
ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 49–2023 (462–481) 462

Hyper BCK-hashing algorithm: employing encoding system
based on logical algebra in enhancing the secure hash algorithms

Hussein A. Jad∗

Informatics Research Institute City of Scientific Research and
Technological Applications (SRTA City)
New Borg ElArab City, Alexandria
Egypt
hussein.aligad@gmail.com

Samy M. Mostafa
Department of Mathematics
Ain Shams University
Roxy, Cairo
Egypt
samymostafa@yahoo.com

Mokhtar A. Abdel Naby
Department of Mathematics
Ain Shams University
Roxy, Cairo
Egypt
abdelnaby@hotmail.com

Bayumy A. B. Youssef
Informatics Research Institute City of Scientific Research and
Technological Applications (SRTA City)
New Borg ElArab City, Alexandria
Egypt
bbayumy@gmail.com

Mona S. Kashkoush
Informatics Research Institute City of Scientific Research and
Technological Applications (SRTA City)
New Borg ElArab City, Alexandria
Egypt
mkashkoush@srtacity.sci.eg

Ashraf A. Taha
Informatics Research Institute City of Scientific Research and

Technological Applications (SRTA City)

New Borg ElArab City, Alexandria

Egypt

ashraftaha1968@gmail.com

*. Corresponding author

HYPER BCK-HASHING ALGORITHM: EMPLOYING ENCODING SYSTEM BASED ... 463

Abstract. Cryptographic algorithms perform essential functions to generate data
from digital form to comprehensible patterns such that the permitted user is the only
one who can understand the message. In this study, we propose Hyper BCK-Hashing
(HBCK-HASHING) Algorithm based on a hyper BCK-valued function and hash func-
tion (SHA-2). It targets to enhance the Secure Hash algorithms (SHA-2) with an algo-
rithm of hyper BCK-valued function which based on the redundant encoding to max-
imize the security level of the cryptographic process of n-ary block codes (U) through
maximize the quantity of information with the fewest number of visible characteristics.
The redundant encoding based on making a unique - identified HBCK-algebra (H) for
n-ary block codes (U) with applying the hyper BCK-valued function on (H) to gen-
erate n-ary block codes(UH). In addition, we perform the computational Secure Hash
algorithms on (UH) to map the size of n-ary block codes (UH) into a fixed size. The
proposed algorithm was evaluated by using the avalanche effect parameter in compar-
ison with the Secure Hash algorithm (512 and 256). Experimental outcomes indicate
that the HBCK-HASHING algorithm shows a significant-high.

Keywords: Hyper BCK-algebras, N-ary block codes, secure Hash algorithm(SHA-2),
avalanche effect.

1. Introduction

1.1 Logical algebras and its applications on block codes and Hyper
structure approach

Logic algebra indicates a conveying for characteristics and conditions from logic
to algebra. Logic algebra fulfills methods for the main assignment of artificial
intelligence in elucidating the basics of keeping a computer simulates a human
in dealing with data. There are numerous attempts to study emerging charac-
teristics of logic algebras like [1, 2, 3, 4]. Recently, there are abundant research
papers studied the relationship between logical algebras and block codes. Block
codes mirror an essential class of error-correcting codes Which considered effec-
tive to encode data in blocks. Error-control codes allow increasing the security
of data transmission over noisy communication channels. Luis Hernandez Enci-
nas [5] introduced the notion of R0- valued function with related features and
examined the generating of binary block codes by R0- valued function. Cristina
Flaut [6] examined the relationships between binary block-codes and Hilbert
algebras. Also, she suggested other characteristics associated with Hilbert alge-
bras. Samy M. Mostafa et al. [7, 8, 9] offered an efficient method to produce
a KU-algebra from binary block code and introduced the notion of KU- valued
function with producing binary code from KU- function. Also, they constructed
codes by soft sets PU-valued functions. A.B. Saeid et al. [10] presented an algo-
rithm to generate BCK-algebra from n-ary block code. Numerous applications
of Hyper structures are employed in pure and applied sciences. Hyper structures
approach adapted to the logical algebraic structure BCK-algebra and consisted
the concept of Hyper BCK-algebra.

Y. B. Jun et al. [11] clarified that the generalization of BCK-algebra is
Hyper BCK-algebra. Authors defined Hyper BCK-algebra and studied some

464 HUSSEIN A. JAD et. al

relevant properties. Atamewouetsafacksurdive et al. [12] stated the concept of
hyper BCK-function with some properties related, and generated binary codes
by the hyper BCK-function through an algorithm allows constructing a hyper
BCK-algebra from binary block code.

In the following, we introduce some results associated with hyper BCK-
algebras and algebraic structures applications in coding theory that will be
applied effectively in the study.

1.2 Secure Hash Algorithms (SHA-512 and SHA-256)

National Institute of Standards and Technology (NIST) announced Secure Hash
Algorithms which indicates SHA. It was developed in 1993 as a federal informa-
tion processing standard. [14]. After discovering a few weaknesses, an insecure
hash algorithm called SHA-0 was withdrawn. SHA-1 procedure has a hash
value of 20 bytes (160 bits). SHA-2 is a more powerful version than its ances-
tors (SHA-0, SHA-1). SHA-256 is a member of the SHA-2 group, yielding alike
functionality with more security like SHA-384 and SHA-512. It is an iterative
and one-way function. SHA-512 is a member of SHA with a message digest
512- bit of length less than 2128. When the length of any message less than
2128 bits is an input to a hash algorithm, the result is a fixed message digest
size (512). Also, SHA-256 is a version of SHA with a 256- bit message digest
of length less than 264. When the length of any message less than 264 bits is
input to a hash algorithm, the result is a fixed message digest size (256). These
algorithms allow the purpose of information’s integrity. Any modification in
the message will make a modified message digest with a high probability [15].A
cryptographic hash function directs to ensure different features, which provides
high value for message safety. The hash function requires to satisfy the following
features [17, 18]:

1. Compression: hash function maps the input message of uncertain finite-
size to a value of fixed size.

2. Security of calculation: the hash value of an input message is simple to
compute.

3. Pre-image resistance (one-way): it is obstinate to obtain only one input
message which hashed to a determined hash value.

4. Weak collision resistance: it is obstinate to detect other messages that
have an equal hash value.

5. Strong collision resistance: it is obstinate to detect two separated input
messages hashed to the alike hash value.

Currently, countless applications through unrestricted networks require end-
to-end protected connections to support authentication and data privacy [1].
Consequently, Cryptography algorithms are necessary for information security.

HYPER BCK-HASHING ALGORITHM: EMPLOYING ENCODING SYSTEM BASED ... 465

One of the cryptography algorithms families that the encrypter and decrypter
utilize the same secret key is Symmetric-Key Cryptography. These algorithms
depend on the agreement on a key from the sender and receiver before transfer-
ring their information. These algorithms use a unique key for encryption and
decryption. Some popular patterns of Symmetric-Key encryption algorithms
are Advanced Encryption Standard, Data Encryption Standard, Rivest Cipher
5, 3DES, Blowfish, etc.

1.3 Applications of Secure Hash Algorithms

To create a protected cryptographic process, the described algorithm must be
trusted, time-examined, and peer-reviewed extensively. A hash function is an
algorithm that receives input data and forms a data digest. In this paper, we
utilized SHA-2 (SHA-256 and SHA-512). One of the most important reasons
for using SHA-2 in our implementation (SHA-256 and SHA-512) is, providing
more outcomes (512b and 256b sequentially) than SHA-1 (160b), such that the
increased output intensity of SHA-2 is the main reason behind attack defense.
Next, present the most vital applications of SHA.

1.3.1 BlockChain Technology

Blockchain technology is an extremely and advanced invention. It empowers
digital data to remain distributed but not replicated [19]. Blockchain controls
the modern crypto-currency named Bitcoin (digital gold). The expression of
“blockchain” indicates structures of data, systems, or networks. It is a listing
of ordered blocks, every block includes transactions and communicated to prior
one, carrying the hashed value from prior block. Consequently, the transaction
history cannot be removed without removing the contents of chain [20]. This is
the main reason for saving blockchain from hackers.

Information stored on the blockchain, encrypted by applying HASH func-
tions [22]. Bitcoin utilizes SHA-256. It is one of the most secure functions since
every encrypted data give a fully different hash value. The encryption level is
a firm such that brute attacks demand various endeavors and still find different
input values. Blockchain has principal features as follows [21].

1. Decentralization. Third parties are not needed to confirm activities. Agree-
ment algorithms are employed to keep data on blockchain networks.

2. Persistency. Valid Transactions are quickly, and invalid transactions are
not accepted. Therefore, it is infeasible to remove transactions that have
already happened.

3. Anonymity: On a blockchain network, the user communicates with others
through a produced address. So, the real identification of the user is not
represented during the communication.

466 HUSSEIN A. JAD et. al

4. Auditability. Every transaction on the blockchain network indicates the
prior transaction. So, each transaction is confirmed easily and followed.

1.3.2 Internet of Things(IoT)

Internet of Things is great employment of the Internet to manage devices that
are utilized daily, identified (things) through sensors within the Internet. IOT is
defined as a network system of associated various devices (things) that empower
us to interact using the protocol of machine-to-machine transmission [23].

Multiple safety vulnerabilities have been identified in the associated devices.
Many users have concerned about safety issues, they worry about their data be-
ing removed or stolen, or misused [24].Advanced Encryption System (AES-256),
SHA-1. SHA-256, etc. are security tools employed in IoT systems to secure the
data [25]. IoT is a principle for future Internet development. IoT has managed
and the base of emergent technologies like WoT defined as the Web of Things
[26]. WOT technology is designed to perform our lives simpler and best. The
accelerated growth of IoT led to appear various obstacles, like the vulnerability
to cyber-attacks [24, 30]. It is difficult to make safe IoT devices because several
security systems are broken to make IoT devices small in size, easy to use, and
cheap. One technique that can be arranged to increase the security of IoT is the
utilization of blockchain technology [27, 28, 29, 31]. Ronglin Hao et al. [32] an
algebraic fault attack on the SHA-256 compression function introduced under
the word-oriented random fault pattern. Throughout the attack, the automated
Segmentation, Targeting and Positioning (STP) Model is employed, which forms
binary representations for the word-based operations in the SHA-256 compres-
sion function and then requests a Satisfiability Problem (SAT) solver to resolve
the equations. M. Sumathi et al. [33] announced a software framework for the
implementation of data security algorithms. AES, RC5 and SHA algorithms
have been used in this investigation and examined their implementations in
Quartus – II software. They designed the encryption and decryption using Ver-
ilog HDL and simulated using ModelSim. With these algorithms, SHA-256 is
more cooperative for preparing long data and it produces extraordinary security.
The system meets all conditions and the results confirmed its reliability for data
transmission. Fırat Artuğer and Fatih Özkaynak [34] offered a new technique
to improve the performance of chaos-based substitution box structures. Substi-
tution box structures have a special role in block cipher algorithms since they
are the only non-linear elements in substitution permutation network designs.
The analysis outcomes explain that the recommended approach can increase the
performance standards. The quality of these results is that chaos-based designs
may give chances for other applications in addition to the arrest of side-channel
attacks.

HYPER BCK-HASHING ALGORITHM: EMPLOYING ENCODING SYSTEM BASED ... 467

2. HBCK-HASHING Algorithm

We describe the steps of HBCK – HASHING algorithm, initiated by the step of
preparing N -ary block codes (U) as input message to generate square associated
matrix of U by using specific notations. Next, we describe a multiplication
operation i ◦ j = βij towards making HBCK-algebra (H, ◦, 0). Subsequently, we
construct N -ary block codes UH with code words of length q for every HBCK-
valued function such that UH have U inside with redundancy. Moreover, we
apply the steps of the secure hash algorithms (SHA-2), starting from the step
of Appending bits, Length, and Initialize hash buffer step. Then, divide the
message into blocks. Lastly, output the final value as a cipher text.

Step 1. Pre-processing the input N-ary block codes U={d1,. . . ,dm}. Consider
a finite set L′

n= {1,2,. . . , n-1}. After lexicographic order, ascending order U of
length q. Let di = di1, di2, . . . , diq, dij ∈ L′

n and dij ordered descending.
Step 2. Constructing the associated matrix T ∈ tr(Ln) of hyper BCK-algebra

of U.We generate an associated matrix T ofN -ary codes U such that T ∈ tr(Ln),
r = m+ q + 1. we define the following equation 2.1:

(2.1)

βs0 = s, β0t = 0, s ∈ {0, 1, 2, . . . , r − 1},
βst = 0, if s ≤ t,

for q<s ≤ r − 1,we suppose βst = d(q+i);

i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , q},
for q<s ≤ r − 1, q<t<r − 1, s>t, βst = 1.

If T is the related matrix of U defined on L′
n and Lr = {0, 1, 2, . . . , r − 1} is a

non-empty set. Then, by using the previous schemes 2.1, we defined on Lr the
following operation i◦ j = βij .

Step 3. Applying the HBCK-valued function on T to get UH . We construct
N -ary block codes Lr = {d0,d1,. . . ,dr} with length q for every HBCK- func-
tion such that UH have U inside with redundancy. Suppose that we have the
following:

Finite hyper BCK-algebra (H ,◦ ,0) with elements (n), finite non-empty set
(L) and Ln as a finite set, where H = {r0,r1,. . . ,rn−1}, L = {a0, a1,. . . ,am−1}.

The map f : L → H is a hyper BCK-function, and the generalized function
cutted of f is

frj : L → Ln; rj ∈ H, frj (ai) = k

⇔ rj ◦ f(ai) = (ai) =

[0, rk],

(0, rk],

{rk}.
∀rj , rk ∈ H, ai ∈ L(2.2)

k, j, i ∈ {0, 1, 2,, n− 1}.
We suppose ∀r ∈ H, the generalized cut function fr: L → Ln. Every

generalized cut fun, we construct the following code word dr, with digits belong

468 HUSSEIN A. JAD et. al

to the set Lnas the following:

(2.3) dr = d0, d1, . . . , dm−1, di = j, j ∈ Ln ⇔ fr(ai) = j; r ◦ f(ai) =

[0, rj],

(0, rj],

{rj}.

Enlightenment:

1. (Lr, ◦, 0) is a unique identified hyper BCK-algebras since it was obtained
by using T , which was a unique identified by U .

2. Let dX = {X1, X2, . . . , Xq}, dY = {Y1, Y2, . . . , Yq} ∈ UH . We define the
relation of order ≤c on UH by the following dx ≤c dy ⇔ xi ≤ yi, i ∈
{1, 2, . . . , q}.

3. On H we define the following:

(2.4) x ◦ y =

θ, if x ≤c y,∀x, y ∈ H,

(θ, y], if x >c y, y ̸= 0, x, y ∈ H,

{X}, if y = 0,

{θ}, if x = 0.

Where, it gets a hyper BCK-algebra structure.Next steps, we have an
exchange between applying SHA-512 or SHA-256, in case of selecting one
of them. The following stages concerning applying steps of SHA-512.

Step 4. Appending bits on UH . It consists of a single 1-bit accompanied by
the required amount of 0-bits so that its range is matching to 896 modulo 1024
[range = 896(mod 1024)]. Padding is always added to the N-ary block codes
UH , even if UH is already of the desired range.

Step 5. Appending length on UH . A block of 128 bits [unsigned 128-bit
integer].

Step 6. Initialize hash buffer. Buffer of 512-bit is utilized to operate in-
between and last result of HBCK-HASHING algorithm. Registers of eight 64-
bit (a, b, c, d, e, f, g, h) represents the buffer. These records are initialized to
the next 64-bit integers (hexadecimal values): a = 6A09E667F3BCC908, b =
BB67AE8584CAA73B, c = 3C6EF372FE94F82B, d = A54FF53A5F1D36F1, e
= 510E527FADE682D1, f = 9B05688C2B3E6C1F, g = 1F83D9ABFB41BD6B,
h = 5BE0CD19137E2179.

Step 7. Divide the message into blocks of 1024-bit with 80 rounds. The
module of 80 rounds is identified g. Every round income the input of 512-bit
buffer (Hi), and appraises the fillings of the buffer. The value of the eightieth
round is joined to the input to the first round (Hi−1) to create Hi, the increase
is made separately for every of the eight-word in the buffer with each of the
similar words in Hi−1 using addition modulo 264.

Step 8. Output the final desired cipher text.

HYPER BCK-HASHING ALGORITHM: EMPLOYING ENCODING SYSTEM BASED ... 469

3. Structure of HBCK-HASHING Algorithm

To understand the proposed HBCK-HASHING algorithm, it is essential to
present the model of construction as shown in Figure 1. This model shows
the structure of the proposed algorithm through HBCK-valued function as a
pre-processing stage that applied on the associated matrix T of the input N-ary
block codes U. This function changes the input N-ary block code U to N-ary
block codes UH with redundancy. It aims to maximize the quantity of informa-
tion with the fewest number of visible characteristics during enlarging the size
of U from n×m to r× r with the same length q [35].

Figure 1: Model of HBCK-HASHING construction

Besides, the structure of the model demonstrates the subsequent steps which
including adding padding and length to the N-ary block codes UH with dividing
the UH into blocks of 1024-bit (in case of using SHA-512) and512-bit (in case
of using SHA-256) to get the cipher text value of the N-ary block codes U. The
compression Function g, in the construction model, represents

(3.1) g : {0, 1}s × {0, 1}|Ui| → {0, 1}s.

Receives an input code Hi (i = 0, ..., r -2) of size S bits and Ui (i = 0, ..., r-1)
of size Ui bits, to get the renewed cipher text variable Hi (i = 1, ..., r-1) of size
S bits. Consequently, to support the rule of input code of uncertain length, the
construction requires padding to transform the input code into a padded code of

470 HUSSEIN A. JAD et. al

length a multiple of Ui bits. Simple padding makes unsafe constructed Cipher
text. So that, the construction utilizes a padding function, which attaches the
value of code length S at the end of Ui to produce the expanded code Ui.

(3.2) H i = H i−1 + giU (H
i−1),

where, g is the compression function of SHA, + is word by word edition mod
264 and H is the cipher text of U .

4. Evaluation parameter

We evaluated the strength of HBCK-HASHING by calculating Avalanche Effect
for every N-ary block codes. It has computed over small changes on the plaintext
that contains 20 digits. These should provide a meaningful difference in cipher
text. Particularly, changing an only bit in the plaintext, fixing the key, should
change every bit in cipher text with probability (¿ 50%) ([16]).

Figure 2: Process of Cryptographing (21) 6-ary block codes

We selected (21) 6-ary block codes with ascending ordered after lexicographic
order and descending ordered for bits of each block inside the 6-ary block code.
Each block code with4 code words of length 5. i.e., 20 bits in each 6-ary block
code. Figure2 shows the process of Cryptographing (21) 6-ary block codes by
using SHA-512 or SHA-256 directly, and also with applying HBCK-HASHING
to compare the cipher texts and calculate the avalanche effect as an evaluation
parameter. We implement HBCK-HASHING on P1 in the case of picking up
SHA-512 through constructing a unique identified HBCK-algebra(H)and apply-
ing the function of HBCK f: L → H given by[

a1 a2 a3 a4 a5
1 2 3 4 5

]
to generate 6-ary block codes with a redundant encoding UH = 00000, 10000,
11000, 11100, 11110, 43221, 53321, 54321, 5431,as stated by step 1, step 2,
and step 3 of HBCK-HASHING algorithm. In addition, we implement the
Secure Hash Algorithm 512 on UH to generate the first cipher text of P1. On

HYPER BCK-HASHING ALGORITHM: EMPLOYING ENCODING SYSTEM BASED ... 471

the same way, we implemented HBCK-HASHING algorithm on another (20) 6-
block codes by using the same HBCK-valued function f: L → H , and calculated
the Avalanche Effect as shown in 4. To calculate the Avalanche Effect of (21)
6-ary block codes, we compared the cipher text of them after applying HBCK-
HASHING, as shown in 5 with the cipher texts of (21)6-ary block code after
applying the secure hash algorithm 512, as shown in 5, through the division of
Number of flipped bits in the cipher text after applying HBCK-HASHING over
number of bits in the cipher texts, as shown in 4.

6-ary No. of Flipped Bits No. of Total Avalanche Effect(%)
Block in Cipher Texts of Bits in Cipher Texts
Codes 6-ary Block Codes

after Applying
HBCK-HASHING

P1 121 128 94.53125
P2 117 128 91.40625
P3 118 128 92.1875
P4 120 128 93.75
P5 124 128 96.875
P6 117 128 91.40625
P7 119 128 92.96875
P8 124 128 96.875
P9 119 128 92.96875
P10 115 128 89.84375
P11 114 128 89.0625
P12 119 128 92.96875
P13 115 128 89.84375
P14 116 128 90.625
P15 122 128 95.3125
P16 121 128 94.53125
P17 121 128 94.53125
P18 121 128 94.53125
P19 121 128 94.53125
P20 121 128 94.53125
P21 124 128 96.875

Table 1: Value of Avalanche Effect of (21) 6-ary block codes after applying
HBCK-HASHING in case of using SHA-512.

we perform HBCK-HASHING algorithm, in the case of picking up SHA-256,
on P1 and compared the cipher text of P1 after applying HBCK-HASHING,
as shown in 5 with the cipher text of the same 6-ary block codes(P1) after
the implementation of SHA-256, as shown in 5. Further, we measured the

472 HUSSEIN A. JAD et. al

Avalanche Effect, as shown in 4. On the same way, we implemented HBCK-
HASHING algorithm on another (20) 6-block codes by using the same hyper
BCK-valued function f: L → H, and calculated the Avalanche Effect as shown
in 4. To calculate the Avalanche Effect of (21) 6-ary block codes, we compared
the cipher text of them after applying HBCK-HASHING, as shown in 5with
the cipher texts of (21)6-ary block code after applying SHA-512, as shown in 5,
through the division of Number of flipped bits in the cipher text after applying
HBCK-HASHING over number of bits in the cipher texts, as shown in 4.

6-ary No. of Flipped Bits No. of Total Avalanche Effect(%)
Block in Cipher Texts of Bits in Cipher Texts
Codes 6-ary Block Codes

after Applying
HBCK-HASHING

P1 60 64 93.75
P2 60 64 93.75
P3 60 64 93.75
P4 62 64 96.875
P5 58 64 90.625
P6 60 64 93.75
P7 60 64 93.75
P8 60 64 93.75
P9 59 64 92.1875
P10 62 64 96.875
P11 63 64 98.4375
P12 59 64 92.1875
P13 61 64 95.3125
P14 57 64 89.0625
P15 62 64 96.875
P16 60 64 93.75
P17 61 64 95.3125
P18 60 64 93.75
P19 60 64 93.75
P20 60 64 93.75
P21 60 64 93.75

Table 2: Value of Avalanche Effect of 6-ary block codes (U) after applying
HBCK-HASHING in case of using SHA-256.

5. Experimental results and analysis

In the following, we have promising results regarding the algorithm of HBCK-
HASHING, in case of using SHA-512. 5 shows cipher texts of (21) 6-ary block
codes after applying the algorithm and 5 shows cipher texts of (21) 6-ary block

HYPER BCK-HASHING ALGORITHM: EMPLOYING ENCODING SYSTEM BASED ... 473

codes after applying SHA-512 only.we calculate the Avalanche Effect of (21) 6-
ary block codes by computing number of flipped bits in cipher texts, as shown in
4 and representing the values of Avalanche Effect on a graph of (21)6-ary block
codes, as shown in Figure 3. We noticed that the maximum value of Avalanche
Effect was 96.875% in P5, P8 and P21, where the number of flipped bits in
the cipher texts increased to 124, and the least value of Avalanche Effect was
89.0625% in P11, where the number of flipped bits decreased to 114. Addition,
the trending line of all values of Avalanche Effect lies between 92% and 94% as
shown in Figure 4.

The increasing of Avalanche Effect probabilities lead to increase the security
level and the complexity of break through the system.

Figure 3: Avalanche Effect of 6-ary block codes (U) after applying HBCK-
HASHING in case of using 512

Similarly, in the case of joining SHA-256 with HBCK-HASHING. 5 shows
cipher texts of (21) 6-ary block codes after HBCK-HASHING, in case of using
SHA-256, and 5 shows cipher texts of (21) 6-ary block codes subsequent im-
plementing SHA-256 only. After computing the Avalanche Effect of (21) 6-ary
block codes , as shown in 4 , and representing the values of Avalanche Effect on
a graph of (21) 6-ary block codes, as shown in Figure 4. In the case of attaching
SHA-256, especially in 4,the highest percentage of Avalanche Effect is 98.4375
in P11, wherever the quantity of flipped bits in the cipher texts following uti-
lizing HBCK-HASHING raised to 63, and the smallest percentage of Avalanche
Effect was 89.0625 in P14, wherever the number of flipped bits reduced to 57.
In addition, the trending range of all values of Avalanche Effect rest between
93% and 95% as shown in Figure 4.

474 HUSSEIN A. JAD et. al

Figure 4: Avalanche Effect of 6-ary block codes (U) after applying HBCK-
HASHING in case of using SHA-256.

6-ary Block 6-ary Block Codes Cipher Texts of 6-ary Block Codes with a
Codes (U) with a Redundant Redundant Encoding by Using SHA (512)

Encoding (UH)
P1 4322153321 000001000011000 dc228680e90ec2f6a285518e5ee23e5611b0872

5432155431 111001111043221 bb20f05d559d524aa1dbf2c474ea259eaa917c74
533215432155431 5cf12c68ec1408f40854e4fbc76cbc7e1e3ffa416

1178463b
P2 5322153321 000001000011000 5e779c9152f7af033cec0d01bab8a74954c448bf

5432155431 111001111053221 43d5c3be58187a1c77c29cb489f3466b95892ff0
533215432155431 43d5c3be58187a1c77c29cb489f3466b95892ff0

8b54e3e03
P3 4422153321 000001000011000 a9bab493ff75ff08506e0670a8252065aed839ed

5432155431 111001111044221 78184a70fee3bd285d0e274b796eb991bf3ef666
533215432155431 58cd262511790e3f928532ada54e4a8e5cbda12

2ae4da427
P4 4352153321 000001000011000 b921b1265dd55fdc4e461c4be657afb1bc3c796

5432155431 111001111043521 b5ccd4678c848b81c96e6dcb691afb50e190043
533215432155431 e1dc504882094a8fc4c1c14aaaa131ab133cb222

73bc0d51af
P5 4324153321 000001000011000 182922bf9a7fcdadf82ec275fd0d83586989c78e

5432155431 111001111043241 58f864e49ecf944eb9c46fdbb4914f574f52eacd2
533215432155431 a6416acdc68b64f442d561f04c59b7476f3def1d

749d45c
P6 4322553321 000001000011000 1dc0c82129a07348c123e97c6e4c912c6dd1ea9

5432155431 111001111043225 53dfbd76a8f9eaee28f31c58394c50d9bbe3ac80
533215432155431 57ac2008b5fef45ff04146343a1671cd2a1c6c2b

a608aba86
P7 4322163321 000001000011000 5e228a9948c55bb44900c811758ed4bbde9cbd2

5432155431 111001111043221 1484d16ae706a2993cf1b7dc2304ee182cf76060
633215432155431 85f8bf973e0a44d1646d23ae34c752b9c5140de

1c8498615
P8 43221543321 000001000011000 7bf8d3a918bf70eab23308c379e64671468c9dd

5432155431 111001111043221 102b1fdc401d098f3111550e05e8df82cb373f0d

HYPER BCK-HASHING ALGORITHM: EMPLOYING ENCODING SYSTEM BASED ... 475

543215432155431 60838c84fd60f7bffe4c9bf625512ee0649687ec
d2e7fbf08

P9 4322153621 000001000011000 87e21431a04822155db9e3595b2e5998fc52747
5432155431 111001111043221 9cd4a8c08b3600de59b2ad24f4c6ab55df03b29c

536215432155431 6bbff88dcc355b3bdbef62e9c8e30d651ba387cc
8ac3da53c

P10 4322153341 000001000011000 d615749b41bd75d9967accf44e8ca754ed93a47
5432155431 111001111043221 7a8274c35620f976466ca985893ffbdddfdefcc1

533415432155431 8440ebd3012c2e0830fbbe158e7a4fc0aec33a05
df073cb89

P11 4322153325 000001000011000 b8795773db70c087ab42aa679724a6e72201b14
5432155431 111001111043221 1772cb8b4c530f31cd87c3571bf91e3169d617b

533255432155431 69d45749c92b7bd599c65bb4765740fee97f0c6
ac691e7190

P12 4322153321 000001000011000 1a3f80d12198d196290f83653aae952e2bed62a
3432155431 111001111043221 b5b6f70b6334b5d20c6629e247de28ad657bb87

533213432155431 54a331f17a2c9e23f2a067c3ec9ba2ead740b022
9b3828f148

P13 4322153321 000001000011000 726b1e4b5ec8a9f803726336c9784b02cec50ad
5532155431 111001111043221 72dbd57a13853526b449d8e05c1bba4c779206f

533215532155431 20bc7a00a79bc36807b0a2dfebd59a0756237c3
d19fba54f2

P14 4322153321 000001000011000 d7e30f3505cc4281a35666379e4cd11cab617bfc
5422155431 111001111043221 726f6b705c2cfef33ac18b4723aa5dd330a77c5c

533215422155431 8874b1328155a4d2b18007ce7c26683be82f331
7af6382fc

P15 4322153321 000001000011000 7c9cf687d470ba75efdf63ebd4a3797249f28fce0
5435155431 111001111043221 c9af5a46081e16a7652741ac597f5531ebbafd69

533215435155431 13d3619895bf6c837e071ac6ecc90538d40c6c3
185ef084

P16 4322153321 000001000011000 5d37540ddae4f63eb8b2ecc60735e07150dd5cc
5432355431 111001111043221 5ca2d723514041543d7804af93e5b681978fa4e

533215432355431 bedf1305fef5d4624804d17039ee52ca67027886
dfa42e409e

P17 4322153321 000001000011000 3f88ff4f061ffed2caab9226c377bafb8a83c2c92
5432165431 111001111043221 7487650deeb38c9e0b021c6c0eba016bc0d1d10

533215432165431 4e9e0f9ea0c3a6cdeaf4449f58d15368c6cc1393
bbd822d5

P18 4322153321 000001000011000 51a56ddffaea5df9ab884e07ff5d5ba12591bd2d
5432154431 111001111043221 4883cbdadf0d0a018b0eff4b5799232dfcd92ab4

533215432154431 0f743ddc615c4c8507fdc84ce67aa83aee7939b6
48ad5897

P19 4322153321 000001000011000 6d3e924bee5c38e20c01aa7b2a37321821a8a1c
5432155331 111001111043221 eb353b7b08bf40ab756fc87c24c2eda761c1efcb

533215432155331 4a0d59bd2676243db2f244f2e0469dc2477a4a5
56b735b2fa

P20 4322153321 000001000011000 8e9b1debb8fc55df828969595cbd69c1a53571d
5432155421 111001111043221 138d5f4221c5b2d4416afad15b34504b86a18fd

533215432155421 b4921beee6b94673b244f170b4406be9c2a85e5
6bae6b2936

P21 4322153321 000001000011000 1d6598a24e464832be5da6fb679272c5f35916b
5432155432 111001111043221 b0c612715236275fc4af33cdafb8d46e595f5fa7

533215432155432 04ec1655448918c4ca3bb1ac1c7d855cf9131a9f
f49c2a8b4

Table 3: Cipher texts of 6-ary block codes by using HBCK-HASHING algo-
rithm in the case of using SHA-512

476 HUSSEIN A. JAD et. al

6-ary Block Codes Cipher texts
(U)

P1 4322153321 8dff689bfca583e6734665c695ce8db3163909380af6bbd72d6d716da
5432155431 ff7f5c5ec9e913ea89b630be957eedbc20246e7ee3d07345d7fc526f81

49cd72391d73d
P2 5322153321 8ac6818ec798fd2511525516b2ebadd6434d485d5fff70b6657befb67

5432155431 f5c7b1d547e0c07a7225236392729046cd617ea5e1418d12c1b9041a
e9beb7cfe99f205

P3 4422153321 3ef9b78088b2ac2109f363fd3c81e1bb7d413c1c4055b72ffce42e772
5432155431 239c916bc5a151ebc37822da23e741be300529152703d81a484f8b11

acdddc653518e1c
P4 4352153321 872f5ade38a10c8998e07bf29556ebbb239e4cb4e5f3f2c09a30b4f2f0

5432155431 7443daa26abe1f0cce4b5c360c68c53db221231b2c95a10294225047
46b82a27fbe73d

P5 4324153321 56dd4f42da49f779b73faec92f62fe23556d21e70376f08cfa390c1fd1
5432155431 3446b5205c75a29351508778512e06fe53373913cdffcc9899633f983

9c4384417bfcb
P6 4322553321 d0e0c0ab89bce182aee4736f053d013ce209911bce82d8810b9812c7

5432155431 d308e5e2cc464ae241c898e22cc6a7a8f9d10f2ea4724ccb36b0cd344
74175e6177e98c2

P7 4322163321 4f26287098b573d4e56c8dfba84afe1d778d5432939b9ec89cd7629bb
5432155431 bbfb4026f998122ad8e1435acffc496ce828ee2f4b6eccbb09f260ed76

e6a7d0eebc79d
P8 4322154321 ecaeaf191c7375c85982365a31a4544215d2a18cb1f6a52695fa8b0c8

5432155431 2a9213e00a36303fc17221e4c6121a8a168c5ba642144c400b653e1fc
a6644019b5c39f

P9 4322153621 2ec54eb37462d87c01608e009b460aed68aa243e5cd41d0fb807d05fb
5432155431 3dde000a3da2ab02be006dfb2c2b9592bc0981c0ac9ae599d26bf0b1a

cbc084f97b5505
P10 4322153341 6ced46ed192444df99e8def15733ef9f1daea1107037fb0d184045765

5432155431 49a9e7c1adbb5dd97898fda9744ec732a226aca533bd4b2da9a281f5d
cdc97649f4b35f

P11 4322153325 dc99a1583fb7f1eca60212a4aadc6cd2a2064904636c93b8acfc6abd4
5432155431 25e6f31492d216bcbf0425ec51b2bc524486e096d6e5506bac8e7d4c9

2427cb4a881fa7
P12 4322153321 bce45b51b6b57c003815439c1ceb938df4fdc4ef565ddb01211b045f5

3432155431 53cb364d85e986a4cfab9d30c405403c816ba37935b6cf77412397f6c
dc64f431fe0387

P13 4322153321 b201af458c161044b203fe38ad2be39fb649a0943c2e43e65b2f1cf8b
5532155431 d277d77eb85146220b00a36bc8e726560a6e804e046f331f79aa6533

8c5829175ce22fc
P14 4322153321 dffb5af0dc513e321caef73feeede9fc7204420b278b4365f70addb7abe

5422155431 1b1471fa4e508f733eb3cdb161ea84c40b8f41c4e58c6651541353e2d
089d7212d780

P15 4322153321 37f794ec81ff5963f329ab167a6e2a9210fdd77ac5222bcf3e578a8f14
5435155431 0816bebb5efbb32dd7f0bf84498d9eba0cfbf3def9512eed9b0d82303e

3c2a23ec9819
P16 4322153321 9a762eba83a1249a2842ca5b668a26e9522a3118fef745c29b716e3db

5432355431 c37402842e7ea8ec6324ccabc2c41386a459563452a6d5c1af831c84a
cd26d3f5a032f6

P17 4322153321 3b2e53f31d329878685ccc9a11972dc65fad1b872d520b1d10ba499f9
5432165431 2a54fbafdc879ec135f041f936ad3b3a5f518acfb780441b99527e183b

4ca2cb6b66b62
P18 4322153321 d2a5b248e9aec7ad19a100832f3555d8accb70f98b2befb092e2def9aa

5432154431 a90e2d501f6b25ed6275d573e36b9700ab133fd860d87bf563b31cc7
50d67acfca620f

P19 4322153321 5e231249bad007f2008330441281f8d7c4e5f212a6b22be64948470b
5432155331 a1147cc33dd4849e1278c8ca214aa5e13d2daabd5c5d8e75ffefdf7335

390205e1a99139
P20 4322153321 2c958aa35c81a73ceaa79fe89e9326099e7643289646a8638f6045156

5432155421 775f5cd2ccd0018b742aba1c8151c6bfc91458f1d9f15b1b23da4c96b

HYPER BCK-HASHING ALGORITHM: EMPLOYING ENCODING SYSTEM BASED ... 477

2e2f78046baf77
P21 4322153321 025de2e020e7f67796e31c417cd6921416620c4d0fb31815883c98e5f

5432155432 f8e633655e6e74f8246811a9c591f2aceab9b9219175dd5bd738f578c
69e4a1f4a75d6a

Table 4: Cipher texts of 6-ary block codes by using SHA-512

6-ary Block 6-ary Block Codes Cipher Texts of 6-ary Block Codes with a
Codes (U) with a Redundant Redundant Encoding by Using SHA (256)

Encoding (UH)
P1 4322153321 000001000011000 c443e90b301d4b313ed9f15135550a8f52cfcd1

5432155431 111001111043221 e1f271b50df3ee20651c39c31
533215432155431

P2 5322153321 000001000011000 1a5f25ab34f89787fb650b632d523969b889967
5432155431 111001111053221 6ff67e0c9545bb1b211e9f90b

533215432155431
P3 4422153321 000001000011000 8e24467b41ec0b64ae9301c90d97d0b6a1ba4f1

5432155431 111001111044221 a234b9c4e9898cbff8a56fc7d
533215432155431

P4 4352153321 000001000011000 15e571900d38fe7cefd68226891c3ee95067253
5432155431 111001111043521 c975e831aea6201c85d3a44f1

533215432155431
P5 4324153321 000001000011000 6579148a6c847e16ccfd06cb4d6aaa2e117dac6

5432155431 111001111043241 97e18dcade7e9c52f7cd0efc4
533215432155431

P6 4322553321 000001000011000 b56ce6bf6f383011285fb14170553112108d94f
5432155431 111001111043225 8a836a325cf2a29f6f20a46a7

533215432155431
P7 4322163321 000001000011000 b5ba82dbefb13902140c9f29214defc17d5d34b

5432155431 111001111043221 f4e5c202f053e72a54eb1687d
633215432155431

P8 43221543321 000001000011000 e8b36d7c026609584b524b1af624e3c2d43ea8a
5432155431 111001111043221 29dd28eb03ad9046744a36bd1

543215432155431
P9 4322153621 000001000011000 638371974ee28e81a6dcede48c739111dcc41ef

5432155431 111001111043221 4946de646615b15dda4206fbd
536215432155431

P10 4322153341 000001000011000 edebbc31e7d02f45d459fdedf6ab6cfcf47e4761
5432155431 111001111043221 7d47b8c7a3ad5d1d37f968d1

533415432155431
P11 4322153325 000001000011000 fbebdf9b610ca90e3e47d6098557f3d623b34e3

5432155431 111001111043221 9f4d9d7c5699cbcc8e0157d49
533255432155431

P12 4322153321 000001000011000 54a7a28ca927b7c6bbf8df27572d887a7fcd994
3432155431 111001111043221 436f89543818dc533b96d192f

533213432155431
P13 4322153321 000001000011000 4c1ea6391bcb8ae9580b2d9cc4cb9e1c8a85778

5532155431 111001111043221 b6c3413e0fcb3c42a784544ff
533215532155431

P14 4322153321 000001000011000 e9faf3a45b983203a57a81fd1092447b083ffc0e
5422155431 111001111043221 d8d90cc1e07b785d7c0c701f

533215422155431
P15 4322153321 000001000011000 0472c022839276a1c8a9c2e06cce663e57a6985

5435155431 111001111043221 d00163e49de43bb49531f0c68
533215435155431

P16 4322153321 000001000011000 cd8034033603933af5d5f15b8d06e06ebc6fef0
5432355431 111001111043221 65498d115eb90a15ce41b376f

533215432355431
P17 4322153321 000001000011000 d75972576f0b7168e053332a824f8010aaaff16

5432165431 111001111043221 59592642e2177a87a214171a7
533215432165431

478 HUSSEIN A. JAD et. al

P18 4322153321 000001000011000 c8c49737513ae92869caee869864ad73cd38552
5432154431 111001111043221 bb0e93a0d9a4c0e278b6cedf6

533215432154431
P19 4322153321 000001000011000 7b63c9f8810434bdcc388f1acb0bb80cbd98dd8

5432155331 111001111043221 8a418ebbae3f12cb104a8899d
533215432155331

P20 4322153321 000001000011000 cf1460cf18c4f7cdc94420cf87390133b24bc074
5432155421 111001111043221 5085c6b01e87130072edaeae

533215432155421
P21 4322153321 000001000011000 75a6a221dbb141d6ff31a9224508c4db28b5f03

5432155432 111001111043221 e4251d6dc6c856632157ed98b
533215432155432

Table 5: Cipher texts of 6-ary block codes by using HBCK-HASHING algo-
rithm in the case of using SHA- 256

6-ary Block Codes Cipher texts
(U)

P1 4322153321 615cdff092a7b8bc9eead08549ea60c12776e2dc9cd9818
5432155431 c187e29b6f16f685e

P2 5322153321 3f8f2609bc1a7c2c1efea2efa82fd744c4f407f312af611cb
5432155431 e87b3d0f1a0371d

P3 4422153321 247324ce62b2922a4472bcc1e532d74e3cfb029d955a0ff
5432155431 390ac62f83c22c94e

P4 4352153321 575d73533b24b2d6c1be9d2844d3e42c174e7ee4ba43eff
5432155431 df1d5839f7594b71f

P5 4324153321 9557f68e556c735534fe1631188b540582e4d49a7cdca03
5432155431 c222377c6f11a530e

P6 4322553321 476451d83f3e15f940687fab0ecffc6ca6664b0809241d4
5432155431 9e3a1909e57e48376

P7 4322163321 0e69e71b6a96cc120ca694a4d2732e3a0643ef919d56888
5432155431 d77a4847c09737b9a

P8 4322154321 57481836aabf4dbe63dad0e49642bc74d0edaa972baac8e
5432155431 33777475bd8d095c2

P9 4322153621 52ffbc60a39bddf7ac2e5ad9e2d443b8cff807595df3d6d9
5432155431 91895a3ba4b3904a

P10 4322153341 92983647186b1f3fee7651fb9fb110553c9df676e5bf5adf
5432155431 e17964aff4ec2ec1

P11 4322153325 53aa730d5d39758401b968b6e8e1e0ce731172fd975eae
5432155431 58816338ba149698be

P12 4322153321 16ce0b01b68906d484fdf732ad63bf4f05e111e238413c3
3432155431 31685685a79354db7

P13 4322153321 3b24ca7468d9baf78affb2ad02d0182056e260b5d6c827f
5532155431 097285a5d741dbf8e

P14 4322153321 d1b2f630399cc0e1cd89d1495957ef9862aec559f236b8c
5422155431 191122ea57a01ffd5

P15 4322153321 6768bb0ce52c1004fc38d5ceff78245932a78783963fad0
5435155431 003e4db5c8291d345

P16 4322153321 c696a68e8731c21dc5c34356865a79bd25c5788730aefe8
5432355431 df754f0783c95a90b

P17 4322153321 53d111ae10641bf1ede879fdb569b3c7c1d03768fadf267
5432165431 0e4e79a496a03f8ff

P18 4322153321 6f0f830a57f359cd03b13874cb9864e646f8dfe2f236315e
5432154431 c7bda9e2c5ea9b0a

P19 4322153321 625d8332bafcc1f8130449a89ac0bd9a040b04181719ec1
5432155331 6c988ca842ac498bf

P20 4322153321 339f041f012a6b016ae073158c7f5ff15ac594a495abf20d
5432155421 a142a61721301eed

P21 4322153321 e2a00587de1c3434e014082ce6e2da337daad81b5e91e5
5432155432 5bab430deaf80c0aa1
Table 6: Cipher texts of 6-ary block codes by using SHA-256

HYPER BCK-HASHING ALGORITHM: EMPLOYING ENCODING SYSTEM BASED ... 479

References

[1] R. Karri, P. Mishra, Minimizing the secure wireless session energy, Journal
of Mobile Network and Applications (MONET), 8 (2002), 177-185.

[2] M.A. Ahmed, E.A. Amhed, Fuzzy BCK-Algebras, Journal of Applied Math-
ematics and Physics, 8 (2020), 927-932.

[3] Y.B.Jun, X.L.Xin, On derivations of BCI-algebras, Information Sciences,
159 (2004), 167-176.

[4] S. Mostafa, F. Kareem, H.A. Jad, Intersectional (/alpha, A)-soft new-ideals
in PU-algebras, Journal of New Theory, 13 (2016), 38-48.

[5] L.H. Encinas, Codes generated by R0-algebra valued functions, Applied
Mathematical Sciences, 9 (2015), 5343-5352.

[6] C. Flaut, Some connections between binary block codes and Hilbert alge-
bras, in Recent Trends in Social Systems: Quantitative Theories, Springer
International Publishing Switzerland, 2017, 249-256.

[7] S. Mostafa, B. A.B. Youssef, H.A. Jad, Efficient algorithm for constructing
KU-algebras from block codes, International Journal of Engineering Science
Invention, 5 (2016), 32-43.

[8] S. Mostafa, B.A.B. Youssef, H.A. Jad, Coding theory applied to KU-
algebras, Journal of New Theory, 6 (2015), 43-53.

[9] S. Mostafa, F. Kareem, H.A. Jad, Brief review of soft set and its application
in coding theory, Journal of New Theory, 33 (2020), 95-106.

[10] A.B. Saeid, C. Flaut, Š. Hošková-Mayerová, M. Afshar, M. K. Rafsanjani,
Some connections between BCK-algebras and N-ary block codes, Soft Com-
put, 22 (2018), 41–46.

[11] Y.B. Jun, L. Xin, M.M. Zahedi, R.A. Borzoei, On hyper BCK-algebras,
Italian Journal of Pure and Applied Mathematic, 8 (2000), 127-136.

[12] A. T. Surdive, N. Slestin, L. Clestin, Coding theory and hyper BCK-
algebras, Journal of Hyper structures, J. Hyperstructures, 7 (2018), 82-93.

[13] S. Mostafa, M. Abd-Elnaby, B.A.B. Youssef, H.A. Jad, Algorithm for en-
coding N-ary block codes by using the hyper function, Advances in Mathe-
matics: Scientific Journal, 10 (2021), 339-351.

[14] W. Stallings, Cryptography and network security: principles and practice,
5th ed. Pearson, 2011, 342-345.

[15] J. Kurose, K. Ross, Computer networking: a top-down approach featuring
the internet 3/E, Pearson Education India, 2005.

480 HUSSEIN A. JAD et. al

[16] Menezes, L. Bernard, Network security and cryptography, Wadsworth Pub-
lishing Company Incorporated, 2012.

[17] B.K. Kim, S.J. Oh, S.B. Jang, Y.W. Ko, File similarity evaluation scheme
for multimedia data using partial hash information, Multimed Tools Appl,
76 (2017), 19649-19663.

[18] M. Bellare, R. Canetti, H. Krawczyk, Keying hash functions for message au-
thentication, Annual International Cryptology Conference, Springer, New
York, 1996, 1-15.

[19] S. Nakamoto, Bitcoin: a peer-to-peer electronic cash system, Manubot,
2019.

[20] X. Xu, I. Weber, M. Staples et al., A taxonomy of blockchain-based systems
for architecture design, 2017 IEEE International Conference on Software
Architecture (ICSA), 2017.

[21] Z. Zheng, S. Xie, H. Dai, X. Chen, H. Wang, An overview of blockchain
technology: architecture, consensus, and future trends, 2017 IEEE Interna-
tional Congress on Big Data (Big Data congress), 2017.

[22] J. L. Carter, M. N. Wegman, Universal classes of hash functions, Journal
of Computer and System Sciences, 18 (1979), 143-154.

[23] L. Coetzee, J. Eksteen, The internet of things-promise for the future? An
introduction, 2011 IST-Africa Conference Proceedings, IEEE, 2011.

[24] X. Wang, J. Zhang, E. M. Schooler, M. Ion, Performance evaluation of
attribute-based encryption: toward data privacy in the IoT, 2014 IEEE In-
ternational Conference on Communications (ICC), IEEE, 2014.

[25] Katagi, Masanobu, S. Moriai, Lightweight cryptography for the internet of
things, Sony Corporation, 2008, 7-10.

[26] V. Shirley, R. Pamidi, Web of things.

[27] M. Singh, A. Singh, S. Kim, Blockchain: a game changer for securing IoT
data, 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), IEEE,
2018.

[28] G. Pulkkis, J. Karlsson, M. Westerlund, Blockchain-based security solutions
for iot systems, Internet of Things A to Z: Technologies and Applications,
2018, 255-274.

[29] Conoscenti, Marco, A. Vetro, J. C. Martin, Blockchain for the Internet of
things: a systematic literature review, 2016 IEEE/ACS 13th International
Conference of Computem Systems and Applications (AICCSA), IEEE,
2016.

HYPER BCK-HASHING ALGORITHM: EMPLOYING ENCODING SYSTEM BASED ... 481

[30] Kamble, Ashvini, Sonali Bhutad, Survey on Internet of Things (IoT) secu-
rity, issues 418, solutions, 2018, 2nd International Conference on Inventive
Systems and Control (ICISC), IEEE, 2018.

[31] Kshetri, Nir, Can blockchain strengthen the internet of things?, IT Profes-
sional, 19 (2017), 68-72.

[32] Ronglin Hao, B. Li, B. Ma, L. Song, Algebraic fault attack on the SHA-
256 compression function, International Journal of Research in Computer
Science, 4 (2014), 1-9.

[33] M. Sumathi, D. Nirmala, R. I. Rajkumar, Study of data security algorithms
using Verilog HDL, International Journal of Electrical and Computer En-
gineering (IJECE), 2015, 1092-1101.

[34] F. Artuger and F. Özkaynak, A novel method for performance improvement
of chaos-based substitution boxes, Journal Of Symmetry, 2020.

[35] E.R. Tufte, The visual display of quantitative information, Cheshire, CT:
Graphics Press, 1983.

Accepted: September 22, 2021

