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The structure of (θ1, θ2)-isoclinism classes of groups
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Abstract. In 1940, Philip Hall introduced the concept of isoclinism among all groups,
and it is generalized to a more general notion called isologism. This concept is isoclinism
with respect to a given variety of groups. The equivalence relation of isologism partitions
the class of all groups into families.

In this article, we introduce a kind of isoclinism with respect to θ-centre, Zθ(G),
and right θ-commutator subgroup Kθ(G), for some automorphism θ of the group G,
and we investigate some of its properties.
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1. Introduction

One of the most classical notions playing a fundamental role in classifying groups
is the notion of isomorphism among all groups. However, in many cases this
notion is too strong. For instance, in the case of finite groups one would like to
consider abelian groups being classified as a one family.

P. Hall in 1940 introduced the concept of isoclinism [3]. This is an equivalence
relation on the class of all groups, which is weaker than isomorphism and such
that all abelian groups fall into one equivalence class, namely they are equivalent
to the trivial group. Roughly speaking two groups are isoclinic if and only if
there exists an isomorphism between their central quotients, which induces an
isomorphism between their commutator subgroups.

In [2], the second and third authors introduced and studied the concept of
right and left α-commutator, as follows:

Definition 1.1. For arbitrary elements x and y in a given group G and α ∈
Aut(G), we say x and y commute under the automorphism α whenever yx = xyα

or yϕx = yα, where ϕx is the inner automorphism induced by x.
Moreover, [x, y]α = x−1y−1xyα is called right α-commutator of x and y.

Also, α[x, y] = (x−1)αy−1xy is called left α-commutator of x and y.

For n ⩾ 3, we may define inductively right and left α-commutator of weight
n as follows:

[x1, x2, · · · , xn]α = [[x1, x2, · · · , xn−1]α, xn]α,

α[x1, x2, · · · , xn] = α[α[x1, x2, · · · , xn−1], xn],

for all xi ∈ G and 1 ⩽ i ⩽ n. It is clear that, if α is the identity automorphism
of G or xi’s are in CG(α) then we have ordinary commutator [x1, x2, · · · , xn] of
weight n, where

CG(α) = {x ∈ G | [x, α] = x−1xα = x−1α(x) = 1},

is the centralizer of α in G.
For a given group G and automorphisms α and β in Aut(G) we consider,

αβ = β−1αβ. The following lemma is very useful in our further investigations.

Lemma 1.1. Let x, y and z be elements of a group G and α, β ∈ Aut(G). Then
the following identities hold:

(i) [x, y]α = [x, y][y, α];

(ii) [x, x]α = [x, α];

(iii) ([x, y]α)
α = [xα, yα]α;

(iv) [x, y−1]α = [x, y]
−(yα)−1

α ;

(v) ([x, y]αβ )β = [xβ, yβ]α;
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(vi) [xy, z]α = ([x, z]α)
y[y, zα];

(vii) [x, yz]α = [x, z]α([x, y]α)
zα ;

(viii) ([[x, y−1]α, z]α)
yα = [x, y−1, z]y[zy, α].

Proof. All parts follow using the definition of right α-commutator and the
above notation.

One can easily see that [x, y]−1
α = α[y, x], hence we may state similar re-

lations, as the above lemma, for left α-commutator. Here we work with right
α-commutators in the rest of article.

Remark 1. For an automorphism α of a group G, the action ψ : G × G → G
given by ψ(x, y) = y−1xyα, partitions the group G into α-conjugacy classes,
which we denote it by xGα , i.e.

xGα = {y−1xyα | y ∈ G}.

Note that the number of α-conjugacy classes is equal with the number of
ordinary conjugacy classes, which are invariant under α and it is also equal to
the number of irreducible characters which are invariant under α (see [7, 9] for
more details).

Now, we recall that the following subgroup is called α-centre of the group G

Zα(G) =
⋂
x∈G

CαG(x) = {y ∈ G | [x, y]α = 1,∀x ∈ G},

where CαG(x) = {y ∈ G | [x, y]α = 1} and |xGα | = [G : CαG(x)] (see [1, 9] for
more information). One can easily check that Zα(G) = Z(G) ∩ CG(α) and so
Zα(G)⊴G. Also, L(G) =

⋂
α∈Aut(G) Z

α(G), and hence

L(G) ⊆ Zα(G) ⫋ Z(G),

as [x, y]α = [x, y][y, α] = 1, for all x ∈ G and y ∈ Zα(G), while [y, x]α =
[y, x][x, α] ̸= 1.

Now, one may define α-commutator subgroup of G as follows

Kα(G) = ⟨[x, y]α | x, y ∈ G⟩.

Clearly, Lemma 1.2 (i) and (ii) imply that G′ ⊆ Kα(G) ⊆ K(G), where
K(G) is the autocommutator subgroup of G (see [4]). Note that, Lemma 1.2
(iii) implies that Kα(G) is an α-invariant subgroup of G.

Let α be an automorphism of the group G and for any x ∈ G, then α is called
class preserving if xα ∈ xG. Clearly, if α is class preserving automorphism of a
group G then xα = xg for some g ∈ G, and hence [g, x]α = 1. This topic has
been studied by many authors (see [5, 6, 10], for more details).
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2. Main results

Clearly α-commutator subgroup Kα(G) of an abelian group G is always normal
in G, for any automorphism α ∈ Aut(G). In the following, we show that Kα(G)
is a normal subgroup in a non abelian group G, for any automorphism α of G.

One may define the action of a group G on Aut(G) given by αg = αφg =
φg−1 ◦ α ◦ φg and the action of Aut(G) on G given by gα = α(g), for all g ∈ G,
α ∈ Aut(G) and φg ∈ Inn(G) (see also [8]).

Theorem 2.1. Let α be any automorphism of a given group G, then Kα(G) is
always a normal subgroup of G.

Proof. Take α to be any automorphism of the group G and for any x, y, g ∈ G,
Lemma 1.2 (i) implies that

[x, y]gα = [x, y]g[y, α]g = [xg, yg][y, α]g

= [xg, yg]g−1y−1α(y)g
= [xg, yg][g, y]α[α(y), g] ∈ Kα(G).

Hence, Kα(G)⊴G.

Here the notion of (θ1, θ2)-isoclinism between two groups is introduced and
we study some of its properties.

Definition 2.1. Let G1 and G2 be two groups, θ1 and θ2 be suitable automor-
phisms of G1 and G2, respectively, such that there exist α : G1

Zθ1 (G1)
→ G2

Zθ2 (G2)

and β : Kθ1(G1) → Kθ2(G2) so that the following diagram is commutative

G1

Zθ1 (G1)
× G1

Zθ1 (G1)

α×α
// G2

Zθ2 (G2)
× G2

Zθ2 (G2)

(g1Z
θ1(G1), g2Z

θ1(G1))
� //

ρ

��

(g′1Z
θ2(G2), g

′
2Z

θ2(G2))

ψ

��

[g1, g2]θ1
// [g′1, g

′
2]θ2

Kθ1(G1)
β

// Kθ2(G2)

where α(giZ
θ1(G1)) = g′iZ

θ2(G2) and g′i ∈ α(gi)Z
θ2(G2) for every gi ∈ G1 and

g′i ∈ G2 (i = 1, 2). Moreover, β([g1, g2]θ1) = [g′1, g
′
2]θ2, i.e. the commutative

diagram is compatible.

Then the pair (α, β) is called (θ1, θ2)-isoclinism from G1 to G2 and denoted

by G1
(θ1,θ2)∼ G2. In this case, G1 and G2 are called (θ1, θ2)-isoclinic.
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Observe that the above notion generalizes the concept of isoclinism (see [3]).
In fact, if θ1 and θ2 are identities, then the above definition is the concept of
ordinary isoclinism of groups.

Example 2.2. (i) There are no automorphisms θ1 and θ2 of the groups Z4 and

Z6, respectively, such that Z4
(θ1,θ2)∼ Z6. As, for any automorphisms θ1 and θ2

of Z4 and Z6, we have | Z4

Zθ1 (Z4)
| = 2 and | Z6

Zθ2 (Z6)
| = 3.

(ii) Consider the cyclic groups Z4(x) and Z8(y) of orders 4 and 8 with gene-
rators x and y, and take the automorphisms θ1 : x 7→ x3 and θ2 : y 7→ y5. Then
one can easily check that Zθ1(Z4(x)) = {1, x2}, Kθ1(Z4(x)) = {1, x2}. Also,
Zθ2(Z8(y)) = {1, y2, y4, y6} and Kθ2(Z8(y)) = {1, y4}. Now, it is easy to verify

that Z4(x)

Zθ1 (Z4(x))
∼= Z8(y)

Zθ2 (Z8(y))
and Kθ1(Z4(x)) ∼= Kθ2(Z8(y)), hence Z4(x)

(θ1,θ2)∼
Z8(y).

(iii) Assume D8 = ⟨x, y : x4 = y2 = 1, xy = x−1⟩ and Q8 = ⟨x, y : x4 =
1, x2 = y2, xy = x−1⟩ are Dihedral and Quaternion groups of orders 8. Also,
take the automorphisms θ1 and θ2 both given by: x 7→ x3, y 7→ x2y of D8 and
Q8, respectively. One can calculate that Zθ1(D8) ∼= Zθ2(Q8) = {1, x2} and

Kθ1(D8) ∼= Kθ2(Q8) = {1, x2}. Hence, D8
(θ1,θ2)∼ Q8.

Now, the question arises that; ”In what cases, there exist some suitable
automorphisms θ1 and θ2 in arbitrary finite cyclic groups, which force them to
be (θ1, θ2)-isoclinic?”

In the following, we give a complete answer to the above question, for finite
cyclic groups.

Remark 2. (i) Let Zm(x1) and Zn(x2) be cyclic groups with a common divisor
pr of m and n, where p is a prime number and r ⩾ 2.

Assumem=prpr22 · · · prss and n=prq
r′2
2 · · · qr

′
t
t . Clearly θ1 : x1 7→ x

pr−1p
r2
2 ···prss +1

1

and θ2 : x2 7→ x
pr−1q

r′2
2 ···qr

′
t

t +1
2 are automorphisms of cyclic groups of orders m

and n, respectively.

As m and m
p + 1 are co-prime, then Kθ1(Zm) = ⟨x

m
p

1 ⟩ and

Zθ1(Zm) = {xp1, x
2p
1 , · · · , x

m
p
p

1 = 1}.

The same argument implies that |Kθ1(Zm)|=| Zm

Zθ1 (Zm)
|=|Kθ2(Zn)| = | Zn

Zθ2 (Zn)
| =

p, and hence Zm(x1)
(θ1,θ2)∼ Zn(x2). Such as Z12 and Z20.

(ii) If the orders of cyclic groups are with different prime decomposition
factors, then they can not be (θ1, θ2)-isoclinic, for any automorphisms θ1 and
θ2. Such as Z6 and Z35 .

(iii) Consider the cyclic groups Zm1(x1) and Zm2(x2) with (m1,m2) = p.
Clearly, if (kimi

p ,mi) = 1, for i = 1, 2 and 1 ≤ ki < p, then

θ : xi 7→ x
kimi

p
+1

i ,
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is an automorphism of the cyclic group Zmi(xi). Now,

Kθi(Zmi(xi)) = ⟨[xi, θi] = x−1
i xθi⟩ = ⟨x

kimi
p ⟩,

which is a cyclic group of order p, for i = 1, 2; i.e. Kθ1(Zm1(x1))
∼= Kθ2(Zm2(x2)).

On the other hand, we have

Zθi(Zmi(xi)) = {xri | [xi, xri ]θi = [xri , θi] = x
rkimi

p

i = 1}.

Hence, p|r and |Zθi(Zmi(xi))| = mi
p , which implies that

Zm1(x1)

Zθ1(Zm1(x1))
∼=

Zm2(x2)

Zθ2(Zm2(x2))

and so Zm1(x1)
(θ1,θ2)∼ Zm2(x2).

Using the technique of Remark 2 (iii), we have the following examples.

Example 2.3. (i) Consider Z15(x1) and Z21(x2). One notes that (153 +1, 15) ̸=
1, while (303 + 1, 15) = 1. Also, (213 + 1, 21) = 1. Hence, θ1 : x1 7→ x111 and
θ2 : x2 7→ x82 are automorphisms of Z15(x1) and Z21(x2), respectively. These

automorphisms guaranty that Z15(x1)
(θ1,θ2)∼ Z21(x2).

(ii) Consider Z6(x1) and Z15(x2). we observe that (63 + 1, 6) ̸= 1 and (153 +
1, 15) ̸= 1, while (123 +1, 6) = 1 and (303 +1, 15) = 1. Hence, the automorphisms

θ1 : x1 7→ x51 and θ2 : x2 7→ x112 will do the job and so Z6(x1)
(θ1,θ2)∼ Z15(x2).

(iii) Z6

(θ1,θ2)

̸∼ Z10, since there are no suitable automorphisms, as the above.

In case of 1-isoclinism, P. Hall [3] showed that in every family there exists a
group S with the property that Z(S) ⊆ γ2(S). Such a group is called stemgroup.
In the case of finite groups, the stemgroups in a given family are characterized
by the fact that they are just the groups of smallest order in that family. They
play an essential role in classification problem.

Clearly, (θi, θj)-isoclinism forms an equivalence relation on the pair of groups.
Hence, such relation partitions the group into equivalence classes, or family of
(θi, θj)-isoclinism of groups.

Here, we introduce α-stemgroup in the case of (θi, θj)-isoclinism of groups.

Definition 2.2. Let C be a family of (θi, θj)-isoclinism of groups. If there exists

a group S with the property that Gr
(θi,θj)∼ S and Zα(S) ⊆ Kα(S), where Gr ∈ C

and α is an automorphism of the group S. Then such a group S is said to be
α-stem group. In finite case, the α-stem group S has the least possible order
among all other groups in the family.
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Example 2.4. Consider a famiy of finite cyclic groups, which their orders have
a common prime divisor pr, where r ⩾ 2. Then it is clear that α : x 7→ xp+1

is an automorphism of Zp2(x) and Kα(Zp2(x)) = Zα(Zp2(x)) = ⟨xp⟩. Therefore
Remark 2 and Definition 2.5 imply that Zp2(x) is the α-stem group.

The above example shows that in a family of finite cyclic groups, for which
pr, (r ⩾ 2), is a common divisor of their orders, the cyclic group Zp2 is α-stem
group with smallest order in such family of groups.

Our final result gives a useful criterion for two groups to be (θ1, θ2)-isoclinic.

Proposition 2.1. Let A ≤ Zθ1(G) and B ≤ Zθ2(H). Also, assume α : G/A→
H/B and β : Kθ1(G) → Kθ2(H) are isomorphisms so that α(gZθ1(G)) =
hZθ2(H) and β([g, g′]θ1) = [h, h′]θ2, for all g, g′ ∈ G and h, h′ ∈ H. Then
G and H are (θ1, θ2)-isoclinic.

Proof. We must show that α induces an isomorphism from G/Zθ1(G) onto
H/Zθ2(H).

Since G/Zθ1(G)≃(G/A)/(Zθ1(G)/A) and H/Zθ1(H)≃(H/B)/(Zθ2(H)/B),
it is sufficient to show that α(Zθ1(G)/A) = Zθ2(H)/B. So for any g ∈ Zθ1(G),
we have [g′, g]θ1 = 1 for all g′ in G. Then there exists h in H such that [h′, h]θ2 =
1 for all h′ ∈ H, as β is an isomorphism. Thus h ∈ Zθ2(H) and α(Zθ1(G)/A) ≤
Zθ2(H)/B.

On the other hand, if h0 ∈ Zθ2(H) is an arbitrary element, then there
exists an element g0 ∈ G such that α(g0A) = h0B, as α is surjective. Now,
β([g, g0]θ1) = [h, h0]θ2 and hence g0 ∈ Zθ1(G), as β is isomorphism. Therefore
α(Zθ1(G)/A) ≥ Zθ2(H)/B, which completes the proof.

The following corollary is obtained by replacing G = H1, H = H2, A =
Zθ1(G1) and B = Zθ2(G2) in the above proposition.

Corollary 2.1. Let (α, β) be (θ1, θ2)-isoclinism between two groups G1 and G2

and Hi be a characteristic subgroup of Gi for i = 1, 2. If Zθ1(G1) ≤ H1 ≤ G1

and α(H1/Z
θ1(G1)) = H2/Z

θ2(G2), then H1 and H2 are also (θ1, θ2)-isoclinic,
where Zθ2(G2) ≤ H2 ≤ G2.
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