥ 4, then withe the same manner we get a contradiction.

If S ∼= An(q), then similarly to the above, we get n ∈ {1, 2, ..., 15}. For
example, let n = 5. Then,

p11|(q − 1)5(q + 1)3(q2 + q + 1)2(q2 − q + 1)(q4 + q3 + q2 + q + 1)

so, p11 < 5q4. On the other hand q15|(p−1)3(p+1)3(p2+1)2(p2−p+1)(p2+p+1)
so q15 < p7. Therefore, we get a contradiction. For other case, similarly we get
a contradiction. If S ∼=2 An(q), with the same manner we get a contradiction.

If S ∼= Dn(q), where n ≥ 4, then p11||S|, Therefore, p|q2i − 1, for some
1 ≤ i ≤ n− 1 or p|(qn − 1). Therefore, p < qn, and since q2i−1 < q2i − 1, we get
that

qn(n−1)qn−1(q2(1+2+...+(n−1)−(n−1)) < |S| < p23

and so q(2n(n−1) < |S| < p23. On the other hand, p < qn and hence 2(n−1) < 23.
Therefore, n ∈ {4, 5, 6, ..., 12}. Let n = 6. Then, p11|(q − 1)6(q + 1)6(q2 + q +
1)2(q2 − q + 1)2(q2 + 1)2(q4 + 1)(q4 + q3 + q2 + q + 1)(q4 − q3 + q2 − q + 1) and
so p11 < q7. On the other hand

q30|(p− 1)3(p+ 1)3(p2 + 1)2(p2 + p+ 1)(p2 − p+ 1)

and so, q30 < p7. Therefore, we get a contradiction. Fore some other cases,
similarly we get a contradiction. If S ∼=2 Dn(q), with the same manner we get
a contradiction.

If S ∼= G2(q), then p
11||S|, and hence p11 < q3. On the other hand,

q6|(p− 1)3(p+ 1)3(p2 + 1)2(p2 + p+ 1)(p2 − p+ 1)

so, q6 < p7. Therefore, we get a contradiction. If S ∼= F4(q),
2 F4(q), E6(q), E7(q)

or E8(q), we get a contradiction similarly.
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If S ∼=2 B2(q), where q = 22n+1, then p11|q−1 or p11|q2+1. If p11|q−1, then
|S| < p23 < (q − 1)5, wiche is impossible. If p11|(q2 + 1), then p11|(q2 + 1)/5, so
p11 < q2. On the other hand

q2|4(p− 1)3(p+ 1)3(
p2 + 1

2
)2(p2 + p+ 1)(p2 − p+ 1)

therefore, q2|16(p− 1)3 or q2|16(p+ 1)3, so q < p3, which is impossible.
If S ∼=2 G2(q), where q = 32n+1, then p11||S|, therefore p11|q− 1 or p11|q+1

or p11|q2 − q + 1 orp11|q2 + q + 1, it follows that p11 < q2. On the other hand,
q3|6(p−1)3(p+1)3 or q3|(p2+1)/2 or q3|(p2+p+1) orq3|(p2−p+1) , it follows
that q3 < p7, which is impossible.

Therefore, m ̸= 1.
(ii) m = 11. Then, p||S| and |S|11|p11(p4 − 1)(p6 − 1)(p8 − 1).
Similarly, to the previous case we get a contradiction.

Case 2. Suppose that p2∥|H|. Therefore, p10||K/H|, since K/H is m is a
direct product of m copies of a nonabelian simple group S, it follows that,
m ∈ {1, 2, 5, 10}. Now we consider four subcases:

(i) Let m = 1. Then, p10||S| and |S||p10(p4 − 1)(p6 − 1)(p8 − 1). We claim
that there is no simple group satisfying these conditions.

If S ∼= An, then p < n and n!|p10(p4− 1)(p6− 1)(p8− 1), which is impossible
since p > 7. Also, there is no sporadic simple group satisfying these conditions.

If S is a nonabelian simple group of Lie type over a field of characteristic
p, using the orders of the simple group, we get that, there is no simple group
satisfying the above conditions.

Similarl to case 1, we deduce that, there is no nonababelian simple group of
Lie type over a field GF (q), where p ∤ q, satisfying the above conditions.

Hence, m ̸= 1.
(ii) Let m = 2
Similarly to last case, we deduce S ≇ An. Also, there is no sporadic simple

group satisfying these condition.
If S is a nonabelian simple group of Lie type over a field of characteristic

p, using the order of the simple group, we get that, there is no simple group
satisfying the above conditions.

If S be a nonababelian simple group of Lie type over a field GF (q), where
p ∤ q. We claim that there is no simple group satisfying the above conditions.
Now argue as in (case1), we obtain a contradiction.

Hence m ̸= 2
(iii) Let m = 5. Then, p2||S| and |S|5|p10(p4 − 1)(p6 − 1)(p8 − 1). Using

the classification of finite simple group, we show that, there is no simple group
satisfying these conditions. If S is a nonabelian simple group of Lie type over a
field of characteristic p, using the order of the simple group, we get that, there
is no simple group satisfying the above conditions.

If S ∼= An, then p ≤ n and (n!)5|p10(p4−1)(p6−1)(p8−1), which is impossible
since p > 7. Also, there is no sporadic simple group satisfying these conditions.
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If S be a nonababelian simple group of Lie type over a field GF (q), where
p ∤ q. We claim that there is no simple group satisfying the above conditions.
Now argue as in (case1), we obtain a contradiction.

Hence, m ̸= 5.

(iv) Let m = 10. Then, p||S| and |S|10|p12(p4 − 1)(p6 − 1)(p8 − 1).

If S ∼= An, then p ≤ n and (n!)10|p12(p4 − 1)(p6 − 1)(p8 − 1), which is
impossible since p > 7. Also, there is no sporadic simple group satisfying these
conditions.

If S is a nonabelian simple group of Lie type over a field of characteristic p,
using the orders of the simple groups, we get that, the only possibility cases are
A1(p) and A2(p).

(A) If S ∼= A1(p), then p10(p2 − 1)10|p12(p − 1)3(p + 1)3(p2 + 1)2(p2 + p +
1)(p2 − p+1), therefore (p− 1)7(p+1)7|(p2 +1)2(p2 + p+1)(p2 − p+1), which
is impossible.

(B) If S ∼= A2(p), then |S|10 ≤ p12(p4−1)(p6−1)(p8−1), which is impossible.

If S be a nonababelian simple group of Lie type over a field GF (q), where
p ∤ q. We claim that there is no simple group satisfying the above conditions.
Now argue as in (case1), we obtain a contradiction.

Hence m ̸= 10.

Case 3. If p3∥|H|. Therefore, p9||K/H|, since K/H is m is a direct product of
m copies of a nonabelian simple group S, it follows that, m ∈ {1, 3, 9}. Now we
consider three subcases:

(i) Let m = 1. Then, p9∥|S| and |S||p3(p4 − 1)(p6 − 1)(p8 − 1).

If S ∼= An Similarly to the case1, we get a contradiction. Also, there is no
sporadic simple group satisfying these condition.

If S is a nonabelian simple group of Lie type over a field of characteristic
p, using the orders of the simple group, we get that, there is no simple group
satisfying the above conditions.

If S be a nonababelian simple group of Lie type over a field GF (q), where
p ∤ q. We claim that there is no simple group satisfying the above conditions.
Now argue as in (case1), we obtain a contradiction.

Hence, m ̸= 1.

(ii) Let m = 3. Then, p3||S| and |S|3|p3(p4 − 1)(p6)(p8 − 1)

If S ∼= An Similarly to the case1, we get a contradiction. Also, there is no
sporadic simple group satisfying these condition.

If S is a nonabelian simple group of Lie type over a field of characteristic
p, using the orders of the simple group, we get that, there is no simple group
satisfying the above condition.

If S be a nonababelian simple group of Lie type over a field GF (q), where
p ∤ q. We claim that there is no simple group satisfying the above conditions.
Now argue as in (case1), we obtain a contradiction.

Hence m ̸= 3.

(iii) Let m = 9. Then, p||S| and |S|9|p11(p4 − 1)(p6 − 1)(p8 − 1).
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If S ∼= An Similarly to the case1, we get a contradiction. Also, there is no
sporadic simple group satisfying these condition.

If S is a nonabelian simple group of Lie type over a field of characteristic
p, using the orders of the simple group, we get that, there is no simple group
satisfying the above condition.

If S be a nonababelian simple group of Lie type over a field GF (q), where
p ∤ q. We claim that there is no simple group satisfying the above conditions.
Now argue as in (case1), we obtain a contradiction.

Hence, m ̸= 9.

Case 4. If p4∥|H|. Therefore, p8||K/H|, since K/H is m is a direct product
of m copies of a nonabelian simple group S, it follows that, m ∈ {1, 2, 4, 8}.
Now we consider two subcases:

(i) Let m = 1. Then, p8∥|S| and |S||p4(p4 − 1)(p6 − 1)(p8 − 1).

If S ∼= An, then similar to Case 1, we get a contradiction. Also, there is no
sporadic simple group satisfying these conditions.

If S is a nonabelian simple group of Lie type over a field of characteristic
p, using the orders of the simple group, we get that, there is no simple group
satisfying the above conditions.

If S be a nonababelian simple group of Lie type over a field GF (q), where
p ∤ q. We claim that there is no simple group satisfying the above conditions.
Now argue as in (case1), we obtain a contradiction.

Hence, m ̸= 1.

(ii) Let m = 2. Then, p6∥|S| and |S|2|p6(p4 − 1)(p6 − 1)(p8 − 1).

If S ∼= An Similarly to the case1, we get a contradiction. Also, there is no
sporadic simple group satisfying these condition.

If S is a nonabelian simple group of Lie type over a field of characteristic
p, using the orders of the simple group, we get that, there is no simple group
satisfying the above conditions.

If S be a nonababelian simple group of Lie type over a field GF (q), where
p ∤ q. We claim that there is no simple group satisfying the above conditions.
Now argue as in (case1), we obtain a contradiction.

Hence, m ̸= 2.

(iii) Let m = 4. Then, p3||S| and |S|3|p9(p4 − 1)(p6 − 1)(p8 − 1).

If S ∼= An Similarly to the case1, we get a contradiction. Also, there is no
sporadic simple group satisfying these condition.

If S is a nonabelian simple group of Lie type over a field of characteristic
p, using the orders of the simple group, we get that, there is no simple group
satisfying the above conditions.

If S be a nonababelian simple group of Lie type over a field GF (q), where
p ∤ q. We claim that there is no simple group satisfying the above conditions.
Now argue as in (case1), we obtain a contradiction.

Hence, m ̸= 4.

(iv) Let m = 8. Then, p∥|S| and |S|8|p11(p4 − 1)(p6 − 1)(p8 − 1).
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If S ∼= An Similarly to the case1, we get a contradiction. Also, there is no
sporadic simple group satisfying these condition.

If S is a nonabelian simple group of Lie type over a field of characteristic
p, using the orders of the simple group, we get that, there is no simple group
satisfying the above conditions.

If S be a nonababelian simple group of Lie type over a field GF (q), where
p ∤ q. We claim that there is no simple group satisfying the above conditions.
Now argue as in (case1), we obtain a contradiction.

Hence, m ̸= 8.

Case 5. If p5∥|H|. Therefore, p7||K/H|, since K/H is m is a direct product of
m copies of a nonabelian simple group S, it follows that, m ∈ {1, 7}.

(i) Let m = 1. Then, p7∥|S| and |S||p5(p4 − 1)(p6 − 1)(p8 − 1).

If S ∼= An Similarly to the case1, we get a contradiction. Also, there is no
sporadic simple group satisfying these condition.

If S is a nonabelian simple group of Lie type over a field of characteristic
p, using the orders of the simple group, we get that, there is no simple group
satisfying the above conditions

If S be a nonababelian simple group of Lie type over a field GF (q), where
p ∤ q. We claim that there is no simple group satisfying the above conditions.
Now argue as in (case1), we obtain a contradiction. (ii)Let m = 7. Then, p∥|S|
and |S|7|p11(p4 − 1)(p6 − 1)(p8 − 1).

If S ∼= An, then similar to Case 1, we get a contradiction. Also, there is no
sporadic simple group satisfying these conditions.

If S is a nonabelian simple group of Lie type over a field of characteristic
p, using the orders of the simple group, we get that, there is no simple group
satisfying the above conditions.

If S be a nonababelian simple group of Lie type over a field GF (q), where
p ∤ q. We claim that there is no simple group satisfying the above conditions.
Now argue as in (case1), we obtain a contradiction. Where 6 ≤ i ≤ 11, then
withe the same manner we get contradiction.

If i = 12 then p12||H|, choos χ ∈ Irr(G), such that χ(1) = p12. Let θ be
an irreducible constituent of χH , then χ(1)/θ(1)||G : H|, which implies that
θ(1) = p12. Therefore, χH = θ and by Gallagher’s theorem βχ ∈ Irr(G), for
each β ∈ Irr(G/H). Hence p12β(1) ∈ cd(G), which is contradiction.

By the above discussion, we get that p12||K/H|. Since p12∥|G|, it follows
that K/H is a nonabelian simple group say S, such that p12∥|S| and |S||p12(p4−
1)(p6−1)(p8−1) or K/H ∼= S×S and p6∥|S| and |S|2|p12(p4−1)(p6−1)(p8−1)
or K/H ∼=

∏3
i=1 S and |S|4|p12(p4 − 1)(p6 − 1)(p8 − 1) or K/H ∼=

∏4
i=1 S and

p3∥|S| and |S|4|p12(p4 − 1)(p6 − 1)(p8 − 1) or K/H ∼=
∏6

i=1 S and p2∥|S| and
|S|6|p12(p4 − 1)(p6 − 1)(p8 − 1) or K/H ∼=

∏12
i=1 S and p∥|S| and |S|12|p12(p4 −

1)(p6 − 1)(p8 − 1).

Now, using the classification of finite simple groups and similar to the above
argument, we get K/H ∼= PSL(4, p2). Therefore, |H||G/K| = 1, and hence,
H = 1 and G/K = 1. Hence G ∼= PSL(4, p2), and the main theorem is proved.
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