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Abstract. In this present paper, we consider a class of Lorentzian almost paracontact
metric manifolds namely Lorentzian para-Kenmotsu (briefly LP -Kenmotsu) manifolds
admitting a pseudo-projective curvature tensor W (X,Y ). We study and have shown
that the scalar curvature of Lorentzian para-Kenmotsu manifold is constant if and only if
the time like vector field ξ is harmonic, whenever the LP -Kenmotsu manifold satisfying
R(X,Y ) ·W = 0 is not an Einstein manifold. Further we have shown that Lorentzian
para-Kenmotsu manifolds admitting an irrotational pseudo-projective curvature tensor
and a conservative pseudo-projective curvature tensor are an Einstein manifolds of
constant scalar curvature. At the end, we construct an example of a 3-dimensional
LP -Kenmotsu manifold admitting a pseudo-projective curvature tensor which verifies
the results discussed in the present work.

Keywords: Lorentzian para-Kenmotsu manifolds, pseudo-projective curvature tensor,
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1. Introduction

In 1989, Matsumoto [8] introduced the notion of Lorentzian paracontact met-
ric manifolds and defined Lorentzian para-Sasakian (LP -Sasakian) manifolds,
which are regarded as a special kind of these Lorentzian paracontact manifolds.
Further, these manifolds have been widely studied by many geometers such as
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De, Matsumoto and Shaikh [7], Matsumoto and Mihai [9], Mihai and Rosca [10],
Mihai, Shaikh and De [11], Venkatesha and Bagewadi [16], Venkatesha, Pradeep
Kumar and Bagewadi [17] and obtained several results on these manifolds.

In 1995, Sinha and Sai Prasad [15] defined a class of almost paracontact
metric manifolds namely para-Kenmotsu (briefly P -Kenmotsu) and special para-
Kenmotsu (briefly SP -Kenmotsu) manifolds in similar to P -Sasakian and SP -
Sasakian manifolds. In 2018, Abdul Haseeb and Rajendra Prasad defined a
class of Lorentzian almost paracontact metric manifolds namely Lorentzian
para-Kenmotsu (briefly LP -Kenmotsu) manifolds [1] and they studied ϕ-semi-
symmetric LP -Kenmotsu manifolds with a quarter-symmetric non-metric con-
nection admitting Ricci solitons [13].

On the other hand, in 1970 [12], Pokhariyal and Mishra introduced new
tensor fields, called the Weyl-projective curvature tensor W2 of type (1, 3) and
the tensor field E on a Riemannian manifold. In our earlier work, we consider
LP -Kenmotsu manifolds admitting the Weyl-projective curvature tensorW2 and
shown that these manifolds admitting a Weyl-flat projective curvature tensor, an
irrotational Weyl-projective curvature tensor and a conservative Weyl-projective
curvature tensor are an Einstein manifolds of constant scalar curvature [14].

The idea of Weyl-projective curvature tensor has been extended by Bhagawat
Prasad [6], and in 2002 he defined the pseudo-projective curvature tensor W on
a Riemannian manifold Mn of dimension n as:

(1)
W (X,Y )Z = aR(X,Y )Z + b[S(Y,Z)X − S(X,Z)Y ]

− r

n

[ a

n− 1
+ b

]
[g(Y,Z)X − g(X,Z)Y ],

where a and b are constants such that a, b ̸= 0. In the above expression R(X,Y )
is known to be the Riemannian curvature tensor, S is the Ricci tensor and r is
the scalar curvature with respect to the Levi-Civita connection.

The pseudo-projective curvature tensor on a Riemannian manifold was widely
studied by Bagewadi et al., [2], Bagewadi and Venkatesha [3, 4] and by many
geometers. In 2008, Bagewadi et al., [5] have extended these concepts to
Lorentzian paracontact structures and studied LP -Sasakian manifolds admit-
ting this tensor field of particular type. They have shown that the LP -Sasakian
manifold is an Einstein manifold if the pseudo projective curvature tensor ad-
mitted by the manifold is irrotational.

Motivated by these studies, in the present paper, we explore the geometrical
significance of LP -Kenmotsu manifolds admitting the pseudo-projective curva-
ture tensor. The present paper is organized as follows: Section 2 is equipped
with some prerequisites about Lorentzian para-Kenmotsu manifolds. In section
3, we consider Lorentzian para-Kenmotsu manifolds admitting R(X,Y ) ·W = 0
and shown that it is an η-Einstein manifold of constant scalar curvature n(n−1).
As a special case, we have shown that the scalar curvature of Lorentzian para-
Kenmotsu manifold is constant if and only if the time like vector field ξ is
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harmonic, whenever the LP -Kenmotsu manifold satisfying R(X,Y ) ·W = 0 is
not an Einstein manifold.

In the sections 4 and 5, we study geometrical properties of these manifolds,
and in particular, we have shown that Lorentzian para-Kenmotsu manifolds
admitting an irrotational pseudo-projective curvature tensor and a conservative
pseudo-projective curvature tensor are an Einstein manifolds of constant scalar
curvature. Finally, in section 6, we construct an example of a 3-dimensional LP -
Kenmotsu manifold admitting pseudo-projective curvature tensor which verifies
the results discussed in the present work.

2. Preliminaries

An n-dimensional differentiable manifold Mn admitting a (1, 1) tensor field
ϕ, contravariant vector field ξ, a 1-form η and the Lorentzian metric g(X,Y )
satisfying

(2) ϕ2X = X + η(X)ξ, g(ϕX, ϕY ) = g(X,Y ) + η(X)η(Y ),

and

(3) η(ξ) = −1, ϕξ = 0, η(ϕX) = 0, g(X, ξ) = η(X), rank ϕ = n− 1,

for arbitrary vector fields X, Y on Mn, is called Lorentzian almost paracontact
manifold [8].

In a Lorentzian almost paracontact manifold, for any vector fields X, Y on
Mn, we have

(4) Φ(X,Y ) = Φ(Y,X),

where Φ(X,Y ) = g(X,ϕY ) is a symmetric (0, 2) tensor field.
A Lorentzian almost paracontact manifold Mn is called Lorentzian para-

Kenmotsu manifold if [1]

(5) (∇Xϕ)Y = −g(ϕX, Y )ξ − η(Y )ϕX,

for all X, Y ∈ χ(Mn), where χ(Mn) is the set of all differentiable vector fields on
Mn and ∇ is known to be the operator of covariant differentiation with respect
to the Lorentzian metric g.

In a Lorentzian para-Kenmotsu manifold, the following relations hold good [1]:

∇Xξ = −ϕ2X = −X − η(X)ξ,(6)

(∇Xη)Y = −g(X,Y )− η(X)η(Y ),(7)

g(R(X,Y )Z, ξ) = η(R(X,Y )Z) = g(Y,Z)η(X)− g(X,Z)η(Y ),(8)

R(ξ,X)Y = g(X,Y )ξ − η(Y )X,(9)

R(X,Y )ξ = η(Y )X − η(X)Y,(10)

S(X, ξ) = (n− 1)η(X)(11)
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and

(12) S(ϕX, ϕY ) = S(X,Y ) + (n− 1)η(X)η(Y ),

for any vector fields X, Y and Z on Mn.

By putting Z = ξ in (1) and on simplification by using (3), (10) and (11),
we get

(13) W (X,Y )ξ = [a+ (n− 1)b]
[
1− r

n(n− 1)

]
[η(Y )X − η(X)Y ].

The above expression can be written as:

(14) W (X,Y )ξ = k[η(Y )X − η(X)Y ],

where

k = [a+ (n− 1)b]
[
1− r

n(n− 1)

]
.

3. Pseudo-projective semisymmetric LP -Kenmotsu manifolds

Let us consider an LP -Kenmotsu manifold (Mn, g) satisfying the condition [3, 4]

(15) R(X,Y ) ·W = 0,

for any arbitrary vector fields X, Y on Mn. Then the manifold Mn is called as
the pseudo-projective semisymmetric LP -Kenmotsu manifold (or) simply called
as W -semisymmetric LP -Kenmotsu manifold.

On the other hand, we have

(16)
(R(X,Y ) ·W )(U, V )Z =R(X,Y )W (U, V )Z −W (R(X,Y )U, V )Z

−W (U,R(X,Y )V )Z −W (U, V )R(X,Y )Z,

for any vector fields X, Y , Z, U , V ∈ χ(Mn). Then, from (15) and (16), we
have

(17)
g(R(ξ, Y )W (U, V )Z, ξ)− g(W (R(ξ, Y )U, V )Z, ξ)

− g(W (U,R(ξ, Y )V )Z, ξ)− g(W (U, V )(R(ξ, Y )Z, ξ)) = 0.

By virtue of (8) and (9), we get each term of the above expression as:

(18)

(a) g(R(ξ, Y )W (U, V )Z, ξ) = −W
′
(U, V, Z, Y )− η(Y )η(W (U, V )Z),

(b) g(W (R(ξ, Y )U, V )Z, ξ) = g(Y,U)η(W (ξ, V )Z)− η(U)η(W (Y, V )Z),

(c) g(W (U,R(ξ, Y )V )Z, ξ) = η(V )η(W (U, Y )Z)− g(Y, V )η(W (U, ξ)Z),

(d) g(W (U, V )(R(ξ, Y )Z, ξ)) = g(Y,Z)η(W (U, V )ξ)

− η(Z)η(W (U, V )Y ) = 0,
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for arbitrary vector fields U , V , Z, Y ∈ χ(Mn), where

W
′
(U, V, Z, Y ) = g(W (U, V )Z, Y ).

By substituting the above values from (18) in (17), we obtain that

(19)

−W
′
(U, V, Z, Y )− η(Y )η(W (U, V )Z)− g(Y,U)η(W (ξ, V )Z)

+ η(U)η(W (Y, V )Z)− g(Y, V )η(W (U, ξ)Z) + η(V )η(W (U, Y )Z)

− g(Y, Z)η(W (U, V )ξ) + η(Z)η(W (U, V )Y ) = 0.

Clearly it follows from (13) that

(20) η(W (U, V )ξ) = 0,

where U , V ∈ χ(Mn).

Now, by using (20) in (19), we get

(21)

−W
′
(U, V, Z, Y )− η(Y )η(W (U, V )Z)− g(Y,U)η(W (ξ, V )Z)

+ η(U)η(W (Y, V )Z)− g(Y, V )η(W (U, ξ)Z) + η(V )η(W (U, Y )Z)

+ η(Z)η(W (U, V )Y ) = 0,

for any vector fields U , V , Z, Y ∈ χ(Mn).

Let {ei = 1 : i = 1, 2, 3, · · · , n} be an orthonormal basis of the tangent space
at any point of the manifold.

By putting U = Y = ei in (21) we get that

W
′
(ei, V, Z, ei) + g(ei, ei)η(W (ξ, V )Z) + η(V )η(W (ei, ξ)Z)

− η(V )η(W (ei, ei)Z)− η(Z)η(W (ei, V )ei) = 0.(22)

On further simplification of the above equation, we have

(23) W
′
(ei, V, Z, ei) + g(ei, ei)η(W (ξ, V )Z)− η(Z)η(W (ei, V )ei) = 0,

as η(W (ei, ei)Z) = 0.

Now, by taking summation over 1 ≤ i ≤ n in (23), we get

(24)

n∑
i=1

ϵiW
′
(ei, V, Z, ei)+(n−1)η(W (ξ, V )Z)−η(Z)

n∑
i=1

ϵiη(W (ei, V )ei) = 0,

where ϵi = g(ei, ei).
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Now, by using (9) and (1), the terms of the above expression are obtained
as:

(25)

(a)
n∑

i=1

ϵiW
′
(ei, V, Z, ei) = [a+ (n− 1)b]S(V,Z)

− r

n

[
a+ (n− 1)b

]
g(V,Z),

(b) η(W (ξ, V )Z) =
[
− a+

r

n

( a

n− 1
+ b

)]
[g(V,Z) + η(V )η(Z)

− bS(V,Z)− b(n− 1)η(V )η(Z)],

(c)

n∑
i=1

ϵiη(W (ei, V )ei) = [a− b]
[ r
n
− (n− 1)

]
η(V ).

By substituting the above values in (24), we get

(26) aS(V,Z)− a(n− 1)g(V,Z) + b[r − n(n− 1)]η(V )η(Z) = 0,

which can be written as

(27) S(V,Z) = (n− 1)g(V,Z)− b

a
[r − n(n− 1)]η(V )η(Z),

for any vector fields V and Z on Mn. Thus, we have the following assertion.

Theorem 3.1. An LP -Kenmotsu manifold (Mn, g) satisfying the condition
R(X,Y ) ·W = 0 is an η-Einstein manifold.

Further, by taking Z = ξ in (27) and on simplification by using (3) and (11),
we obtain that r = n(n− 1) and this leads to the following assertion.

Corollary 3.1. An LP -Kenmotsu manifold (Mn, g) satisfying the condition
R(X,Y ) ·W = 0 is of constant scalar curvature n(n− 1).

Now, let us consider a special case in which the LP -Kenmotsu manifold
admitting R(X,Y ) · W = 0 is not an Einstein manifold. Then, from (27) it
follows that r ̸= n(n− 1); otherwise it is an Einstein manifold.

On differentiating (27) covariantly along X and then on using (7), we get

(∇XS)(V,Z) = − b

a
dr(X)η(V )η(Z)

− b

a
[r − n(n− 1)][g(X,V )η(Z) + g(X,Z)η(V ) + 2η(X)η(V )η(Z)].(28)

By putting X = Z = ei in the above expression and on taking summation
for 1 ≤ i ≤ n, we obtain that

(29) dr(V ) =
b

a

[
dr(ξ)− [r − n(n− 1)Ψ]

]
η(V ),

where Ψ = 1 +
∑n

i=1 ϵig(ei, ei).
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On replacing V with ξ in the above expression (29), we get that

(30) dr(ξ) =
b

a+ b
[r − n(n− 1)]Ψ.

From (29) and (30) we obtain

(31) dr(V ) =
b

a+ b
[n(n− 1)− r]Ψη(V ).

If r is constant then (31) yields either r = n(n−1) or Ψ = 0. But as r ̸= n(n−1),
we must have Ψ = 0, which means that the vector field ξ is harmonic.

Again, if Ψ = 0, then from (31) it follows that r is constant. Thus we can
state the following:

Theorem 3.2. If the LP -Kenmotsu manifold admitting the condition R(X,Y ) ·
W = 0 is not an Einstein manifold, then the scalar curvature of the manifold is
constant if and only if the time like vector field ξ is harmonic.

4. Irrotational pseudo-projective curvature tensor in LP -Kenmotsu
manifolds

Definition 4.1. The rotation (curl) of pseudo-projective curvature tensor W
on a Riemannian manifold is given by [2]

Rot W = (∇UW )(X,Y )Z + (∇XW )(U, Y )Z

+ (∇Y W )(X,U)Z − (∇ZW )(X,Y )U,(32)

for all X, Y , U , Z ∈ χ(Mn).
In virtue of Bianchi’s second identity, we have

(33) (∇UW )(X,Y )Z + (∇XW )(U, Y )Z + (∇Y W )(X,U)Z = 0.

Therefore, (32) reduces to

(34) Rot W = −(∇ZW )(X,Y )U,

for all X, Y , U , Z ∈ χ(Mn).
Now, let us suppose that the pseudo-projective curvature tensor is irrota-

tional. Then curl W = 0 and so by (34) we get

−(∇ZW )(X,Y )U = 0,

which implies the following:

(35) ∇Z(W (X,Y )U) = W (∇ZX,Y ) +W (X,∇ZY )U +W (X,Y )∇ZU

for any arbitrary vector fields X, Y , U , Z ∈ χ(Mn).
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By replacing U = ξ in (35), we have

(36) ∇Z(W (X,Y )ξ) = W (∇ZX,Y )ξ +W (X,∇ZY )ξ +W (X,Y )∇Zξ.

Using (14) in (36) and on simplifying by making use of (6), we get

(37) W (X,Y )ϕ2Z = −k[g(Z, ϕY )X − g(Z, ϕX)Y ],

which on further simplification by using (2) and (14), we get

(38) W (X,Y )Z = k[g(Y, Z)X − g(X,Z)Y ],

for any vector fields X, Y , Z ∈ χ(Mn). Thus, we can state:

Lemma 4.1. If the pseudo-projective curvature tensor W in an LP -Kenmotsu
manifold is irrotational, then W is given by the expression (38).

Further, in view of (1) and (38) we get

aR(X,Y )W = [a+ (n− 1)b][g(Y,W )X − g(X,W )Y ]

− b[S(Y,W )X − S(X,W )Y ],(39)

where X, Y , Z ∈ χ(Mn).

Let {ei = 1 : i = 1, 2, 3, · · · , n} be an orthonormal basis of the tangent space
at any point of the manifold. Then, by putting Y = Z = ei in (39), we get that

aR(X, ei)W = [a+ (n− 1)b][η(W )X − g(X,W )ei]

− b[S(ei,W )X − S(X,W )ei].(40)

By taking the inner product of (40) with W and on taking summation over
1 ≤ i ≤ n we get

(41) S(X,W ) = (n− 1)g(X,W ).

This proves that the manifold is Einstein.

Finally, by taking X = W = ei in (41) and on taking summation from 1 to
n we obtain

(42) r = n(n− 1).

Hence we can state that:

Theorem 4.1. If the pseudo-projective curvature tensor in an LP -Kenmotsu
manifold is irrotational, then the manifold is Einstein and the scalar curvature
under such conditions is given by n(n− 1).
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5. Conservative pseudo-projective curvature tensor in LP -Kenmotsu
manifolds

On differentiating (1) with respect to U , we get

(∇UW )(X,Y )Z = a(∇UR)(X,Y )Z + b[(∇US)(Y,Z)X − (∇US)(X,Z)Y ]

− dr(U)

n

[ a

n− 1
+ b

]
[g(Y,Z)X − g(X,Z)Y ],(43)

which on contraction with respect to U becomes

(div W )(X,Y )Z = a[(divR)(X,Y )Z] + b[(∇XS)(Y,Z)− (∇Y S)(X,Z)]

− 1

n(n− 1)
[a+ (n− 1)b][g(Y,Z)dr(X)− g(X,Z)dr(Y )],(44)

for arbitrary vector fields X, Y , Z, U ∈ χ(Mn).
Let us suppose that the pseudo-projective curvature tensor is conservative,

i. e., div W = 0. Then, (44) can be written as:

(a+ b)[(∇XS)(Y, Z)− (∇Y S)(X,Z)]

=
1

n(n− 1)
[a+ (n− 1)b][g(Y,Z)dr(X)− g(X,Z)dr(Y )].(45)

By putting X = ξ in (45), we have

(a+ b)[(∇ξS)(Y, Z)− (∇Y S)(ξ, Z)]

=
1

n(n− 1)
[a+ (n− 1)b][g(Y,Z)dr(ξ)− g(ξ, Z)dr(Y )].(46)

On the other hand, since ξ is a Killing vector and the scalar curvature r remains
invariant, we have dr(ξ) = 0.

Also, we have

(∇ξS)(Y,Z) = ξS(Y,Z)− S(∇ξY,Z)− S(Y,∇ξZ),

and
(∇Y S)(ξ, Z) = ∇Y S(ξ, Z)− S(∇Y ξ, Z)− S(ξ,∇Y Z),

for any vector fields Y , Z ∈ χ(Mn).
By virtue of the above, the relation (46) becomes

(a+ b)[−∇Y (S(ξ, Z)) + S(∇Y ξ, Z) + S(ξ,∇Y Z)]

=
1

n(n− 1)
[a+ (n− 1)b][−η(Z)dr(Y )],(47)

which on using (6) reduces to

(a+ b)[−∇Y {(n− 1)η(Z)}+ S(−ϕ2Y,Z) + (n− 1)η(∇Y Z)]

=
1

n(n− 1)
[a+ (n− 1)b][−η(Z)dr(Y )],(48)
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and further it is simplified to

(a+ b)[−(n− 1)∇Y {η(Z)} − S(ϕY, ϕZ) + (n− 1)η(∇Y Z)]

=
1

n(n− 1)
[a+ (n− 1)b][−η(Z)dr(Y )],(49)

for arbitrary vector fields Y , Z ∈ χ(Mn).
By putting Z = ϕZ in (49), we get

(50) (a+ b)[−S(ϕY, ϕ2Z) + (n− 1)η(∇Y (ϕZ))] = 0.

If a+ b ̸= 0, then (50) becomes

(51) S(ϕY,Z) = (n− 1)g(ϕY,Z).

By putting Z = ϕZ in (51), we get

(52) S(ϕY, ϕZ) = (n− 1)g(ϕY, ϕZ),

and this implies that

(53) S(Y,Z) = (n− 1)g(Y, Z),

which on contracting gives

(54) r = n(n− 1), where

(55) r =

3∑
i=1

ϵi S(ei, ei) and ϵi = g(ei, ei), which is constant.

So, one can state that:

Theorem 5.1. An LP -Kenmotsu manifold admitting a conservative pseudo-
projective curvature tensor is an Einstein manifold and it is of constant scalar
curvature.

6. Example

Example 6.1. We consider a 3-dimensional manifold M3 = {(x, y, z) ∈ R3},
where (x, y, z) are the standard coordinates in R3. Let e1, e2 and e3 be the
vector fields on M3 given by

(56) e1 = x
∂

∂x
= ξ, e2 = x

∂

∂y
, e3 = x

∂

∂z
.

Clearly, {e1, e2, e3} is a set of linearly independent vectors for each point of M3

and hence form a basis of χ(M3).
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The Lorentzian metric g(X,Y ) is defined by:

g(ei, ej) =


−1, if i = j = 1

1, if i = j = 2 or 3

0, if i ̸= j; i, j = 1, 2, 3.

Let η be the 1-form defined by:

η(Z) = g(Z, e1), for any Z ∈ χ(M3).

Let ϕ be a (1, 1)-tensor field on M3 defined by:

ϕ(e1) = 0, ϕ(e2) = −e2, ϕ(e3) = −e3 and ϕ2(e1) = 0, ϕ2(e2) = e2, ϕ
2(e3) = e3.

The linearity of ϕ and g(X,Y ) yields that

η(e1) = −1, ϕ2(Z) = Z + η(Z)e1 and g(ϕX, ϕY ) = g(X,Y ) + η(X)η(Y ),

for any vector fields X, Y, Z ∈ χ(M3). Thus, for e1 = ξ, the structure (ϕ, ξ, η, g)
defines a Lorentzian almost paracontact structure on M3.

Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric
g. Then, we have [14][

e1, e2
]
= e2, [e1, e3] = e3, [e2, e3] = 0.

The Koszul’s formula is defined by

2g(∇XY,Z) = Xg(Y,Z) + Y g(Z,X)− Zg(X,Y )

− g(X, [Y, Z])− g(Y, [X,Z]) + g(Z, [X,Y ]).(57)

By using the above Koszul’s formula and on taking e1 = ξ, we get the follow-
ing [14]:

∇e1e1 = 0,∇e1e2 = 0,∇e1e3 = 0,

∇e2e1 = −e2,∇e2e2 = −e1,∇e2e3 = 0,(58)

∇e3e1 = −e3,∇e3e2 = 0,∇e3e3 = −e1.

From the above calculations, we see that the manifold under consideration
satisfies all the properties of Lorentzian para-Kenmotsu manifold i.e., ∇Xξ =
−ϕ2X = −X − η(X)ξ and (∇Xϕ)Y = −g(ϕX, Y )ξ − η(Y )ϕX, for all e1 = ξ.
Thus, the manifold M3 under consideration with the structure (ϕ, ξ, η, g) is a
3-dimensional Lorentzian para-Kenmotsu manifold [14].

It is known that

(59) R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.
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Then, by using (58) and (59), the non-vanishing components of the curvature
tensor are obtained as [14]:

(60)
R(e1, e2)e1 = e2, R(e1, e2)e2 = e1, R(e1, e3)e1 = e3,

R(e1, e3)e3 = e1, R(e2, e3)e2 = −e3, R(e2, e3)e3 = e2.

With the help of above expressions of the curvature tensors, it follows that

(61) R(X,Y )Z = g(Y,Z)X − g(X,Z)Y.

This proves that the 3-dimensional manifold M3 under consideration is an LP -
Kenmotsu manifold and it admits a pseudo-projective curvature tensor.

Let X, Y and Z be any three vector fields given by:

(62) X = a1e1 + a2e2 + a3e3, Y = b1e1 + b2e2 + b3e3, Z = c1e1 + c2e2 + c3e3;

where ai, bi, ci are all non-zero real numbers, for all i = 1, 2, 3.
By putting Z = ξ = e1 in (61) and on using (62), we get that

R(X,Y )ξ = η(Y )X − η(X)Y = a1b2e2 + a1b3e3 − a2b1e2 − a3b1e3.

Further, in view of (61) and (62), we get

R(X,Y )Z = g(Y,Z)X − g(X,Z)Y = (c1e2 + c2e1)(a1b2 − a2b1)

+ (a1b3 − a3b1)(c1e3 + c3e1) + (a2b3 − a3b2)(c3e2 − c2e3)

and hence from (1) we have

(63)
W (X,Y )Z = [a+ (n− 1)b]

[
1− r

n(n− 1)

]
(c1e2 + c2e1)(a1b2 − a2b1)

+ (a1b3 − a3b1)(c1e3 + c3e1) + (a2b3 − a3b2)(c3e2 − c2e3),

and

W (X,Y )ξ

= [a+ (n− 1)b]
[
1− r

n(n− 1)

]
(a1b2e2 + a1b3e3 − a2b1e2 − a3b1e3).(64)

Hence, we can say that W (X,Y )Z = 0 (or) W (X,Y )ξ = 0, only if a1
b1

= a2
b2

= a3
b3
.

This proves that the manifold M3 under consideration is an LP -Kenmotsu
manifold and it admits a flat pseudo-projective curvature tensor, provided the
above condition is satisfied.

Further, by using (60), we obtain the Ricci tensors and scalar curvatures as
follows: S(e1, e1) = −2, S(e2, e2) = 2, S(e3, e3) = 2 and r = 6, where

S(X,Y ) =
3∑

i=1

ϵi g(R(ei, X)Y, ei),

r =

3∑
i=1

ϵi S(ei, ei) and ϵi = g(ei, ei).

The above arguments verifies the results discussed in sections 4 and 5.
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7. Conclusions

The present work explores the geometrical significance of a new class of Lorentzian
paracontact metric manifolds namely Lorentzian para-Kenmotsu manifolds when-
ever a pseudo-projective curvature tensor admitted by these manifolds exhibits
the physical phenomena, i.e., the curvature tensor is either irrotational or con-
servative.
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