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Abstract. In this paper, we study the semiring variety generated by B0, (B0)∗, N2,
T2, Z2,W2. We prove that this variety is finitely based and prove that the lattice of
subvarieties of this variety is a distributive lattice of order 1014. Moreover, we deduce
this variety is hereditarily finite based.
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1. Introduction

A semiring is an algebra with two associative binary operations +, ·, in which
+ is commutative and · distributive over + from the left and right. Such an
algebra is a common generalization of both rings and distributive lattice. It has
broad applications in information science and theoretical computer science (see
[5], [6]). In this paper, we shall investigate some small-order semirings which
will paly a crucial role in subsequent follows.

The semiring B with addition and multiplication table

+ a b c

a a b c
b b b b
c c b c

· a b c

a a a a
b b b b
c a b c

Eight 2-element semirings with addition and multiplication table

*. Corresponding author
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Semiring + · Semiring + ·

L2
0 1
1 1

0 0
1 1

R2
0 1
1 1

0 1
0 1

M2
0 1
1 1

0 1
1 1

D2
0 1
1 1

0 0
0 1

N2
0 1
1 1

0 0
0 0

T2
0 1
1 1

1 1
1 1

Z2
0 0
0 0

0 0
0 0

W2
0 0
0 0

0 0
0 1

For any semiring S, we denote by S0 the semiring obtained from S by adding
an extra element 0 and where a = 0 + a = a + 0, 0 = 0a = a0 for every
a ∈ S. For any semiring S, S∗ will denote the (multiplicative) left-right dual
of S. Pastijn et al. [4, 10] studied the semiring variety generated by B0 and
(B0)∗. They showed that the lattice of subvarieties of this variety is distributive
and contains 78 varieties precisely. Moreover, each of these is finitely based. It
is obvious that the variety generated by L2, R2,M2, D2 is properly contained
in the variety generated by B0 and (B0)∗, that is, HSP(L2, R2,M2, D2) ⫋
HSP(B0, (B0)∗). In 2016, Shao and Ren [14] studied the variety generated
by L2, R2,M2, D2, N2, T2. They showed that the lattice of subvarieties of this
variety is distributive and contains 64 varieties precisely. Moreover, each of these
is finitely based. Recently, Ren and Zeng [13] studied the variety generated by
B0, (B0)∗, N2, T2. They proved that the lattice of subvarieties of this variety
is a distributive lattice of order 312 and that each subvarieties of its is finitely
based. It is easy to check

HSP(B0, (B0)∗) ⫋ HSP(B0, (B0)∗, N2, T2) ⫋ HSP(B0, (B0)∗, N2, T2, Z2,W2).

So, the variety HSP(B0, (B0)∗, N2, T2) is a proper subvariety of the variety
HSP(B0, (B0)∗, N2, T2, Z2,W2). The main purpose of this paper is to study the
variety HSP(B0, (B0)∗, N2, T2, Z2,W2). We show that the lattice of subvarieties
of this variety is a distributive lattice of order 1014. Moreover, we show this
variety is hereditarily finitely based.

2. Preliminaries

Let V be a variety, L(V) denote the lattice of subvarieties of V and IdV(X)
denote the set of all identities defining V. If V can be defined by finitely many
identities, then we say that V is finitely based. In other words, V is said to
be finitely based if there exists a finite subset Σ of IdV(X) such that for any
p ≈ q ∈ IdV(X), p ≈ q can be derived from Σ, i.e., Σ ⊢ p ≈ q. Otherwise, we
say that V is nonfinitely based. Recall that V is said to be heredirarily finitely
based if all members of L(V) are finitely based. If a variety V is finitely based
and L(V) is a finite lattice, then V is hereditarily finite based (see [13]).
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The variety of all semirings is denoted by SR. A semiring is called an
additively idempotent semiring (ai-semiring for short) if its additive reduct is
a semilattice, i.e., a commutative idempotent semigroup. It is also called a
semilattice-order semigroup (see [3], [8], [12]). The variety of all ai-semirings
is denoted by AI. Let X denote a fixed countably infinite set of variables and
X+ the free semigroup on X. A semiring identity (SR-identity for short) is an
expression of the form u ≈ v, where u and v are terms with u = u1 + · · · + uk,
v = v1 + · · · + vℓ, where ui, vj ∈ X+ (An ai-semiring identity denoted by AI-
identity). Let k denote the set {1, 2, . . . , k} for a positive integer k, Σ be a
set of identities which include the identities determining AI and u ≈ v be an
AI-identity. It is easy to check that the ai-semiring variety defined by u ≈ v
coincides with the ai-semiring variety defined by the identities u ≈ u + vj , v ≈
v + ui, i ∈ k, j ∈ ℓ. Thus, in order to show that u ≈ v is derivable from Σ, we
only need to show that u ≈ u + vj , v ≈ v + ui, i ∈ k, j ∈ ℓ can be derived from
Σ.

To solve the word problem for the variety HSP(B0, (B0)∗, N2, T2, Z2,W2),
the following notions and notations are needed. Let q be an element of X+.
Then

� the head of q, denoted by h(q), is the first variable occurring in q;

� the tail of q, denoted by t(q), is the last variable occurring in q;

� the content of q, denoted by c(q), is the set of variables occurring in q;

� the length of q, denoted by |q|, is the number of variables occurring in q
counting multiplicities;

� the initial part of q, denoted by i(q), is the word obtained from q by
retaining only the first occurrence of each variable;

� the final part of q, denoted by f(q), is the word obtained from q by re-
taining only the last occurrence of each variable.

The basis for each one of N2, T2, Z2,W2 can be found from [11] (See Table
1).

Table 1. Bases for N2, T2, Z2,W2

Semiring Basis

N2 xy ≈ zt, x + x2 ≈ x
T2 xy ≈ zt, x + x2 ≈ x2

Z2 x + y ≈ z + u, xy ≈ x + y
W2 x + y ≈ z + u, x2 ≈ x, xy ≈ yx

By [14, Lemma 1.1] and the bases for Z2,W2 in the above Table 1, we have
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Lemma 2.1. Let u ≈ v be a nontrivial SR-identity, where u = u1+u2+· · ·+um,
v = v1+ v2 + · · · + vn, ui, vj ∈ X+, i ∈ m, j ∈ n. Then:

(i) N2 satisfies u ≈ v if and only if {ui ∈ u | |ui| = 1} = {vi ∈ v | |vi| = 1};

(ii) T2 satisfies u ≈ v if and only if {ui ∈ u | |ui| ≥ 2} ̸= ϕ, {vi ∈ v | |vi| ≥
2} ≠ ϕ;

(iii) Z2 satisfies u ≈ v if and only if (∀x ∈ X) |u ̸= x, v ̸= x;

(iv) W2 satisfies u ≈ v if and only if m = n = 1, c(u1) = c(v1) or m,n ≥ 2.

Suppose that u = u1 + · · · + um, ui ∈ X+, i ∈ m. Let 1 be a symbol
which is not in X and Y an arbitray subset of

⋃i=m
i=1 c(u1). For any ui in u,

if c(ui) ⊆ Y , put hY (ui) = 1. Otherwise, we shall denote by hY (ui) the first
variable occurring in the word obtained from ui by deleting all variables in Y .
The set {hY (ui)|ui ∈ u} is written HY (u). Dually, we have the notations tY (ui)
and TY (ui). In particular, if Y = ∅, then hY (ui) = h(ui) and tY (ui) = t(ui).
Moreover, if c(ui)∩Y ̸= ∅ for every ui in u, then we write DY (u) = ∅. Otherwise,
DY (u) is the sum of all terms ui in u such that c(ui) ∩ Y = ∅. By [4, Lemma
2.4 and its dual, Lemma 2.5 and 2.6], we have

Lemma 2.2. Let u ≈ u + q be an AI-identity, where u = u1 + · · · + um, ui, q ∈
X+, i ∈ m. If u ≈ u + q holds in HSP(B0, (B0)∗), then c(q) ⊆

⋃i=m
i=1 c(ui) and

for the set Z =
⋃i=m

i=1 c(ui) \ c(q) and for any subset Y of Z, HY (DZ(u)) =
HY (DZ(u) + q) and TY (DZ(u)) = TY (DZ(u) + q).

For other notations and terminology used in this paper, the read is referred
to [1, 4, 7].

3. Equational basis of HSP(B0, (B0)∗, N2, T2, Z2,W2)

In [13], Ren and Zeng studied the join W of semiring variety HSP(B0, (B0)∗)
and semiring variety HSP(N2, T2) and obtained the following result.

Lemma 3.1 ([13]). L(W) is a 312-element distributive lattice and W is deter-
mined by

2x ≈ x;(1)

x2y ≈ xy;(2)

xy2 ≈ xy;(3)

(xy)2 ≈ xy;(4)

xyzt ≈ xzyt;(5)

x + yz ≈ x + yz + x2;(6)

x + yz ≈ x + yz + xyz;(7)

x + yz ≈ x + yz + yzx;(8)

x + yz ≈ x + yz + yxz.(9)



430 AIFA WANG and LILI WANG

In the following Theorem, we shall give an Equational basis of HSP(B0,
(B0)∗, N2, T2, Z2,W2). From Lemma 2.1, Z2 and W2 dose not satisfy the identity
2x ≈ x, that is, Z2 and W2 are not ai-semirings. In deed, we have

Theorem 3.1. The semiring variety HSP(B0, (B0)∗, N2, T2, Z2,W2) is deter-
mined by the identities (2)-(9) and the following identity

x + y ≈ x + 2y.(10)

Proof of Theorem 3.1. From [4, 10] and Lemma 2.1, both W and HSP(Z2,
W2) satisfy the identities (2)-(10) and so dose HSP(B0, (B0)∗, N2, T2, Z2,W2).

Next, we shall show that every identity that holds in HSP(B0, (B0)∗, N2, T2,
Z2,W2) can be derived from (2)-(10) and the identities determining SR. Let
u ≈ v be such an identity, where u = u1 + u2 + · · ·+ um, v = v1 + v2 + · · ·+ vn,
ui, vj ∈ X+, 1 ≤ i ≤ m, 1 ≤ j ≤ n. By Lemma 2.1 (iv), we only need to consider
the following two cases:
Case 1 m = n = 1 and C(u1) = C(v1). Now that L2, R2, T2, Z2 |= u1 ≈ v1,
it follows that H(u1) = H(v1), T (u1) = T (v1), |u1| ≥ 2 and |v1| ≥ 2. Hence

u1
(2),(3),(5)

≈ v1.
Case 2 m,n ≥ 2. It is easy to verify that u ≈ v and the identity (10) can imply
the identities u ≈ u + vj , v ≈ v + ui for all i, j such that 1 ≤ i ≤ m, 1 ≤ j ≤ n.
Conversely, the latter m + n identities can imply u ≈ u + v ≈ v. Thus, to show
that u ≈ v is derivable from (2)-(10) and the identities determining SR, we only
need to show that the simpler identities u ≈ u + vj , v ≈ v + ui for all i, j such
that 1 ≤ i ≤ m, 1 ≤ j ≤ n. Hence, we need to consider the following two cases:
Case 2.1 u ≈ u + q, where |q| = 1. Since N2 |= u ≈ u + q, there exists us = q.

Thus u + q ≈ u′ + us + q ≈ u′ + us + us
(10)
≈ u′ + us ≈ u.

Case 2.2 u ≈ u + q, where |q| ≥ 2. By (2), (3) and (5), we have

q ≈ i(q)q ≈ i(q)qf(q) ≈ i(q)f(q)

and so

q ≈ i(q)f(q).(11)

Note that c(q) = c(i(q)) = c(f(q)). Since u ≈ u + q holds in T2, it follows
from Lemma 2.1 (ii) that there exists ui in u such that |ui| ≥ 2. Put Z =
(
⋃i=m

i=1 c(ui))\c(q). Assume that DZ(u) = u1+ · · ·+uk. Then
⋃i=k

i=1 c(ui) = c(q).
Moreover, we have

u ≈ u + ui + DZ(u) (by (10))

≈ u + ui + DZ(u) + u21 (by (6))

≈ u + ui + DZ(u) + u21 + u21u2 · · ·uk. (by (8))

Denote p for u21u2 · · ·uk. Thus c(p) = c(q) and we have derived the identity

u ≈ u + p.(12)
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Now that |p| > 1, by (4), we have

p2 ≈ p.(13)

Suppose that i(q) = x1x2 · · ·xℓ. We shall show by induction on j that for every
1 ≤ j ≤ ℓ, u ≈ u + x1x2 · · ·xℓp is derivable from (2)-(10) and the identities
defining SR.

From Lemma 2.2, there exists ui1 in DZ(u) with c(ui1) ⊆ c(q) such that
h(ui1) = h(q) = x1. Furthermore,

u ≈ u + ui1 + p (by (12))

≈ u + ui1 + p + ui1p (by (7))

≈ u + ui1 + p + x1ui1p (by (2))

≈ u + ui1 + p + x1ui1p + x1puiip (by (9))

≈ u + ui1 + p + x1ui1p + x1p. (by(5), (13))

Therefore,

u ≈ u + x1p.(14)

Assume that, for some 1 < j ≤ ℓ,

u ≈ u + x1x2 · · ·xj−1p(15)

is derivable from (2)-(10) and the identities defining SR. By Lemma 2.2, there
exists ui in DZ(u) with c(ui) ⊆ c(q) such that ui = ui1xjui2 and c(ui1) ⊆
{x1, x2, . . . , xj−1}. It follows that

u ≈ u + ui + p

≈ u + ui + p + uip (by (7))

≈ u + ui + p + ui1xjui2p

≈ u + ui + p + ui1xjui2p + ui1xjpui2p (by (9))

≈ u + ui + p + ui1xjui2p + ui1xjp. (by (5),(13))

Consequently

u ≈ u + ui1xjp.(16)

Moreover, we have

u ≈ u + x1x2 · · ·xj−1p + ui1xjp (by (15),(16))

≈ u + x1x2 · · ·xj−1p + ui1xjp + x1x2 · · ·xj−1ui1xjpp (by (9))

≈ u + x1x2 · · ·xj−1p + ui1xjp + x1x2 · · ·xj−1xjp. (by (2),(5),(13))
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Hence u ≈ u + x1x2 · · ·xj−1xjp. Using induction we have

u ≈ u + i(q)p.(17)

Dually,

u ≈ u + pf(q).(18)

Thus

u ≈ u + p + i(q)p + pf(q) (by (12),(17),(18))

≈ u + p + i(q)p + pf(q) + i(q)ppf(q) (by (7))

≈ u + p + i(q)p + pf(q) + i(q)f(q) (by (2),(3),(4),(5))

≈ u + p + i(q)p + pf(q) + q. (by (11))

It follows that u ≈ u + q.

4. The lattice L(HSP(B0, (B0)∗, N2, T2, Z2,W2))

In this section we characterize the lattice L(HSP(B0, (B0)∗, N2, T2, Z2,W2)).
Throughout this section, t(x1, . . . , xn) denotes the term t which contains no
other variables than x1, . . . , xn (but not necessarily all of them). Let S ∈
HSP(B0, (B0)∗, N2, T2, Z2,W2) and E+(S) denote the set {a ∈ S | 2a = a},
where the elements of E+(S) is said to be additive idempotent of (S,+). Notice
that HSP(B0, (B0)∗, N2, T2, Z2,W2) satisfies the identities

2(x + y) ≈ 2x + 2y;(19)

2xy ≈ (x + x)(y + y).(20)

By (19) and (20), it is easy to verify that E+(S) = {2a | a ∈ S} forms a sub-
semiring of S. To characterize the lattice L(HSP(B0, (B0)∗, N2, T2, Z2,W2)),
we need to consider the following

φ : L(HSP(B0, (B0)∗, N2, T2, Z2,W2)) → L(W),V 7→ V ∩W.(21)

It is easy to prove that φ(V) = {E+(S) |S ∈ V} for each member V of L(W).
If V is the subvariety of W determined by the identities

ui(xi1 , . . . , xin) ≈ vi(xi1 , . . . , xin), i ∈ k,

then V̂ denotes the subvariety of HSP(B0, (B0)∗, N2, T2, Z2,W2) determined by
the identities

ui(2xi1 , . . . , 2xin) ≈ vi(2xi1 , . . . , 2xin), i ∈ k.(22)

Lemma 4.1. Let V be a member of L(W). Then, V̂ = V ∨HSP(Z2,W2).
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Proof of Lemma 4.1. Since V satisfies the identities (22), it follows that V
is a subvariety of V̂. And both Z2 and W2 are members of V̂ and so the join
V ∨ HSP(Z2,W2) ⊆ V̂. To show the converse inclusion, it suffices to show
that every identity that is satisfied by V ∨HSP(Z2,W2) can be derived by the
identities holding in HSP(B0, (B0)∗, N2, T2, Z2,W2) and ui(2xi1 , . . . , 2xin) ≈
vi(2xi1 , . . . , 2xin), i ∈ k, if V is the subvariety of W determined by ui(xi1 , . . . , xin)
≈ vi(xi1 , . . . , xin), i ∈ k. Let u ≈ v be such an identity, where u = u1 + u2 +
· · · + um, v = v1 + v2 + · · · + vn, ui, vj ∈ X+, 1 ≤ i ≤ m, 1 ≤ j ≤ n. By Lemma
2.1 (8), we only need to consider the following two cases.
Case 1 m,n ≥ 2. By identity (10), HSP(B0, (B0)∗, N2, T2, Z2,W2) satisfies the
identities

2u ≈ u;(23)

2v ≈ v.(24)

Since u ≈ v holds in W, we have that it is derivable from the collection Σ of
ui ≈ vi, i ∈ k and the identities determining W. From [1, Exercise II.14.11], it
follows that there exist t1, t2, . . . , tℓ ∈ Pf (X+) such that

� t1 = u, tℓ = v;

� For any i = 1, 2, . . . , ℓ − 1, there exist pi, qi, ri ∈ Pf (X+) (where pi, qi
and ri may be empty words), a semiring substitution φi and an identity
u′i ≈ v′i ∈ Σ such that

ti = piφi(wi)qi + ri, ti+1 = piφi(si)qi + ri,

where eitherwi = u′i, si = v′i orwi = v′i, si = u′i.

Let Σ′ denote the set {2u ≈ 2v |u ≈ v ∈ Σ}. For any i = 1, 2, . . . , ℓ − 1, we
shall show that 2ti ≈ 2ti+1 is derivable from Σ′ and the identities holding in
HSP(B0, (B0)∗, N2, T2, Z2,W2). In deed, we have

2ti = 2(piφi(wi)qi + ri)

≈ 2(piφi(wi)qi) + 2ri

≈ pi(φi(2wi))qi + 2ri

≈ pi(φi(2si))qi + 2ri

(since 2wi ≈ 2si ∈ Σ′ or 2si ≈ 2wi ∈ Σ′)

≈ 2(piφi(si)qi) + 2ri

≈ 2(piφi(si)qi + ri)

= 2ti+1.

Further,

2u = 2t1 ≈ 2t2 ≈ · · · ≈ 2tℓ = 2v.
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This implies the identity

2u ≈ 2v.(25)

We now have

u
(24)
≈ 2u

(25)
≈ 2v

(24)
≈ v.(26)

Case 2 m = n = 1 and C(u) = C(v). Since Z2 |= u1 ≈ v1, u1 ̸= x, v1 ̸= x, for
every x ∈ X. Since u1 ≈ v1 holds in W, we have that it is derivable from the
collection Σ of ui ≈ vi, i ∈ k and the identities definging W. From [1, Exercise
II.14.11], it follows that there exist t1, t2, . . . , tℓ ∈ Pf (X+) such that

� t1 = u1, tℓ = v1;

� For any i = 1, 2, . . . , ℓ−1, there exist pi, qi ∈ Pf (X+) (where pi and qi may
be empty words), a semiring substitution φi and an identity u′i ≈ v′i ∈ Σ
(where u′i and v′i are words) such that

ti = piφi(wi)qi, ti+1 = piφi(si)qi,

where eitherwi = u′i, si = v′i orwi = v′i, si = u′i.

By Lemma 3.1, u1 ≈ v1 can be derived from (2), (3), (4) and (5), moreover,
by Lemma 3.1, it can be derived from monomial identities holding in HSP(B0,
(B0)∗, N2, T2, Z2,W2). This completes the proof. □

Lemma 4.2. The following equality holds:

(27) L(HSP(B0, (B0)∗, N2, T2, Z2,W2)) =
⋃

V∈L(W)

[V, V̂].

There are 312 intervals in (27), and each interval is a congruence class of the
kernel of the complete epimorphism φ in (21).

Proof of Lemma 4.2. First, we shall show that equality (27) holds. It is easy
to see that

L(HSP(B0, (B0)∗, N2, T2, Z2,W2)) =
⋃

V∈L(W)

φ−1(V).

So it suffices to show that

φ−1(V) = [V, V̂],(28)

for each member V of L(W). If V1 is a member of [V, V̂], then it is routine
to verity that V ⊆ {E+(S) |S ∈ V1} ⊆ V. This implies that {E+(S) |S ∈
V1} = V and so φ(V1) = V. Hence, V1 is a member of φ−1(V) and so
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[V, V̂] ⊆ φ−1(V). Conversely, if V1 is a member of φ−1(V), then V = φ(V1) =
{E+(S) |S ∈ V1} and so φ−1(V) ⊆ [V, V̂]. This shows that (27) holds.

From Lemma 3.1, we know that L(W) is a lattice of order 312. So there are
312 intervals in (27). Next, we show that φ a complete epimorphism. On the
one hand, it is easy to see that φ is a complete ∧-epimorphism. On the other
hand, let (Vi)i∈I be a family of members of L(HSP(B0, (B0)∗, N2, T2, Z2,W2)).

Then, by (21), we have that φ(Vi) ⊆ Vi ⊆ φ̂(Vi) for each i ∈ I. Further,

∨
i∈I

φ(Vi) ⊆
∨
i∈I

Vi ⊆
∨
i∈I

φ̂(Vi) ⊆
∨̂
i∈I

φ(Vi).

This implies that φ(
∨

i∈I Vi) =
∨

i∈I φ(Vi). Thus, φ is a complete ∨-homo-
morphism and so φ is a complete epimorphism. By (28), we deduce that each
interval in (21) is a congruence class of the kernel of the complete epimorphism
φ. □

In order to characterize the lattice L(HSP(B0, (B0)∗, N2, T2, Z2,W2)), by
Lemma 4.2, we only need to describe the interval [V, V̂] for each member V of
L(W). Next, we have

Lemma 4.3. Let V be a member of L(W). Then, V ∨HSP(Z2) is the subva-
riety of V̂ determined by the identity

xy ≈ 2xy.(29)

Proof of Lemma 4.3. It is easy to see that both V and HSP(Z2) satisfy the
identity (29) and so does V ∨HSP(Z2). In the following we prove that every
identity that is satisfied by V∨HSP(Z2) is derivable from (29) and the identities
holding in V̂. Let u ≈ v be such an identity, where u = u1 + u2 + · · · + um, v =
v1 + v2 + · · · + vn, ui, vj ∈ X+, 1 ≤ i ≤ m, 1 ≤ j ≤ n. We only need to consider
the following cases.

Case 1. m = n = 1. Since Z2 satisfies u1 ≈ v1, it follows that |u1| ̸= 1 and

|v1| ≠ 1. By Lemma 4.1, V̂ satisfies the identity 2u1 ≈ 2v1. Hence u1
(29)
≈ 2u1 ≈

2v1
(29)
≈ v1.

Case 2. m = 1, n ≥ 2. Since Z2 satisfies u1 ≈ v, it follows that |u1| ̸= 1. By

Lemma 4.1, V̂ satisfies the identity 2u1 ≈ 2v. Hence u1
(29)
≈ 2u1 ≈ 2v

(10)
≈ v.

Case 3. m ≥ 2, n = 1. Similar to case 2.

Case 4. m,n ≥ 2. By Lemma 4.1, V̂ satisfies the identity 2u ≈ 2v. Hence

u
(10)
≈ 2u ≈ 2v

(10)
≈ v. □

Lemma 4.4. Let V be a member of L(HSP(B0, (B0)∗)). Then V∨HSP(W2)
is the subvariety of V̂ determined by the identity

x2 ≈ x.(30)
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Proof of Lemma 4.4. It is easy to see that both V and HSP(W2) satisfy
the identity (30) and so does V ∨HSP(W2). So it suffices to show that every
identity that is satisfied by V∨HSP(W2) is derivable from (30) and the identities
holding in V̂. Let u ≈ v be such an identity, where u = u1 + u2 + · · · + um, v =
v1 + v2 + · · ·+ vn, ui, vj ∈ X+, 1 ≤ i ≤ m, 1 ≤ j ≤ n. By Lemma 4.1, V̂ satisfies

the identity u2 ≈ v2. Hence, u
(30)
≈ u2 ≈ v2

(30)
≈ v. □

Lemma 4.5. Let V ∈ L(W). Then the interval [V, V̂] of L(HSP(B0, (B0)∗,
N2, T2, Z2, W2)) is given in Fig.1
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@
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�
�

��

@
@
@@

r
r

r
r

V

V ∨HSP(W2)V ∨HSP(Z2)

V̂

Case. 1 N2, T2 ̸∈ V

@
@

@@

�
�

��

r
r

r

V

V ∨HSP(Z2)

V̂

Case. 2 N2 ∈ V or T2 ∈ V

Fig.1 The interval [V, V̂]

Proof of Lemma 4.5. Suppose that V1 is a member of [V, V̂] such that
V1 ̸= V̂ and V1 ̸= V. Then, there exists a nontrivial identity u ≈ v holding in
V1 such that it is not satisfied by V̂. Also, we have that V1 dose not satisfy
the identity 2x ≈ x. By Lemma 4.1, we only need to consider the following two
cases.
Case 1 HSP(Z2) |= u ≈ v,HSP(W2) ̸|= u ≈ v. Then, u ≈ v satisfies one of
the following three cases:

� m = n = 1, c(u1) ̸= c(v1), |u1| ≠ 1 and |v1| ≠ 1;

� m = 1, n > 1 and |u1| ≠ 1;
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� m > 1, n = 1 and |v1| ≠ 1.

It is easy to see that, in each of the above cases, u ≈ v can imply the identity
xy ≈ 2xy. By Lemma 4.3, we have that V1 is a subvariety of V ∨ HSP(Z2).
On the other hand, since V1 |= xy ≈ 2xy and V1 ̸|= 2x ≈ x, it follows that
Z2 is a member of V1 and so V ∨ HSP(Z2) is a subvariety of V1. Thus,
V1 = V ∨HSP(Z2).
Case 2 HSP(Z2) ̸|= u ≈ v,HSP(W2) |= u ≈ v. Then, u ≈ v satisfies one of
the following two cases:

� m = n = 1, c(u1) = c(v1) and |u1| = 1;

� m = n = 1, c(u1) = c(v1) and |v1| = 1.

If N2, T2 ̸∈ V, then, in each of the above cases, u ≈ v can imply the identity
x ≈ x2. By Lemma 4.4, V1 is a subvariety of V ∨ HSP(W2). On the other
hand, since V1 |= x ≈ x2 and V1 ̸|= x ≈ 2x, it follows that W2 is a member of
V1 and so V ∨HSP(W2) is a subvariety of V1. Thus, V1 = V ∨HSP(W2).

If N2 ∈ V, then, by Lemma 2.1 (i), |u1| = |v1| = 1, a contradiction. Thus,
V1 = V̂.

If T2 ∈ V, then, by Lemma 2.1 (ii), |u1| ≥ 2, |v1| ≥ 2, a contradiction. Thus,
V1 = V̂. □

Theorem 4.1. L(HSP(B0, (B0)∗, N2, T2, Z2,W2)) is a distributive lattice of
order 1014.

Proof of Theorem 4.1. By (27) and Lemma 4.5, we can show that L(HSP(B0,
(B0)∗, N2, T2, Z2,W2)) has exactly 1014 elements. Suppose that W1,W2 and
W3 are members of L(W) such that W1 ∨W2 = W1 ∨W3 and W1 ∧W2 =
W1 ∧W3. Then, by Lemma 4.2

φ(W1) ∨ φ(W2) = φ(W1) ∨ φ(W3)

and

φ(W1) ∧ φ(W2) = φ(W1) ∧ φ(W3).

Since L(W) is distributive, it follows that φ(W2) = φ(W3). Write V for
φ(W2). Then both W2,W3 are members of [V, V̂]. By Fig.1, we deduce that
W2 = W3. □

By Theorem 3.1, 4.1 and [13, Corollary 1.2], we now immediately deduce

Corollary 4.1. HSP(B0, (B0)∗, N2, T2, Z2,W2) is hereditarily finitely based.
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