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On the primary-like dimension of modules

Fatemeh Rashedi
Department of Mathematics

Technical and Vocational University (TVU)

Tehran

Iran

frashedi@tvu.ac.ir

rashedi f@yahoo.com

Abstract. Let R be a ring and let M be a left R-module. In this article, we intro-
duce and study the primary-like dimension of M was defined to be the supremum of
the lengths of all strong-like chains of primary-like submodules of M and denoted by
P.L.dim(M).
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1. Introduction

In this paper, all rings are associative rings with identity, and all modules are
unital and left modules. The symbol ⊆ denotes containment and ⊂ proper con-
tainment for sets. If Q is a submodule of M , then we denote the left annihilator
of a factor module M/N of M by (Q : M). We call M faithful if (0 : M) = 0.
Recall that a left R-module M is said to be prime if Ann(Q) = Ann(M) for
every nonzero submodule Q ofM . A proper submodule Q ofM is called a prime
submodule if the quotient module M/Q is a prime module, i.e., if IN ⊆ Q ,
where N is a submodule of M and I is an ideal of R, then either N ⊆ Q or
IM ⊆ Q. The collection of all prime submodules of M is denoted by Spec(M).
This notion of prime submodule was first introduced and systematically studied
in [4] and recently it has received a good deal of attention from several authors,
see, for example, [1, 2, 10, 11, 15, 18, 20] and many others. There is already a
generalization of classical Krull dimension for modules via prime dimension. In
fact, the notion of prime dimension of a module dim(M) over a commutative
ring dim(M) (denoted by dim(M)), was introduced by Marcelo and Masqué
[14], as the maximum length of the chains of prime submodules of M (see also
[13, 19] for some known results about the prime dimension of modules). A sub-
module Q of M is said to be primary-like if Q ̸= M and whenever rm ∈ Q
(where r ∈ R and m ∈ M) implies r ∈ (Q : M) or m ∈ radQ [5, 6]. An
R-module M is said to be primeful if either M = (0) or M ̸= (0) and the
map ψ : Spec(M) −→ Spec(R/Ann(M)) defined by Q 7−→ (Q : M)/Ann(M)
is surjective[12]. If M/Q is a primeful over R, then

√
(Q :M) = (radQ : M)

[12, Proposition 5.3]. It is easily seen that, if Q is a primary-like submodule
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of Q such that M/Q is a primeful over R, then (Q : M) is a primary ideal of
R and so P =

√
(Q :M) is a prime ideal of R, and in this case Q is called

a P -primary-like submodule of M . The primary-like spectrum of M denoted
by SpecL(M) is defined to be the set of all primary-like submodules Q of M ,
where M/Q is primeful. In this article, when we say that Q is a primary-like
submodue of M , it means that Q is primary-like submodule of M , where M/Q
is primeful; i. e. Q ∈ SpecL(M). Let M be a left R-module and Q,Q′ be two
submodules of M . We say that Q is strongly-like properly contained in Q′, and
write Q ⊂sl Q

′, if Q ⊂ Q′ and also
√

(Q :M) ⊂
√
(Q′ :M). In this case, we

also say that Q′ strongly-like properly contains Q. Also, Q ⊆sl Q
′ means that

Q ⊂sl Q
′ or Q = Q′. A submodule Q of M will be called virtually maximal

primary-like if Q is primary-like and there is no primary-like submodule Q′ such
that Q ⊂sl Q

′.

Let R be a ring and M be a left R-module such that every primary-like
submodule of M is contained in a virtually maximal primary-like submodule.
We define, by transfinite induction, sets Xα of primary-like submodules of M .
To start with, let X−1 be the empty set. Next, consider an ordinal α ≥ 0; if
Xβ has been defined, for all ordinals β < α, let Xα be the set of those primary-
like submodules Q in M such that all primary-like submodules strongly-like
properly containing Q belong to

⋃
β<αXβ. (In particular, X0 is the set of

virtually maximal primary-like submodules of M .) If some Xγ contains all
primary-like submodules of M , we say that P.L.dim(M) exists, and we set
P.L.dim(M)-the primary-like dimension of M -equal to the smallest such γ. We
write P.L.dim(M) = γ as an abbreviation for the statement that P.L.dim(M)
exists and equals γ.

In Section 2, we introduce the notion of a virtual-like chain condition on sub-
modules of a module. In Section 3, the meaning of the primary-like dimension
of modules and related topics are studied.

2. Virtual-like chain conditions

In this section we introduce the notion of virtual-like chain condition on sub-
modules of a module.

Definition 2.1. Let R be a ring and M be a left R-module. A submodule Q of
M will be called:

(1) maximal primary-like if Q is a primary-like submodule of M and there is
no primary-like submodule Q′ of M such that Q ⊂ Q′;

(2) virtually maximal primary-like if Q is a primary-like submodule of M and
there is no primary-like submodule Q′ of M such that Q ⊂sl Q

′ (i.e., Q is
a primary-like submodule of M and for any primary-like submodule Q′ of
M , such that Q ⊆ Q′, we have

√
(Q :M) =

√
(Q′ :M));
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(3) virtually maximal if the factor module M/Q is a homogeneous semisimple
module (see also [16], for definition).

Example 2.1. Let M = Q
⊕

Zp, where Zp is the cyclic group of order p. Then
Spec(M) = {Q

⊕
0, 0

⊕
Zp} by [17, Example 2.6]. Clearly, if N is a submodule

ofM such that N ⊈ Q
⊕

0 or N ⊈ 0
⊕

Zp , then N does not satisfy the primeful
property. Also, If N ⊆ 0

⊕
Zp, then (N :M) = 0 and so N dose not satisfy the

primeful property. Consider the only remaining case N ⊆ Q
⊕

0. In this case,
if (N : M) = pZ, then N = Q

⊕
0 and so Q

⊕
0 ∈ SpecL(M). If (N : M) = 0,

then N does not satisfy the primeful property. The finial case is 0 ⊂ (N :
M) ⊂ pZ. In this case if N is a primary-like submodule satisfying the primeful
property, then (N : M) = piZ for some i ≥ 1, since (N : M) is a primary ideal
of R. Assume i ̸= 1 and (0, b) ∈M\Q

⊕
0. Now, p(0, b) = (0, 0), follows p ∈ piZ

which is a contradiction. Therefore, SpecL(M) = {Q
⊕

0}. Hence, Q
⊕

0 is
maximal primary-like and virtually maximal primary-like submodule.

Definition 2.2. Let R be a ring and M be a left R-module. Then, the chain
Q1 ⊆sl Q2 ⊆sl Q3 ⊆sl · · · of submodules of M is called a strong-like ascending
chain. Also, the chain Q1 sl⊇ Q2 sl⊇ Q3 sl⊇ · · · of submodules of M is called
a strong-like descending chain.

Definition 2.3. Let R be a ring. A left R-module M is said to satisfy the
virtual-like ascending chain condition on submodules (or to be virtually-like
Noetherian or virtual-like acc) if for every strong-like chain Q1 ⊆sl Q2 ⊆sl

Q3 ⊆sl · · · of submodules of M , there is an integer n such that Qi = Qn, for
all i ≥ n. Also, a left R-module M is said to satisfy the virtual-like descending
chain condition on submodules (or to be virtually-like Artinian or virtual-like
dcc) if for every strong-like chain Q1 sl⊇ Q2 sl⊇ Q3 sl⊇ · · · of submodules of
M , there is an integer n such that Qi = Qn, for all i ≥ n.

It is clear that every Noetherian (respectively, Artinian) module is virtually-
like Noetherian (respectively, virtually-like Artinian). In general, the converse
is not true. See the following example

Example 2.2. 1) Let R be a commutative Noetherian (respectively, Artinian)
ring. Then, every R-module is virtually-like Noetherian (respectively, virtually-
like Artinian).

2) For a prime number p, Z(p∞) as a Z-module is virtually-like Noetherian,
since every proper submodule of Z-module Z(p∞) is primary-like. However
SpecL(Z(p∞)) = Spec(Z(p∞)) = ∅. But it is not a Noetherian Z-module.

3) For Z-module Q, Spec(Q) = {0} and SpecL(Q) = ∅, because Q have no
submodules satisfying the primeful property. Therefore, Q as a Z-module is
virtually-like Artinian, but it is not an Artinian Z-module.

4) For a vector space V over a field F , SpecL(V ) = Spec(V )= the set of
all proper vector subspaces of V . Hence, every vector space over a field is both
virtually-like Noetherian and virtually-like Artinian.
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Proposition 2.1. Let M be a left R-module and Q be a proper submodule of
M . Then

Q is max and M/Q is primeful +3

��

Q is max primary-like

��

Q is virtually max +3 Q is max virtually primary-like

��

Q is primary-like

Proof. Assume that Q is maximal. Then M/Q is a simple module, and it
follows that Q is a maximal primary-like submodule. Also, it is clear that every
maximal submodule of M is virtually maximal but, the converse is not true
(for example, every proper submodule of a homogeneous semisimple module is
virtually maximal but it is not necessarily maximal). Clearly, if Q is a maximal
primary-like submodule of M , then Q is virtually maximal primary-like. Now,
if Q is virtually maximal, then M/Q is a homogeneous semisimple module.
Clearly, for every proper submodule Q′ of M ,

√
(Q :M) =

√
(Q′ :M) and it

follows that Q is a virtually maximal primary-like submodule. Finally, it is clear
that every virtually maximal primary-like submodule is primary-like.

LetM be a left R-module andN,L ≤M . We say thatN is strongly properly
contained in L, and write N ⊂s L, if N ⊂ L and also (N : M) ⊂ (L : M). A
submodule Q of is said to be virtually maximal prime if Q is a prime submodule
of M and there is no prime submodule Q′ of Q′ such that Q ⊂s⊂ Q′ (i.e.,
Q is a prime submodule of M and for any prime submodule Q′ of M , such
that Q ⊆ Q′, we have (Q : M) = (Q′ : M)). A left R-module M is said to
satisfy the virtual ascending chain condition on submodules (or to be virtually
Noetherian or virtual acc) if for every strong chain Q1 ⊆s Q2 ⊆s Q3 ⊆s · · · of
submodules of M , there is an integer n such that Qi = Qn, for all i ≥ n. Also,
a left R-module M is said to satisfy the virtual descending chain condition on
submodules (or to be virtually Artinian or virtual dcc) if for every strong chain
Q1 s⊇ Q2 s⊇ Q3 s⊇ · · · of submodules of M , there is an integer n such that
Qi = Qn, for all i ≥ n (see [3]).

Proposition 2.2. Let R be a ring. Then, the following statements are equiva-
lent:

1) R has acc (respectively, dcc) on two-sided ideals;

2) each R-module is virtually-like Noetherian (respectively, virtually-lkie Arti-
nian);

3) the left R-module R is virtually-like Noetherian (respectively, virtually-like
Artinian);
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4) the left R-module R is virtually Noetherian (respectively, virtually Arti-
nian);

5) each R-module is virtually-like Noetherian (respectively, virtually-like Arti-
nian);

6) each R-module is virtually Noetherian (respectively, virtually Artinian).

Proof. (1) ⇒ (2) ⇒ (3) ⇒ (4) is clrear.

(1) ⇔ (4) ⇔ (5) ⇔ (6) follows from [3, Proposition 2.1].

Corollary 2.1. Let R be a commutative ring. Then, the following statements
are equivalent:

1) R is Noetherian (respectively, Artinian);

2) each R-module is virtually-like Noetherian (respectively, virtually-like Arti-
nian);

3) the R-module R is virtually-like Noetherian (respectively, virtually-like
Artinian);

4) the R-module R is virtually Noetherian (respectively, virtually Artinian);

5) each R-module is virtually-like Noetherian (respectively, virtually-like Arti-
nian);

6) each R-module is virtually Noetherian (respectively, virtually Artinian).

Proof. Follows from Proposition 2.2.

Definition 2.4. An R-module M is said to satisfy the virtual-like maximum
condition (respectively, virtual-like minimum condition) on submodules if every
nonempty set of submodules of M contains a maximal (respectively, minimal)
element with respect to strong inclusion ⊆sl (respectively, sl⊇).

Proposition 2.3. An R-module M is virtually-like Noetherian (respectively,
virtually-like Artinian) if and only if M satisfies virtual-like maximum condition
(respectively, virtual-like minimum condition) on submodules.

Proof. Is clear.

Proposition 2.4. Let 0 → M1 → M2 → M3 → 0 be a short exact sequence
of modules. Then, M2 is virtually-like Noetherian (respectively, virtually-like
Artinian) if and only if M1 and M2 are virtually-like Noetherian (respectively,
virtually-like Artinian).

Proof. Is clear.
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Corollary 2.2. Let N be a submodule of an R-module M . Then, M satisfies
the strong-like ascending (respectively, descending) chain condition if and only
if so do N and M/N .

Proof. Apply Proposition 2.4 to the sequence

0 → N
⊆→M →M/N → 0.

Corollary 2.3. Let M1,M2, · · · ,Mn be modules. Then, the direct sum M1 ⊕
M2⊕· · ·⊕Mn satisfies the strong-like ascending (respectively, descending) chain
condition on submodules if and only if so does each Mi.

Proof. Use induction on n. If n = 2, apply Proposition 2.4 to the following
sequence

0 →M1
ι1→M1 ⊕M2

π2→M2 → 0.

3. Primary-like dimension for modules

In this section, we introduce and study a new generalization of the Krull dimen-
sion for modules.

Definition 3.1. Let R be a ring and M be a left R-module such that every
primary-like submodule of M is contained in a virtually maximal primary-like
submodule. We define, by transfinite induction, sets Xα of primary-like sub-
modules of M . To start with, let X−1 be the empty set. Next, consider an
ordinal α ≥ 0; if Xβ has been defined, for all ordinals β < α, let Xα be the set
of those primary-like submodules Q in M such that all primary-like submodules
strongly-like properly containing Q belong to

⋃
β<αXβ. (In particular, X0 is the

set of virtually maximal primary-like submodules of M .) If some Xγ contains
all primary-like submodules of M , we say that P.L.dim(M) exists, and we set
P.L.dim(M)-the primary-like dimension of M -equal to the smallest such γ. We
write P.L.dim(M) = γ as an abbreviation for the statement that P.L.dim(M)
exists and equals γ.

Proposition 3.1. Let R be a ring andM be a left R-module with the virtual-like
acc on primary-like submodules. Then P.L.dim(M) exists.

Proof. Define the sets Xγ of primary-like submodules as in the definition above
of primary-like dimension. Since there is a bound the cardinalities of these sets
(e.g., 2cardM ), the transfinite chain X−1 ⊆ X0 ⊆ X1 ⊆ · · · cannot be properly
increasing forever. Hence, there exists an ordinal γ such that Xγ = Xγ+1.
If P.L.dim(M) dose not exist, then Xγ dose not contain all the primary-like
submodules ofM . Using the virtual-like acc on primary-like submodules, there is
a primary-like submodule Q of M virtually maximal with respect to the property
Q /∈ Xγ . Hence, all primary-like submodules strongly-like properly containing
Q lie in Xγ . But, then Q ∈ Xγ+1 = Xγ , a contradiction.
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Corollary 3.1. Let R be aring and M be a left R-module such that the set
{P ∈ Spec(R)|P =

√
(Q :M), Q ∈ SpecL(M)} has acc. Then P.L.dim(M)

exists.

Proof. Follows from Proposition 3.1.

Lemma 3.1. Let M be an R-module for which P.L.dim(M) exists. Then, for
any submodule N ofM , P.L.dim(M/N) exists and is no larger than P.L.dim(M).

Proof. Note submodule Q/N of M/N is primary-like if and only if submodule
Q of M is primary-like and N ⊆ Q.

Corollary 3.2. Let M be an R-module for which P.L.dim(M) exists. If Q and
Q′ are primary-like submodules ofM such that Q ⊂sl Q

′, then P.L.dim(M/Q′) ≤
P.L.dim(M/Q).

Proof. Follows from Lemm 3.1.

Theorem 3.1. Let M be a left R-module. Then, P.L.dim(M) exists if and only
if M has virtual-like acc on primary-like submodules.

Proof. Suppose that P.L.dim(M) = γ, where γ is an ordinal number. If Q1 ⊂sl

Q2 ⊂sl Q3 ⊂sl · · · is a strong-like assenting chain of primary-like submodules of
M , then by Lemma 3.1 and Corollary 3.2, we have

· · · < P.L.dim(M/Q3) < P.L.dim(M/Q2) < P.L.dim(M/Q1) < γ,

which is impossible. Therefore, M has virtual-like acc on primary-like submod-
ules. The converse is immediate from Proposition 3.1.

Suppose that the module M contains a primary-like submodule Q. Then,
the virtual-like height of Q, denoted by vl.ht(Q), is the greatest nonnegative
integer n such that there exists a strong-like chain of primary-like submodules
of M

Q0 ⊂sl Q1 ⊂sl · · · ⊂sl Qn = Q,

and vl.ht(Q) = ∞ if no such n exists.
A prime ring R is called left bounded if for each regular element r in R there

exists an ideal I of R and a regular element s such that Rs ⊆ I ⊆ Rr. A general
ring R is called left fully bounded if every prime homomorphic image of R is
left bounded. A ring R is called a left FBN-ring if R is left fully bounded and
left Noetherian. It is well known that if R is a PI-ring (ring with polynomial
identity) and P is a prime ideal of R, then the ring R/P is (left and right)
bounded and (left and right) Goldie [18, 13.6.6].

Proposition 3.2. Let R be a PI-ring (or an FBN-ring) and let M be an R-
module such that every primary-like submodule of M is contained in a maximal
submodule of M . If P.L.dim(M) = n <∞, then for each primary-like submod-
ule Q of M such that vl.ht(Q) = n, the factor module M/Q is homogeneous
semisimple.
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Proof. Suppose that Q is a primary-like submodule of M with vl.ht(Q) = n
and Q′ is a maximal submodule of M such that Q ⊆ Q′. Since P.L.dim(M) = n,
so that P =

√
(Q :M) =

√
(Q′ :M) is a maximal ideal of R and M/Q′ is a

faithful simple R/P -module. The ring R/P is left bounded, left Goldie, thus,
[7, Proposition 8.7] gives that R/P embeds as a left R-module in a finite direct
sum of copies ofM/Q′. It follows that the ring R/P is left Artinian, and, hence,
R/P is simple Artinian. Thus, the left R/P -module M/Q is a direct sum of
isomorphic simple modules. It follows that M/Q is a homogeneous semisimple
R-module.

Corollary 3.3. Let R be a PI-ring and M be a finitely generated R-module
such that P.L.dim(M) = n < ∞. Then, for each primary-like submodule Q of
M such that vl.ht(Q) = n, the factor module M/Q is homogeneous semisimple.

Proof. It follows from Proposition 3.2.

Lemma 3.2. Let M be an R-module. Then, P.L.dim(M) = 0 if and only if
SpecL(M) ̸= ∅; and every primary-like submodule of M is a virtually maximal
primary-like submodule.

Proof. Is clear.

A ring R is called a left FBN-ring if R is left fully bounded and left Noethe-
rian.

A submodule Q of M is said to be virtually maximal prime if Q is a prime
submodule of M and there is no prime submodule Q′ of M such that Q ⊂s Q

′

(i.e., Q is a prime submodule of M and for any prime submodule Q′ of M , such
that Q ⊆ Q′, we have (Q :M) = (Q′ :M)).

Lemma 3.3. Let R be a PI-ring (or an FBN-ring) and let M be an R-module
in which every proper submodule is contained in a maximal submodule. Then,
for each proper submodule Q of M such that M/Q is primeful, the following
statements are equivalent.

1) Q is a virtually maximal submodule.

2) Q is a virtually maximal prime submodule.

3) Q is a virtually maximal primary-like submodule.

Proof. (1) ⇒ (2) ⇒ (3) is clear.

(3) ⇒ (1) Assume that Q is a virtually maximal primary-like submodule of
M . Then, there exists a maximal submodule Q′ of M such that Q ⊂ Q′. It
follows that

√
(Q :M) =

√
(Q′ :M) = P and M/Q′ is a simple R/P -module.

Since R is a PI-ring (or an FBN-ring), then the ring R/P is a left bounded, left
Goldie ring. Now, by [7, Proposition 8.7] we have that R/P embeds as a left
R-module in a finite direct sum of copies of M/Q′. It follows that the ring R/P
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is left Artinian, and, hence, R/P is simple Artinian. Thus, the left R/P -module
M/Q is a direct sum of isomorphic simple modules. It follows that M/Q is a
homogeneous semisimple R-module; i.e., Q is a virtually maximal submodule of
M .

Corollary 3.4. Let R be a PI-ring (or an FBN-ring) and let M be an R-
module in which every proper submodule is contained in a maximal submodule
and SpecL(M) ̸= ∅. Then, for each proper submodule Q of M such that M/Q
is primeful, the following statements are equivalent.

1) Q is a virtually maximal submodule.

2) Q is a virtually maximal prime submodule.

3) Q is a virtually maximal primary-like submodule.

4) P.L.dim(M) = 0.

Proof. Follows from Lemmas 3.2 and 3.3.

4. Conclusion

In this paper, we introduced the notion of virtual-like ascending and descending
chains condition on submodules of a module where every Noetherian (respec-
tively, Artinian) module is virtually-like Noetherian (respectively, virtually-like
Artinian) and it is shown that the converse is not generally true Example 2.2.

The connections between maximal, virtually maximal, maximal primary-
like, maximal virtually primary-like and primary-like submodules are investi-
gated Proposition 2.1. Also, exact sequences of modules, the quotient structure
and the direct sum of modules are considered and studied under this concept
Proposition 2.4 and Corollaries 2.2 and 2.3.

Moreover, the primary-like dimension of a module is defined and shown that
it there exists for every left R-module with the virtual-like acc on primary-like
submodules Proposition 3.1. Furthermore, links of the primary-like dimension
of a module and the related quotient structure and also primary-like submodules
are investigated and it is shown that existence of the primary-like dimension of a
module is depended to existence of virtual-like acc on primary-like submodules
Theorem 3.1. And the connection between the finiteness of the primary-like
dimension of modules and homogeneity and semi-simplicity of the related factor
modules Proposition 3.2. Finally the connection between virtually maximal,
virtually maximal prime and virtually maximal primary-like submodules in R-
modules with a PI-ring (or an FBN-ring) R is indicated Proposition 3.3.
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