Efficient block approach for the numerical integration of higher-order ordinary differential equations with initial values

E. Oluseye Adeyefa

Department of Mathematics Federal University Oye-Ekiti, Ekiti State Nigeria adeoluman@yahoo.com

O. Olayemi Olanegan *

Department of Mathematics Federal University Oye-Ekiti, Ekiti State Nigeria ola3yemi@gmail.com

Abstract. This paper considered an innovative procedure to numerically approximate higher–order Initial Value Problems (IVPs) of Ordinary Differential Equations (ODEs). The proposed method is a one-step, self-starting Block integrator method employed to approximate higherorder (Third, Fourth, and Fifth-order) IVPs without reduction to lower order. The method was developed through collocation and interpolation approach. The basic properties of the method such as convergence, consistency, zero stability, order and error constant are well investigated. The accuracy of the method over existing methods are validated by numeral experiments. The method produces more interesting and superior results when compared to some existing numerical methods in terms of accuracy and absolute errors.

Keywords: accuracy, block method, collocation and interpolation, higher-order ODEs, Initial Value Problems (IVPs).

1. Introduction

The pursuit of translating various scientific, engineering, modeling and real life problems to differential equations which can be ordinary differential equations or partial differential equations in nature has given rise to the development of several numerical methods to provide an approximate solution to resulting higher order differential equations coupled with its initial or boundary conditions that may be rigorous to solve or has no analytical solutions. Researchers have suggested methods of solving higher order ODEs directly (Jena and Mohanty 2019, Yap and Ismail 2015, Waeleh et al., 2011, Suleiman et al., 2011). Oftentimes, developing numerical methods has been to convalesce the efficiency

^{*.} Corresponding author

and convergence of the method. Adeyefa & Kuboye (2020)

$$y''(x) = f(x, y, y', y''), y(x_0) = y_0, y'(x_0) = y_1, y''(x_0) = y_2,$$

$$y'^v(x) = f(x, y, y', y'', y'''), y(x_0) = y_0, y'(x_0) = y_1, y''(x_0)$$

(1)

$$= y_2, y'''(x_0) = y_3,$$

$$y^v(x) = f(x, y, y', y'', y''', y'v), y(x_0) = y_0, y'(x_0) = y_1, y'(x_0)$$

$$= y_2, y'''(x_0) = y_3, y'^v(x_0) = y_4.$$

In literature, researchers have proposed block methods for the direct integration of (1) without necessarily reducing it to system of first order ODEs (Khataybeh et al., 2019, Adoghe et al., 2016, Agboola et al., 2015, Kuboye and Omar 2015a, Kuboye and Omar 2015b, Hussain et al. 2015). These authors developed different method to handle various higher-order of ODEs with focus only on p^{th} order of equation. Adeyefa & Kuboye (2020), developed a method that is capable of handling two different orders of ODEs using the block approach. The developed method was capable of solving second and third-order ODEs. Our interest in this work is to develop a method that will be capable of handling three different systems of p^{th} , $(p+1)^{th}$ and $(p+2)^{th}$ orders IVPs for direct solution of ODEs where p = 3.

2. The method

We consider the formulation of our proposed method for p^{th} , $(p+1)^{th}$ and

(2)
$$y(x) = \sum_{j=0}^{k+9} a_j x^j$$

 $(p+2)^{th}$ by adopting a power series of the form: for k = 1, as the approximate solution of (1), interpolating (2) at $x = x_{n+\tau}, \tau = \frac{2}{5}, \frac{3}{5}, \frac{4}{5}$, and collocating the third, fourth, and fifth derivative of (2) at $x = x_{n+\varsigma}, \varsigma = 0, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, 1, x = x_{n+\varepsilon}, \varepsilon = 0$ and $x = x_{n+\overline{\omega}}, \overline{\omega} = 1$, respectively. This subsequently resulted into systems of linear equations of the form:

(3)
$$\sum_{j=0}^{k+9} a_j x^{n+\tau} = y_{n+\tau}, \quad \sum_{j=2}^{k+9} j(j-1)(j-2)a_j x_{n+\varsigma}^{j-2} = f_{n+\varsigma},$$
$$\sum_{j=3}^{k+9} j(j-1)(j-2)(j-3)a_j x_{n+\varepsilon}^{j-5} = g_{n+\varepsilon},$$
$$\sum_{j=4}^{k+9} j(j-1)(j-2)(j-3)(j-4)a_j x_{n+\omega}^{j-5} = m_{n+\omega},$$

where f, g and m are the third, fourth, and fifth derivatives of (2) respectively. Gaussian's elimination method is applied to find the values of as' in (3) and then substituted into (2) to produce a continuous implicit method:

$$\begin{array}{ll} (4) & \alpha_{\frac{2}{5}}(t)y_{n\frac{2}{5}} + \alpha_{\frac{3}{5}}(t)y_{n+\frac{3}{5}} + \alpha_{\frac{4}{5}}(t)y_{n+\frac{4}{5}} = h^{3}(\beta_{0}(t)f_{n} + \beta_{\frac{1}{5}}(t)f_{n+\frac{1}{5}} + \beta_{\frac{2}{5}}(t)f_{n+\frac{2}{5}} \\ & +\beta_{\frac{3}{5}}(t)f_{n+\frac{3}{5}} + \beta_{\frac{4}{5}}(t)f_{n+\frac{4}{5}} + \beta_{1}(t)f_{n+1}) + h^{4}(\gamma_{0}(t)g_{n}) + h^{5}(\omega_{\frac{1}{5}}(t)m_{n+\frac{1}{5}}), \\ \text{for } t = \frac{x - x_{n}}{h}, \begin{pmatrix} \alpha_{\frac{2}{5}} \\ \alpha_{\frac{3}{5}} \\ \alpha_{\frac{4}{5}} \end{pmatrix}(t) = [\Phi] \begin{pmatrix} t^{0} \\ t^{1} \\ t^{2} \\ \alpha_{\frac{3}{5}} \end{pmatrix}, \\ (t) = h^{3}[\gamma] \begin{pmatrix} t^{0} \\ t^{1} \\ t^{2} \\ t^{3} \\ t^{4} \\ t^{5} \\ t^{6} \\ t^{7} \\ t^{8} \\ t^{9} \\ t^{10} \end{pmatrix}, \begin{pmatrix} \omega_{\frac{1}{5}} \end{pmatrix}(t) = h^{5}[\Pi] \begin{pmatrix} t^{0} \\ t^{1} \\ t^{2} \\ t^{3} \\ t^{4} \\ t^{5} \\ t^{6} \\ t^{7} \\ t^{8} \\ t^{9} \\ t^{10} \end{pmatrix}, \begin{pmatrix} \omega_{\frac{1}{5}} \end{pmatrix}(t) = h^{5}[\Pi] \begin{pmatrix} t^{0} \\ t^{1} \\ t^{2} \\ t^{3} \\ t^{4} \\ t^{5} \\ t^{6} \\ t^{7} \\ t^{8} \\ t^{9} \\ t^{10} \end{pmatrix}, \end{pmatrix}$$

where

	499699	8987	2099	457	559	61
	$\overline{37800000}$	$-\frac{1}{315000}$	$-\overline{630000}$	$-\overline{33750}$	$\overline{2520000}$	1575000
	20688119	99251	49547	31447	4327	383
	$-\frac{1}{453600000}$	$\overline{756000}$	$\overline{1512000}$	$\overline{567000}$	$\overline{6048000}$	$\overline{2700000}$
	90163	15367	4397	15917	1067	107
	$\overline{90163}$	$-\frac{1}{43200}$	120960	$-\frac{1}{226800}$	$\overline{345600}$	$-\frac{1}{302400}$
	$\frac{1}{6}$	0	0	0	0	0
	0	0	0	0	0	0
	208879	1075	575	425	125	7
$\gamma =$	8640	24	$-\frac{1}{24}$	$\overline{108}$	$-\frac{192}{192}$	$\overline{120}$
	924719	924719	78025	19075	8375	187
	6912	-576	576	864	$\overline{2304}$	$-\frac{1}{576}$
	1872425	1170875	22625	152875	2375	1475
	6048	2016	$-\frac{1}{72}$	3024	$-\frac{1}{288}$	$\overline{2016}$
	2194375	3659375	246875	1403125	3125	625
	6048	5376	672	-24192	336	$-\frac{1}{768}$
	3855625	9640625	1296875	171875	15625	10625
	18144	24192	6048	5184	-3024	$\overline{24192}$
	2050625	640625	171875	78125	15625	625
	41472	6912	3456	$-\frac{10368}{10368}$	$\overline{15625}$	$-\overline{6912}$ /

,

and

$$\Phi = \begin{pmatrix} 3 & -8 & 6\\ -\frac{25}{2} & 30 & \frac{35}{1}\\ \frac{25}{2} & -25 & \frac{25}{2} \end{pmatrix}.$$

Evaluating (4) at $x = x_{n+\eta}, \eta = 1, \frac{1}{5}, 0$ to produce a discrete scheme of the form:

$$\begin{pmatrix} y_{n+1} \\ y_{n+\frac{1}{5}} \\ y_n \end{pmatrix} - \begin{pmatrix} 3 & 1 & 3 \\ -3 & -3 & -8 \\ 1 & 3 & 6 \end{pmatrix} \begin{pmatrix} y_{n+\frac{4}{5}} \\ y_{n+\frac{3}{5}} \\ y_{n+\frac{2}{5}} \end{pmatrix}$$

$$(5) \qquad = h^3[A] \begin{pmatrix} f_{n+1} \\ f_{n+\frac{4}{5}} \\ f_{n+\frac{3}{5}} \\ f_{n+\frac{2}{5}} \\ f_n \end{pmatrix} + h^4 \begin{pmatrix} \frac{301}{900000} \\ \frac{310}{100000} \\ \frac{100000}{450000} \end{pmatrix} (g_n) + h^5 \begin{pmatrix} -\frac{167}{1050000} \\ -\frac{310}{210000} \\ -\frac{13}{43750} \end{pmatrix} \begin{pmatrix} m_{n+\frac{1}{5}} \end{pmatrix}$$

for

$$A = \begin{pmatrix} \frac{3546}{75600000} & -\frac{482}{25200000} & -\frac{1464}{37800000} \\ \frac{293745}{75600000} & \frac{3585}{25200000} & \frac{8385}{37800000} \\ \frac{259420}{75600000} & -\frac{123340}{25200000} & -\frac{511840}{37800000} \\ \frac{509220}{75600000} & \frac{62660}{25200000} & -\frac{125940}{37800000} \\ -\frac{999030}{75600000} & -\frac{310290}{25200000} & -\frac{107844}{37800000} \\ \frac{537899}{75600000} & \frac{166267}{25200000} & \frac{499699}{37800000} \end{pmatrix}$$

The first two derivative of equation (4) yields equations (6) and (7) respectively.

$$\begin{aligned} \alpha_{\frac{2}{5}}'(t)y_{n+\frac{2}{5}} + \alpha_{\frac{3}{5}}'(t)y_{n+\frac{3}{5}} + \alpha_{\frac{4}{5}}'(t) &= h^2(\beta_0'(t)f_n + \beta_{\frac{1}{5}}'(t)f_{n+\frac{1}{5}} + \beta_{\frac{2}{5}}'(t)f_{\frac{2}{5}} \\ (6) &+ \beta_{\frac{3}{5}}'(t)f_{n+\frac{3}{5}} + \beta_{\frac{4}{5}}'(t)f_{n+\frac{4}{5}} + \beta_1'f_{n+1}) + h^3(\gamma_0(t)g_n) + h^4(\omega_{\frac{1}{5}}'(t)m_{n+\frac{1}{5}}) \end{aligned}$$

$$\alpha_{\frac{2}{5}}''(t)y_{n+\frac{2}{5}} + \alpha_{\frac{3}{5}}''(t)y_{n+\frac{3}{5}} + \alpha_{\frac{4}{5}}''(t) = h(\beta_0''(t)f_n + \beta_{\frac{1}{5}}''(t)f_{n+\frac{1}{5}} + \beta_{\frac{2}{5}}''(t)f_{\frac{2}{5}} (7) + \beta_{\frac{3}{5}}''(t)f_{n+\frac{3}{5}} + \beta_{\frac{4}{5}}''(t)f_{n+\frac{4}{5}} + \beta_1''f_{n+1}) + h^2(\gamma_0(t)g_n) + h^3(\omega_{\frac{1}{5}}''(t)m_{n+\frac{1}{5}})$$

Evaluating equations (6) and (7) at $x = x_{n+\theta}$, $\theta = 1, \frac{4}{5}, \frac{3}{5}, \frac{2}{5}, \frac{1}{5}, 0$ and $x = x_{n+\psi}, \psi = 1, \frac{4}{5}, \frac{3}{5}, \frac{2}{5}, \frac{1}{5}, 0$ to produce the derivatives as:

$\begin{pmatrix} y'_n \\ y \end{pmatrix}$	$ \begin{pmatrix} a+1 \\ +\frac{4}{5} \\ +\frac{3}{5} \\ +\frac{2}{5} \\ +\frac{1}{5} \\ y'_{n} \\ y'_{n} \end{pmatrix} - \frac{1}{h} [B] \begin{pmatrix} y \\ y$		$[C] \begin{pmatrix} f_{n+1} \\ f \\ 4 \\ n+\frac{4}{5} \\ f \\ 3 \\ n+\frac{3}{5} \\ f \\ 3 \\ n+\frac{3}{5} \\ f \\ 1 \\ n+\frac{2}{5} \\ f_n \end{pmatrix}$	
$(8) + h^{2}$	$\begin{pmatrix} -\frac{3040044}{453600000} \\ -\frac{32768}{151200000} \\ -\frac{104412}{453600000} \\ -\frac{332556}{453600000} \\ -\frac{238980}{151200000} \\ -\frac{1003044}{453600000} \end{pmatrix}$	$(g_n) + h^4$	$\left(\begin{array}{c} 1419840\\ \overline{453600000}\\ -154464\\ \overline{151200000}\\ 48816\\ \overline{453600000}\\ 159264\\ \overline{453600000}\\ 112224\\ \overline{151200000}\\ 505440\\ \overline{453600000}\end{array}\right)$	$\binom{m}{n+\frac{1}{5}}$

where

	$\left(\begin{array}{c} \frac{5670000000}{453600000} \end{array}\right)$	$\frac{113400000}{151200000}$	$\tfrac{1134000000}{453600000}$	$-\tfrac{1134000000}{453600000}$	$-\tfrac{1134000000}{151200000}$	$-\frac{5670000000}{453600000}$
B =	$-\tfrac{9072000000}{453600000}$	$-\tfrac{1512000000}{151200000}$	0	$\tfrac{4536000000}{453600000}$	$\frac{3024000000}{151200000}$	$\frac{13608000000}{453600000}$
	$\frac{3402000000}{453600000}$	$\frac{37800000}{151200000}$	$-\tfrac{1134000000}{453600000}$	$-\tfrac{3402000000}{453600000}$	$-rac{189000000}{151200000}$	$-\frac{7938000000}{453600000}$

$$C = \begin{pmatrix} \frac{1280844}{453600000} & -\frac{31384}{151200000} & \frac{11712}{453600000} & \frac{1965}{453600000} & \frac{1478}{151200000} & \frac{64344}{453600000} \\ \frac{17710725}{453600000} & \frac{613125}{151200000} & -\frac{229575}{453600000} & -\frac{135375}{453600000} & \frac{85425}{151200000} & \frac{324525}{324525} \\ \frac{2211460}{453600000} & \frac{692000}{151200000} & -\frac{235120}{453600000} & \frac{328400}{151200000} & \frac{15120000}{453600000} & \frac{453600000}{151200000} & \frac{453600000}{453600000} & \frac{118270}{151200000} & \frac{14864100}{453600000} \\ -\frac{63855900}{453600000} & \frac{15120000}{151200000} & -\frac{2390700}{453600000} & \frac{5980500}{151200000} & \frac{118270}{453600000} & \frac{14864100}{453600000} \\ -\frac{64267369}{453600000} & \frac{694975}{151200000} & -\frac{220903}{453600000} & \frac{786781}{453600000} & \frac{5072955}{151200000} & \frac{453600000}{453600000} \\ -\frac{64267369}{453600000} & \frac{694975}{151200000} & -\frac{220903}{453600000} & -\frac{786781}{453600000} & \frac{5072955}{151200000} & \frac{453600000}{453600000} \\ -\frac{64267369}{453600000} & \frac{151200000}{151200000} & -\frac{453600000}{453600000} & \frac{151200000}{453600000} & \frac{453600000}{453600000} \\ -\frac{64267369}{453600000} & \frac{694975}{151200000} & -\frac{22093}{453600000} & -\frac{151200000}{453600000} & \frac{453600000}{453600000} \\ -\frac{64267369}{453600000} & \frac{151200000}{151200000} & -\frac{20093}{453600000} & -\frac{151200000}{453600000} & -\frac{151200000}{453600000} \\ -\frac{64267369}{453600000} & \frac{694975}{151200000} & -\frac{20093}{453600000} & -\frac{151200000}{453600000} & -\frac{151200000}{453600000} \\ -\frac{64267369}{453600000} & -\frac{694975}{151200000} & -\frac{20093}{453600000} & -\frac{151200000}{453600000} & -\frac{151200000}{453600000} \\ -\frac{64267369}{4536000000} & -\frac{151200000}{4536000000} & -\frac{151200000}{45360000$$

$$(9) \qquad \qquad + h^{2} \begin{pmatrix} y_{n+1}' \\ y_{n+\frac{4}{5}}' \\ y_{n+\frac{3}{5}}' \\ y_{n+\frac{1}{5}}' \\ y_{n+\frac{1}{5}}' \\ y_{n}'' \end{pmatrix}^{-\frac{1}{h^{2}}} [D] \begin{pmatrix} y_{n+\frac{4}{5}} \\ y_{n+\frac{3}{5}} \\ y_{n+\frac{2}{5}}' \\ y_{n+\frac{2}{5}}' \\ y_{n+\frac{1}{5}}' \\ y_{n+\frac{3}{5}}' \\ y_{n+\frac{3}{5}}' \\ f_{n+\frac{3}{5}}' \\ f_{n+\frac{3}{5}}'$$

where

$$E = \begin{pmatrix} \frac{226800000}{9072000} & \frac{453600000}{9072000} & \frac{226800000}{9072000} & \frac{453600000}{9072000} & \frac{90720000}{18144000} \\ \frac{226800000}{9072000} & \frac{453600000}{18144000} & \frac{226800000}{9072000} & \frac{453600000}{18144000} & \frac{90720000}{9072000} & \frac{453600000}{18144000} \\ \frac{195455}{9072000} & \frac{1701795}{18144000} & \frac{9072000}{9072000} & \frac{180400}{18144000} & \frac{30072000}{9072000} & \frac{18144000}{18144000} \\ \frac{4632890}{9072000} & \frac{18144000}{18144000} & \frac{9072000}{9072000} & \frac{18144000}{18144000} & \frac{9072000}{9072000} & \frac{18144000}{18144000} \\ \frac{4632890}{9072000} & \frac{18144000}{18144000} & \frac{207800}{9072000} & \frac{18144000}{18144000} & \frac{3577380}{9072000} & \frac{3190380}{18144000} \\ -\frac{30561900}{9072000} & \frac{18144000}{18144000} & \frac{9072000}{9072000} & \frac{18144000}{18144000} & \frac{31700}{9072000} \\ -\frac{30561900}{9072000} & \frac{18144000}{18144000} & \frac{9072000}{9072000} & \frac{18144000}{18144000} & \frac{31700}{9072000} \\ -\frac{31903835}{18144000} & \frac{1478761}{9072000} & \frac{1907051}{18144000} & \frac{18144000}{9072000} & \frac{1315705}{18144000} \\ -\frac{3193835}{9072000} & \frac{18144000}{18144000} & \frac{9072000}{9072000} & \frac{18144000}{18144000} & \frac{3110}{9072000} & \frac{13130}{18144000} \\ -\frac{3193835}{9072000} & \frac{18144000}{18144000} & \frac{9072000}{9072000} & \frac{18144000}{18144000} & \frac{3110}{9072000} & \frac{13130}{18144000} \\ -\frac{3193835}{9072000} & \frac{18144000}{18144000} & \frac{9072000}{9072000} & \frac{18144000}{18144000} & \frac{3130655}{9072000} & \frac{1284072}{18144000} \\ -\frac{3193835}{9072000} & \frac{18144000}{18144000} & \frac{9072000}{9072000} & \frac{18144000}{18144000} & \frac{3130655}{9072000} & \frac{1313700}{18144000} \\ -\frac{3193835}{9072000} & \frac{18144000}{18144000} & \frac{9072000}{9072000} & \frac{18144000}{18144000} & \frac{1315705}{9072000} \\ -\frac{315775}{18144000} & \frac{1907200}{9072000} & \frac{18144000}{18144000} & \frac{1907200}{9072000} & \frac{18144000}{18144000} \\ -\frac{19072000}{9072000} & \frac{18144000}{18144000} & \frac{1907200}{9072000} & \frac{18144000}{18144000} \\ -\frac{190720$$

The fusing of equations (5), (8) and (9) in matrix form by matrix inversion gives a block method written explicitly as

$$I \begin{bmatrix} y_{n+\frac{1}{5}} \\ y_{n+\frac{2}{5}} \\ y_{n+\frac{3}{5}} \\ y_{n+\frac{4}{5}} \\ y_{n+1} \end{bmatrix} = L \begin{bmatrix} y_{n-\frac{1}{5}} \\ y_{n-\frac{2}{5}} \\ y_{n-\frac{3}{5}} \\ y_{n-\frac{4}{5}} \\ y_{n} \end{bmatrix} + h(K) \begin{bmatrix} y'_{n-\frac{1}{5}} \\ y'_{n-\frac{2}{5}} \\ y'_{n-\frac{3}{5}} \\ y'_{n-\frac{4}{5}} \\ y'_{n-\frac{4$$

$$I \begin{bmatrix} y'_{n+\frac{1}{5}} \\ y'_{n+\frac{2}{5}} \\ y'_{n+\frac{3}{5}} \\ y'_{n+\frac{3}{5}} \\ y'_{n+\frac{4}{5}} \\ y'_{n+1} \end{bmatrix} = L \begin{bmatrix} y'_{n-\frac{1}{5}} \\ y'_{n-\frac{2}{5}} \\ y'_{n-\frac{3}{5}} \\ y'_{n-\frac{4}{5}} \\ y'_{n-\frac{4}{5}} \\ y'_{n-\frac{4}{5}} \\ y''_{n-\frac{4}{5}} \\ y''_{n-\frac{3}{5}} \\ y''_{n-\frac{4}{5}} \\ y''_{n-\frac{4}{5}} \\ y''_{n-\frac{3}{5}} \\ y''_{n-\frac{4}{5}} \\ y''_{n-\frac{4}{5}} \\ y''_{n-\frac{4}{5}} \\ y''_{n-\frac{3}{5}} \\ y''_{n-\frac{4}{5}} \\ y''_{n-\frac{3}{5}} \\ y''_{n-\frac{3}{5}} \\ y''_{n-\frac{4}{5}} \\ y''_{n-\frac{3}{5}} \\$$

$$(12) \qquad I \begin{bmatrix} y_{n+\frac{1}{5}}' \\ y_{n+\frac{2}{5}}' \\ y_{n+\frac{3}{5}}' \\ y_{n+\frac{4}{5}}' \\ y_{n+1}' \end{bmatrix} = L \begin{bmatrix} y_{n-\frac{1}{5}}' \\ y_{n-\frac{2}{5}}' \\ y_{n-\frac{3}{5}}' \\ y_{n-\frac{4}{5}}' \\ y_{n}'' \end{bmatrix} + h(\hat{S}) \begin{bmatrix} f_{n-\frac{1}{5}} \\ f_{n-\frac{2}{5}} \\ f_{n-\frac{3}{5}} \\ f_{n-\frac{4}{5}} \\ f_{n-\frac{4}{5}} \\ f_{n-\frac{4}{5}} \end{bmatrix}$$

$$(12) \qquad + h(\hat{Q}) \begin{bmatrix} f_{n+\frac{1}{5}} \\ f_{n+\frac{2}{5}} \\ f_{n+\frac{3}{5}} \\ f_{n+\frac{4}{5}} \\ f_{n+1} \end{bmatrix} + h^{2}(\hat{Z}) \begin{bmatrix} g_{n-\frac{1}{5}} \\ g_{n-\frac{2}{5}} \\ g_{n-\frac{3}{5}} \\ g_{n-\frac{4}{5}} \\ g_{n} \end{bmatrix} + h^{3}(\hat{P}) \begin{bmatrix} m_{n-\frac{1}{5}} \\ m_{n-\frac{3}{5}} \\ m_{n-\frac{4}{5}} \\ m_{n} \end{bmatrix}$$

(see Appendix for the values of the terms).

Equations (10) to (12) are applied as the block integrators to provide solutions to problems.

3. Investigation of the basic properties of the block method

We investigate the order, error constant, and zero stability as well as the consistency of the block method as demonstrated below:

3.1 Order of accuracy and Local Truncation Error (LTE)

We describe a linear difference operators related to the block in (10), described as

(13)
$$L[y(x):h] = \sum_{j=0}^{k} [a_j y(x_n + jh) - h^3 \beta_j f(x_n + jh) - h^4 \gamma_j g(x_n + jh) - h^5 \omega_j m(x_n + jh)],$$

where y(x) is continuously differentiable function on [a, b]. Expanding (10) by Taylor series, collecting their terms in powers of h produces

$$L[y(x):h] = C_0 y(x) + C_1 h y'(x) C_2 h y''(x) + \dots + C_q h^q(x) + (h^{q+1}),$$

where C_i are constants. Then, if the first C_{p+2} disappears, we have $C_o = C_1 = C_2 = \cdots = C_p = C_{p+2} = 0$ and $C_{p+3} \neq$. Thus, where p is called the order of the method. Then, $C_{p+3}h^{p+3}y^{p+3}(x)$ is the principal Local Truncation Error if the order p and error constant C_{p+3} are known. Lambert (1973). Therefore, for our block method, $p = [8, 8, 8, 8, 8]^T$ and

$$C_{p+3} = \left[\frac{5323}{413437500000000}, -\frac{26141}{58179453100}, -\frac{17291}{53634509200}, -\frac{22341}{8172494600}, -\frac{23451}{817965200} \right]^T.$$

3.2 Zero stability

The block method (10) is said to be zero stable if no root of the first characteristic polynomial $\rho(r)$ has modulus greater than one and if every root of modulus one has $\rho(r) = det(rA^0 - A^1) = r^m(r-1)$ multiplicity not greater than the order of the differential equation (Lambert 1973). It follows that the integrators are

normalized to give the first characteristic polynomial $\rho(r)$ as with

$$A^{0} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

and

The roots of
$$\rho(r) = 0$$
 satisfy $|r_i| \leq 1$. Hence, the block method is zero-stable

3.3 Consistency

A block method is said to be consistent if it has order $p \ge 1$. Hence, our block method is consistent, since p = 8 A linear multistep method is said to be convergent, if it is consistent and zero stable (see Lambert, 1973). Hence, our method is convergent satisfying the above condition.

4. Numerical experiments

Experiment 1

 $y''' = 3 \sin x \ y(0) = 1, y'(0) = 0, y''(0) = -2, h = 0.1$. The experiment above which is a special third-order initial value problem was solved by Kuboye & Omar (2015a) using a block method of step-length k = 7 order p = 8 and h = 0.1

The analytical solution:

 $y(x) = 3\cos x + \frac{x^2}{2} - 2$ proposed block method is also used to solve the same experiment. The results are displayed in Table 1 and comparison of their absolute errors shown in Fig. 1.

Experiment 2

 $y''' = y'(2xy'' + y'), y(0) = 1, y'(0) = \frac{1}{2}, y''(0) = 0, h = 0.01.$

Analytical solution

$$y(x) = 1 + \frac{1}{2} \ln \left(\frac{2+x}{2-x}\right)$$

Experiment 2 solved by our new block method is a non-linear third-order problem previously solved by Adoghe et al., (2016) using Taylor's series approach with step-length k = 5,order p = 9 and h = 0.1. The numerical results are displayed in Table 2 and their absolute errors shown in Fig. 2.

Experiment 3

$$y''' = y'' - y' + y \ y(0) = 1, y'(0) = 0, y''(0) = -1, h = 0, 01; \ 0 \le x \le 1$$

Analytical solution

 $y(x) = \cos x$ Experiment 3 above is a linear third-order initial value problem solved by our proposed block method and Khataybeh et al., (2019). Table 3 displayed the numerical results and the comparison of their absolute errors can be seen in Fig. 3.

Experiment 4

$$y'^{v} = (y')^{2} - y(y'') - 4x^{2} + e^{x} (1 - 4x + x^{2})$$

$$y(0) = 1, y'(0) = 1, y''(0) = 3,$$

$$y'''(0) = 1, h = 0.01; 0 \le x \le 1.$$

Analytical solution

 $y(x) = x^2 + e^x$ The experiment above is a non-linear third-order problem solved by Kuboye & Omar (2015b) where a 6-step bock method of order p = 7 with h =0.01 was developed. Our proposed method is used to solve the same experiment and our results are compared together as displayed in Table 4 and the absolute error for both methods can be seen in Fig. 4.

Experiment 5

$$\begin{split} y^v &= -(\cos x + \sin x), \\ y(0) &= 1, y'(0) = 1, y''(0) = -2 \\ y'''(0) &= 1, y'^v(0) = 2, h = 0.1; 0 \le x \le 1. \end{split}$$

Exact solution

 $y(x) = 2x - \frac{1}{2}x^2 + \frac{1}{24}x^4 + \cos x - \sin x$

The special fifth order experiment above was solved by Jena & Mohanty (2019) with a step -length of k = 7, order p = 7 and h - 0.1. We also used our proposed method to solve the same experiment with the results generated

compared together (see Table 5) and the graphical performance of their absolute error demonstrated in Fig. 5.

5. Numerical results and comparison

Table 1: Comparison of the new block method results with the results of Kuboye & Omar (2015a)

x	Analytical Results	Numerical Results	Error	Error in
			in New	Adoghe et
			Method	al.,2016
0.1	0.99001249583	0.990012495834	2.0600E -	1.7430E-
	407730	079360	15	14
0.2	0.96019973352	0.96019973352	2.9051E -	1.0824E-
	372489	3687974	14	13
0.3	0.91100946737	0.91100946737	5.4004E-	2.7111E-
	681806	6764056	14	13
0.4	0.84318298200	0.84318298200	8.0404E-	5.0792E-
	865525	8574846	14	13
0.5	0.75774768567	0.7577476856	2.7600E-	8.1645E-
	111815	71090550	14	13
0.6	0.65600684472	0.65600684472	2.0125E-	1.1997E-
	903489	9236145	13	12
0.7	0.53952656185	0.53952656185	7.3249E-	1.6543E-
	346528	4197778	13	12
0.8	0.41012012804	0.41012012804	1.7207E-	1.6746E-
	149626	3217003	12	10
0.9	0.26982990481	0.2698299048	3.3472E-	3.3363E-
	199337	15340641	12	10
1.0	0.12090691760	0.12090691761	5.8182E-	5.0017E-
	441915	0237425	12	10

х	Analytical Results	Numerical Results	Error	Error in
			in New	Adoghe et
			Method	al.,2016
0.1	0.91482908192	0.91482908192	5.0000E-18	0.9148E
	435238	4352375		+00
0.2	0.85859724183	0.85859724183	3.0000E-18	0.8585E
	983017	9830167		+00
0.3	0.83014119242	0.83014119242	4.0000E-18	0.8301E + 00
	399690	3996896		
0.4	0.82817530235	0.82817530235	1.0000E-18	0.8281E
	872968	8729681		+00
0.5	0.8512787292	0.85127872929	2.0000E-18	0.8512E
	9987185	9871852		+00
0.6	0.89788119960	0.8978811996	6.0000E-18	0.8978E
	949103	09491024		+00
0.7	0.96624729252	0.9662472925	3.0000E-18	0.9662E
	952348	29523477		+00
0.8	1.05445907150	1.0544590715	1.0000E-17	0.1054E
	753240	07532390		+01
0.9	1.16039688884	1.1603968888	1.0000E-17	0.1160E
	305034	43050330		+01
1.0	1.28171817154	1.281718171	1.0000E-17	0.1281E
	095476	54095475		+01

Table 2: Comparison of the new block method results with the results of Adoghe et al., (2016)

x	Analytical Results	Numerical Results	Error	Khataybeh		
			in New	et al.,		
			Method	(2019)		
0.1	0.99995000041	0.99995000041	4.0000E-18	5.84E-18		
	6665278	6665282				
0.2	0.99980000666	0.99980000666	5.0000E-18	2.85E-17		
	6577778	6577783				
0.3	0.99955003374	0.99955003374	5.0000E-18	6.86E-17		
	8987516	8987521				
0.4	0.99920010666	0.99920010666	4.0000E-18	1.23E-16		
	0977940	0977944				
0.5	0.99875026039	0.99875026039	3.0000E-18	1.83E-16		
	4966247	4966250				
0.6	0.99820053993	0.99820053993	3.0000E-18	2.24E-16		
	5204166	5204169				
0.7	0.99755100025	0.99755100025	3.0000E-18	1.97E-16		
	3279575	3279578				
0.8	0.99680170630	0.99680170630	1.0000E-18	3.01E-17		
	2619385	2619386				
0.9	0.99595273301	0.99595273301	1.0000E-18	8.53E-16		
	1994253	1994252				
1.0	0.99500416527	0.995004165278	2.0000E-18	3.45E-15		
	8025766	025764				

Table 3:	Comparison	of the	new	block	method	$\mathbf{results}$	\mathbf{with}	\mathbf{the}
results of	f Khataybeh	et al.,	(201	9)				

Table 4: Comparison of the new block method results with the results of Kuboye & Omar (2015b)

x	Analytical Results	Numerical Results	Error in New	Error in
			Method	Kuboye &
				Omar $(2015b)$
0.01	0.0002000000000000000000000000000000000	00.00020000000000000000000000000000000	00.0000000000000000000000000000000000	2.220446E-16
0.02	0.00040000000000000000	00.00040000000000000000000000000000000	00.00000000E + 00	0.000000E + 00
0.03	0.000600000000000000000	10.000600000000000000000000000000000000	10.0000000E + 00	0.000000E + 00
0.04	0.000800000000000000000	30.000800000000000000000000000000000000	30.0000000E + 00	0.000000E + 00
0.05	0.0010000000000000000000000000000000000	80.001000000000000000000000000000000000	80.0000000 E+00	0.000000E + 00
0.06	0.00120000000000002	10.001200000000000001	01.12757026E-	0.000000E + 00
			17	
0.07	0.00140000000000004	50.00140000000000002	02.51534904E-	1.043610E-14
			17	
0.08	0.00160000000000008	70.00160000000000004	24.53196508E-	3.463896E-14
			17	
0.09	0.001800000000015	70.001800000000000008	96.83047369E-	7.882583E-14
			17	
0.10	0.00200000000000026	70.00200000000000016	89.84455573E-	1.505462E-13
			17	

Table 5: Comparison of the new block method results with the results of Jena & Mohanty (2019)

			5	. .
X	Analytical Results	Numerical Results	Error	Error in
			in New	Jena &
			Method	Mohanty
				(2019)
0.1	1.0002599324029298	80100002599324029298	\$000000E+00) 4 .8849E-
				15
0.2	1.000279921603659	00000279921603659	30202204E-	9.1038E-
			16	15
0.3	1.000299910004500'	700000299910004500	90202204E-	1.7763E-
			16	15
0.4	1.000319897605462	1000003198976054624	40202204E-	7.7049E-
			16	14
0.5	1.0003398844065519	00000339884406552	10202204E-	9.9920E-
			16	15
0.6	1.000359870407777	600000359870407777	90202204E-	1.1990E-
			16	14
0.7	1.0003798556091470	0000003798556091474	40 0 4408E-	1.9095E-
			16	14
0.8	1.0003998400106688	8010000399840010669	50006613E-	1.11022E-
			16	15
0.9	1.000419823612350	500000419823612351	40 8 08817E-	5.9952E-
			16	15
1.0	1.0004398064142004	4010000439806414201	5001102E-	6.1062E-
			15	14

6. Conclusion

A new single step self-starting implicit block method has been presented in this paper for solving higher-order (Third, Fourth, and Fifth-order) initial value problems of ordinary differential equations. The solutions of the numerical experiments obtained are accurate and superior to the existing methods in terms of performance and accuracy as demonstrated in Tables (1 to 5) and Figures (1 to 5). Hence, this method has given rise to more accurate and superior convergent results which is a good approach to provide solution to higher order initial value problems.

Appendix

Appendix 1

Figure 1: Comparison of Absolute Error with Error in Kuboye & Omar (2015a)

Figure 2: Comparison of Absolute Error with Adoghe et al., (2016)

Figure 3: Comparison of Absolute Error with Khataybeh et al., (2019)

Figure 4: Comparison of Absolute Error with Kuboye & Omar (2015b)

Appen	ndi	x 2	2															
$I = \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}$	$egin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{array}$	$\begin{bmatrix} 0\\0\\0\\1\\1 \end{bmatrix}, L = \begin{bmatrix} \\ \\ \end{bmatrix}$	0 0 0 0 0 0 0 0 0 0		0 0 0 0	$\begin{bmatrix} 1\\1\\1\\1\\1\\1 \end{bmatrix}, K$	$= \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{bmatrix} \frac{1}{5} \\ \frac{1}{5} \\ \frac{1}{5} \\ \frac{1}{5} \end{bmatrix}, R =$		0 0 0 0 0 0 0 0 0 0	0 0 0 0	$\frac{1}{502}$ $\frac{1}{259}$ $\frac{1}{508}$ $\frac{1}{259}$ $\frac{1}$,		
$P = \begin{bmatrix} 0\\0\\0\\0\\0 \end{bmatrix}$	0 0 0 0	0 0 0 0	0 0 0 0	$-\frac{\frac{493123}{504000000}}{\frac{315043}{35437500}}\\-\frac{\frac{96101}{5600000}}{\frac{13664}{421875}}\\-\frac{9841}{207360}$], V	r = [$-\frac{\overline{3}}{\overline{6}}$ $-\frac{\overline{3}}{\overline{6}}$ $\overline{94}$	$\frac{377}{90000}\\33017\\5120000\\\frac{5120000}{36000}\\\frac{36000}{5720000}\\\overline{500000}$	$\begin{array}{r} \frac{778}{23625}\\ -\frac{613}{39375}\\ \frac{916}{354375}\\ -\frac{75}{354375}\\ -\frac{635}{358}\\ \frac{75}{358}\\ -\frac{635}{358}\\ \frac{75}{358}\\ -\frac{75}{358}\\ $	$\begin{array}{r} \frac{21789}{280000} \\ -\frac{2349}{80000} \\ \frac{387}{70000} \\ -\frac{81}{89600} \\ \frac{81}{1000000} \end{array}$	$\begin{array}{r} \frac{1984}{13125}\\ -\underline{1088}\\ 23625\\ \underline{1088}\\ 118125\\ -\underline{64}\\ 39375\\ \underline{64}\\ 421875\end{array}$	$\begin{array}{r} \underline{725}\\ 3024\\ \underline{475}\\ 8064\\ \underline{575}\\ 18144\\ \underline{125}\\ 96768\\ \underline{3360}\end{array}$	$\Bigg], T =$		0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0	0 0 0 0	$\left[\begin{array}{c} -\frac{1291}{18000000}\\ -\frac{227}{421875}\\ -\frac{2187}{200000}\\ -\frac{1563}{15635}\\ -\frac{53}{17280}\end{array}\right]$

References

- S. R. Jena, M. Mohanty, Numerical treatment for ODEs (fifth order), International Journal on Emerging Technologies, 10 (2019), 191-196.
- [2] L. K. Yap, F. Ismail, Block hybrid collocation method with application to fourth order differential equations, Mathematical Problems in Engineering, (2015), 1-6.
- [3] N. Waeleh, Z. A. Majid, F. Ismail, M. Suleiman, Numerical solution of higher order ordinary differential equations by direct block code, Journal of Mathematics and Statistics, 8 (2011), 77-81.
- [4] M. Suleiman, Z. B. Ibrahim, A.F.N. BinRasedee, Solution of higher-order ODEs using backward difference method, Mathematical Problems in Engineering, (2011), Article ID 810324, 18 pages

- [5] E. O. Adeyefa, J. O. Kuboye, Derivation of new numerical model capable of solving second and third order ordinary differential equations directly, IAENG International Journal of Applied Mathematics, 50 (2020), 9 pages.
- [6] S. O. Fatunla, Block methods for second order ODEs, International Journal of Computer Mathematics, 41 (1991), 55-63.
- [7] S. N. Khataybeh, I. Hashim, M. Alshbool, Solving directly third-order ODEs using operational matrices of bernstein polynomials method with applications to fluid flow equations, Journal of King Saud University-Science, 31 (2019), 822-826.
- [8] L. O. Adoghe, B. G. Ogunware, E. O. Omole, A family of symmetric implicit higher order methods for the solution of third order initial value problems in ordinary differential equations, Theoretical Mathematics & Applications, 6 (2016), 67-84.
- [9] O. O. Agboola, A. A. Opanuga, J. A. Gbadeyan, Solution of third order ordinary differential equations using differential transform method, Global Journal of Pure and Applied Mathematics, 11 (2015), 2511-2517.
- [10] J. O. Kuboye, Z. Omar, Numerical solution of third order ordinary differential equations using a seven-step block method, International Journal of Mathematical Analysis, 9 (2015a), 743-754.
- [11] J. O. Kuboye, Z. Omar, New zero-stable block method for direct solution of fourth order ordinary differential equations, Indian Journal of Science and Technology, 8 (2015b), 70647.
- [12] K. Hussain, F. Ismail, N. Senu, Runge-Kutta type methods for directly solving special fourth-order ordinary differential equations, Mathematical Problems in Engineering, (2015), Article ID 893763, 11 pages.
- [13] J. D. Lambert, Computational methods in ordinary differential equations, (1973), John Wiley & Sons Inc.

Accepted: November 5, 2021