Non-cancellation group of a direct product

R. Kwashira^{*}

University of the Witwatersrand Johannesburg Faculty of Science School of Maths P.B. X3, Wits South Africa rugare.kwashira@wits.ac.za

J.C. Mba

Department of Mathematics and Applied Mathematics University of Johannesburg South Africa jmba@uj.ac.za

Abstract. The non-cancellation set of a group G, denoted by $\chi(G)$, is defined to be the set of all isomorphism classes of groups H such that $G \times \mathbb{Z} \cong H \times \mathbb{Z}$. While investigating when \mathbb{Z} can be cancelled in this direct product, $\chi(G)$ has become the focus of many studies. For the semidirect product $G_i = \mathbb{Z}_{n_i} \rtimes_{\omega_i} \mathbb{Z}$, i = 1, 2, methods for computation of the non-cancellation groups $\chi(G_1 \times G_2)$, $\chi(G_i^k)$, $k \in \mathbb{N}$ and $\chi(G_i, h_i)$ have been developed. We present in this study, a general method of computing $\chi(G_1 \times G_2, h)$, where $h: F \hookrightarrow G_1 \subseteq G_1 \times G_2$ and F a finite group.

Keywords: localization, non cancellation, restricted genus, groups under a finite group.

1. Introduction

The theory of π -localization of groups, where π is a family of primes, appears to have been first discussed in [7, 8] by Mal'cev and Lazard. In the 1970s, Hilton and Mislin became interested, through their work on the localization of nilpotent spaces, in the localization of nilpotent groups. Mislin [11] define the genus $\mathcal{G}(N)$ of a finitely generated nilpotent group N to be the set of isomorphism classes of finitely generated nilpotent groups M such that the localizations M_p and N_p are isomorphic at every prime p. This version of genus became known as the Mislin genus, and other very useful variations of this concept came into being.

In [3] Hilton and Mislin define an abelian group structure on the genus set $\mathcal{G}(N)$ of a finitely generated nilpotent group N with finite commutator subgroup. Throughout this study, finitely generated group with finite commutator subgroup will be called χ_0 -group.

^{*.} Corresponding author

For nilpotent groups which belong to class \mathcal{K} (of semidirect products of the form $T \rtimes \mathbb{Z}^k$, where T is a finite abelian group and k is a positive integer), many computations of the genus groups appear in the literature. Indeed, the groups considered in [1, 4, 5, 14] all belong to this class. The groups used in the computation method developed in this paper are χ_o -groups belonging to \mathcal{K} and will be called \mathcal{K}_0 -groups.

For a non-nilpotent χ_o -groups, the kernel of the localizing homomorphism maybe be bigger than what it is required. So, for such χ_0 -groups, the idea of genus can be generalized through non-cancellation.

For a χ_{o} -group G, the non-cancellation set denoted by $\chi(G)$ is defined to be the set of all isomorphism classes of groups H such that $G \times \mathbb{Z} \cong H \times \mathbb{Z}$. Scevenels and Witbooi in [15], gave an alternate description of the non-cancellation group of \mathcal{K}_0 -groups. This enables them to make some computations. Warfield [17] proved that, if N is a nilpotent χ_o -group, then $\mathcal{G}(N) = \chi(N)$. In [18], the author showed that for a χ_o -group G the non- cancellation set $\chi(G)$ has a group structure similar to the group structure on the Mislin genus of a nilpotent χ_{o} -group. For any two χ_{o} - groups H and G, O'Sullivan in [12] proved that $H \times \mathbb{Z} \cong G \times \mathbb{Z}$ if and only if for every finite set π of primes, we have $H_{\pi} \cong G_{\pi}$ (π -localizations are isomorphic). To illuminate our understanding of genera of groups, the restricted genus of a χ_0 -group under a finite group F was introduced in [10]. More precisely, for a fixed morphism $h: F \to G$, the restricted genus $\chi(G,h)^1$ is the set of isomorphism classes of morphisms $F \to H$, which are π -equivalent to h at every finite set of primes π . For a well-defined integer n depending on G, in [10] an epimorphism $\zeta: (\mathbb{Z}/n)^*/\pm 1 \to \chi(G,h)$ is established and it is shown that there exist natural epimorphisms $\chi(G,h) \to \chi(G/h(F))$ (provided h(F) is normal in G) and $\chi(G,h) \to \chi(G,h \circ i)$) (provided $i: F_0 \to F$ is a morphism), which are compatible with the various involved maps ζ .

Having such homomorphisms is not always given. In [10], computation methods of $\chi(G, h)$ in the special case G is a semidirect product $T \rtimes_{\omega} \mathbb{Z}^k$ are used in a very particular example to provide a concrete computation of $\chi(G, h)$, where T is a finite abelian group. We extend this result to compute the restricted genus $\chi(G_1 \times G_2, h)$ of the direct product $G_1 \times G_2$, where $G_i = \mathbb{Z}_{m_i} \rtimes_{\omega_i} \mathbb{Z}$ and $h: F \hookrightarrow G_1 \times G_2$ a monomorphism, with F a finite group.

The rest of the paper is organized as follows: Section 2 is on preliminaries, Section 3 presents the group structure on the restricted genus $\chi(G,h)$ and Section 4 is on the computation method for $\chi(G_1 \times G_2, h)$.

2. Preliminaries

2.1 Definitions and notations

An interesting topic in the theory of nilpotent groups is the extraction of roots. A group G is said to be a *rational group* if n-th roots exist in G, for all positive

^{1.} For the special case F is trivial (F = *), $\chi(G, * \to G) = \chi(G)$

integers *n*. A group which has unique extraction of roots is *torsion-free*. Roots are unique in torsion-free nilpotent groups. However, extraction of roots is not usually possible in such groups. For example, extraction of roots is not possible in the additive group of integers \mathbb{Z} . However, this group can be embedded in the rational group \mathbb{Q} . Mal'cev [9] generalized this by showing that any torsionfree nilpotent group *G* can be embedded in a rational nilpotent group G_0 . The extraction of roots is unique in G_0 and every element of G_0 has a positive power in *G*. Moreover, G_0 is unique up to isomorphism.

Given any set of primes π , let π' be the set of natural numbers which are relatively prime to elements of π . Let G_{π} denote the subgroup of G_0 generated by G and its *m*-th roots whenever the prime divisors of *m* are in π' .

A group G is said to be π -local if for each $n \in \pi'$, the function $g \mapsto g^n$ of G into itself is a bijection.

The group G_{π} is called the π -localization of G and has the universal property that given any homomorphism $\phi : G \to H$, where H is a π -local group, there exists a unique $\phi_{\pi} : G_{\pi} \to H$ such that $\phi = \phi_{\pi} \varphi_{\pi}$ where φ_{π} is the π -localizing homomorphism $G \to G_{\pi}$. If $\pi = \{p\}$, then G_{π} is simply denoted by G_p .

The **genus** of a finitely generated nilpotent group G denoted by $\mathcal{G}(G)$ (known as *Mislin genus*, [11]), is the set of all isomorphism classes of finitely generated nilpotent groups H such that $G_p \cong H_p$ for every prime number p.

The set $\tau_f(G)$ of all isomorphism classes of finitely generated group H such that $G_{\pi} \cong H_{\pi}$ for every finite set of primes π is called the **restricted genus** of G.

When localizing non-nilpotent groups, it may happen that the kernel of the localizing homomorphism is bigger than what we would require. For a non-nilpotent finitely generated group G with finite commutator subgroup, the idea of the genus is generalized through *non-cancellation*, rather than considering localizations.

For groups, we know that cancellation holds in the category of finitely generated abelian groups. If G is a finitely generated abelian group, then for any abelian groups H and K, $G \oplus H \cong G \oplus K$ implies $H \cong K$. Thus, finitely generated abelian group is cancellable in the category of all abelian groups. The abelian group Z is cancellable in the category of groups in general. This was shown that Z is not cancellable in the category of groups in general. This was shown by an example of William Scott, which was included in [16]. Another example was given independently by Hirshon [6]. Our study of cancellation property of a group G is examined through the isomorphism of direct products $G \times \mathbb{Z} \cong H \times \mathbb{Z}$. For a group G, the non-cancellation set $\chi(G)$ measures to what extend Z can be cancelled in $G \times \mathbb{Z} \cong H \times \mathbb{Z}$ for some group H. For some type of groups G, the computation of $\chi(G)$ have been the object of many studies. For \mathcal{K}_o -groups, methods for computation of the non-cancellation groups $\chi(G_1 \times G_2)$ and $\chi(G_i^k), k \in \mathbb{N}$ were developed in [19] and [2] respectively. In these construction, the integer n(G) described below play a central role. Given a \mathcal{X}_0 -group G. Let n_1 be the exponent of T_G , n_2 the exponent of the group $\operatorname{Aut}(T_G)$ and n_3 the exponent of the torsion subgroup of the centre of G. Consider $n(G) = n_1 n_2 n_3$. The integer n = n(G) has the property that the subgroup $G^{(n)} = \langle g^n : g \in G \rangle$ of G belongs to the centre of G and $G/G^{(n)}$ is a finite group.

Aspects of localization as in groups and related categories have been studied in a unified way in a categorical setting, see [13] for instance. The following subsection give a more specific presentation.

2.2 Category of groups under a finite group F

Fix a finite group F and let $h: F \longrightarrow G$ be a monomorphism. We denote by Grp_F the category of groups under F as in [10]. For the category Grp_F , the objects denoted by $(G_1, h_1), (G_2, h_2)$ are group homomorphisms $h_1: F \longrightarrow G_2$ and $h_2: F \longrightarrow G_2$ and a morphism in Grp_F is a group homomorphism $\beta: G_1 \longrightarrow G_2$ such that $\beta \circ h_1 = h_2$.

The π -localization of an object $h: F \longrightarrow G$ is the object $h_{\pi}: F \longrightarrow G_{\pi}$ where π is a set of primes. Denote by \mathcal{X}_F the full subcategory of χ_o - groups under F. Then, the restricted genus $\chi(G, h)$ is the set of isomorphism classes ksuch that k_{π} is isomorphic to h_{π} for $k \in \mathcal{X}_F$. If F is a trivial group, then \mathcal{X}_F is identified with χ_o -groups.

The restricted genus $\chi(G, h)$ has been computed in [10] and has been shown that $\chi(G, h)$ coincides with $\chi(G)$ if F is a trivial group.

Let \mathcal{K} be the class of groups of the form $T \rtimes_{\omega} F$ where F is a finite rank free abelian group and T a finite abelian group. For a pair of relatively prime natural numbers m, u, the symbol G(m, u) denotes the group $H = \mathbb{Z}_m \rtimes_{\nu} \mathbb{Z}$. His a \mathcal{K} - group and \mathcal{K}_F determines a full subcategory of Grp_F, see [10].

Let $G_i = \mathbb{Z}_{m_i} \rtimes_{\omega_i} \mathbb{Z}$ and let $h : F \hookrightarrow G_1 \times G_2$ where h is a monomorphism and F is a finite group.

In this paper we develop a general method for computing $\chi(G_1 \times G_2, h)$.

3. Group structure on the restricted genus

Recall from ([18], Section 2), to a χ_o -group G assign a natural number $n(G) = n_1 n_2 n_3$ where n_1 is the exponent of the torsion subgroup T_G , n_2 the exponent of Aut(T_G) and n_3 the exponent of the torsion of the center T_{Z_G} . It was shown in [18] that for a χ_o -group G whose subgroups H are of finite index with $T_G = T_H$, the non-cancellation set $\chi(G)$ has a group structure and is given by $\chi(G) = \mathbb{Z}_n^*/\{1, -1\}$. For a pair of relatively prime natural numbers m, u, let $H = \mathbb{Z}_m \rtimes_{\nu} \mathbb{Z}$, where $\nu : \mathbb{Z} \longrightarrow \operatorname{Aut}(\mathbb{Z}_m)$ is the automorphism of \mathbb{Z}_m defined by $\nu(1)(t) = ut$. Methods of computing $\chi(H)$ and $\chi(H^r)$ for r a natural number were developed in [2], [15] and [19]. It is shown in [15] that $\chi(H) = \mathbb{Z}_d^*/\{1, -1\}$, where d is the multiplicative order of u modulo m. For a direct product H^r which can be considered to be $\mathbb{Z}_m^r \rtimes_\omega \mathbb{Z}^r$, the authors in [2] showed that there is a well

defined surjective homomorphism $\Gamma : \chi(H) \longrightarrow \chi(H^r)$ given by $K \mapsto K \times H^{r-1}$ where K is a group such that $K \times \mathbb{Z} \simeq H \times \mathbb{Z}$. Thus, in order to compute the group $\chi(H^r)$, one needs only to compute the kernel of the homomorphism Γ .

Let $G_i = G(m_i, u_i)$ for some $m_i, u_i \in \mathbb{N}$ with $gcd(m_i, u_i) = 1$ and let d_i be the multiplicative order of u_i modulo m_i . Consider the direct product $G = G_1 \times G_2 = (\mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2}) \rtimes_{\omega} \mathbb{Z}^2$ and $h: F \hookrightarrow G_1 \times G_2$ be the inclusion map. Let t = d(G) be the smallest invariant factors of Im ω . Note that, if $gcd(d_1, d_2) = 1$ then $t = d_1d_2$ and if $gcd(d_1, d_2) \neq 1$ then $t = gcd(d_1, d_2)$. For an object $(G_1 \times G_2, h)$ in \mathcal{K}_F , we obtain an epimorphism $\Upsilon : \mathbb{Z}_t^* \longrightarrow \chi(G_1 \times G_2, h)$, where d depends exclusively on Im ω [10]. Thus, in order to find $\chi(G_1 \times G_2, h)$, one only needs to find the kernel of Υ . Note that t divides the exponent of $Aut(\mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2})$, and so t divides n(G).

Following ([10], Lemma 3.2), we have the following Lemma:

Lemma 3.1. Given objects (G, h) and (K, k) in \mathcal{K}_F with $G = (\mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2}) \rtimes_{\omega} \mathbb{Z}^2$ and $K = (\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}) \rtimes_{\nu} \mathbb{Z}^2$, then a morphism $\alpha : (G, h) \longrightarrow (K, k)$ is an isomorphism if and only if there exist group isomorphisms $\theta : (\mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2}) \rtimes_{\omega} \mathbb{Z}^2 \longrightarrow (\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}) \rtimes_{\nu} \mathbb{Z}^2$ and $\beta : \mathbb{Z}^2 \longrightarrow \mathbb{Z}^2$ with $\theta \circ h = k$ such that for any $z \in \mathbb{Z}^2$ and $t \in (\mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2}), (\nu \circ \beta(z))(\theta(t)) = \theta(\omega(z)(t)).$

Notation 3.1. We will follow the notation introduced in [10]. Let G be a χ_o group, n = n(G) and let $X(n) = \{u \in \mathbb{N} : (u, n) = 1\}$. Let Y(G, h) be the set of all $u \in X(n)$ for which there exists a subgroup K of G with [G:K] = uand the object (K, h_K) is a member in $\chi(G, h)$. Let G_u be a subgroup of Gsuch that $T_G \subseteq G_u$ and $[G:G_u] = u$ for each $u \in Y(G, h)$. Define the induced homomorphism $h_u: x \mapsto h(x)$ and a morphism $\varsigma : Y(G, h) \longrightarrow \chi(G, h)$. Let $Y^*(G, h)$ be the image of Y(G, h) in \mathbb{Z}_n^* . From ([10], Theorem 2.5) we have $Y^*(G, h)$ is a subgroup of \mathbb{Z}_n^* and $Y^*(G, h)/\pm 1 \cong \chi(G, h)$. Now for any object (G, h) of \mathcal{K}_F denote by V(G, h) the set of all $u \in X(t)$ for which there exist a subgroup K of G with [G:K] = u and (K, h_K) is a member of $\chi(G, h)$. Let $V^*(G, h)$ be the image of V(G, h) and [G:K] = u. We obtain a function $V(G, h) \longrightarrow \chi(G, h)$ given by $u \mapsto [K, h_K]$. Since $t \mid n$ we have the following ([10], Proposition 3.4)

Proposition 3.1. Let n = n(G) and $\rho : Y(G,h) \longrightarrow \chi(G,h)$ be the epimorphism that takes a residue mod n and reduces it mod t. The epimorphism $\zeta : Y^*(G,h) \longrightarrow \chi(G,h)$ factorises through the epimorphism ξ' :

The kernel of $V^*(G,h) \longrightarrow \chi(G,h)$ is calculated through the following theorem ([10], Theorem 3.5)

Theorem 3.1. For $m \in V(G,h)$, the following conditions are equivalent:

- (a) $\overline{m} \in \ker[V^*(G,h) \longrightarrow \chi(G,h)].$
- (b) There exists $\alpha \in \operatorname{Aut}(T)$ with $v \circ h = h$ such that $\alpha \in N_{\operatorname{Aut} T} \operatorname{Im} \omega$ and for an automorphism $\bigwedge : \operatorname{Im} \omega \longrightarrow \operatorname{Im} \omega$ defined by $v \mapsto \alpha v \alpha^{-1}$, we have $\det(\bigwedge) = \pm \overline{m}^{-1} \in V^*(G, h).$

4. Computation

- 1. For a pair of relatively prime natural numbers m, u, define a group $G(m, u) = \langle a, b : a^m = 1, bab^{-1} = a^u \rangle$. The group G(m, u) can be considered to be the semidirect product $\mathbb{Z}_m \rtimes_{\omega} \mathbb{Z}$ where $\omega : \mathbb{Z} \longrightarrow \operatorname{Aut}(\mathbb{Z}_m)$ is such that $\omega(1)$ is the automorphism of \mathbb{Z}_m given by $\omega(1)(t) = ut$.
- 2. Let q be the product of all distinct prime divisors of m and assume that q^2 divides m.
- 3. Let $G_i = G(m_i, u_i)$ for some $m_i, u_i \in \mathbb{N}$ with $gcd(m_1, m_2) = 1, gcd(m_i, u_j) = 1, i, j = 1, 2$ and let d_i be the multiplicative order of u_i modulo m_i . Let $d = lcm(d_1, d_2)$ and $m = lcm(m_1, m_2)$. If $gcd(d_1, d_2) = 1$ let $t = d_1d_2$ and if $gcd(d_1, d_2) \neq 1$ let $t = gcd(d_1, d_2)$.
- 4. Consider the direct product $G_1 \times G_2 = (\mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2}) \rtimes_{\omega} \mathbb{Z}^2$ where $\omega : \mathbb{Z}^2 \longrightarrow$ Aut $(\mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2})$ is such that $\omega(\epsilon_i) = \omega_i : (t_1, t_2) \mapsto (u_1^{\delta(i,1)} t_1, u_2^{\delta(i,2)} t_2)$ where $\delta(i, j)$ is the Kronecker function and $\{\epsilon_1, \epsilon_2\}$ is the standard basis of \mathbb{Z}^2 .
- 5. Write $\omega(\epsilon_1) = \omega_1$ and $\omega(\epsilon_2) = \omega_2$. Each automorphism ω_i is of order d_i and $\operatorname{Im}(\omega)$ is the direct product of the cyclic subgroups $\langle \omega_i \rangle$ of $\operatorname{Aut}(\mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2})$. By [10], there is an epimorphism $\mathbb{Z}_t^* \longrightarrow \chi(G_1 \times G_2)$ where t is the smallest of the invariant factors of $\operatorname{Im} \omega$.
- 6. Let J be the subgroup of Aut $(T_{G_1 \times G_2})$ generated by $\{\omega_1, \omega_2\}$ that is, $J = \text{Im } \omega = \langle \omega_1, \omega_2 \rangle$. Note that:
 - $J = \operatorname{Im} \omega = \langle \omega_1, \omega_2 \rangle$ is a free \mathbb{Z}_d -module.
 - The determinant of an endomorphism of J is defined and is an element of \mathbb{Z}_d .

Consider $J_* = N_{\operatorname{Aut}(T_{G_1 \times G_2})} J$. For any $\alpha \in \operatorname{Aut}(T_{G_1 \times G_2})$, let \bigwedge_{α} be the inner automorphism such that $\bigwedge_{\alpha} : v \mapsto \alpha v \alpha^{-1}$.

7. Let q_2 be a multiple of q such that q_2q divides m. Let $e_1 = (1,0), e_2 = (0,1)$ be elements of $T_{G_1 \times G_2}$ and let $F = \{aq_2e_2 : a \in \mathbb{Z}\}$ be a subgroup of $T_{G_1 \times G_2}$ and $h : F \hookrightarrow G_1 \times G_2$ be the inclusion map.

4.1 Inner automorphism of Aut $(T_{G_1 \times G_2})$

Fix $\alpha \in J^*$ such that $\alpha(x) = x$ for all $x \in F$. There exists a 2×2 matrix (α_{ij}) of integers such that $\alpha(e_i) = \sum_{j=1}^2 \alpha_{ji} e_j$. Suppose that \bigwedge is the inner automorphism of J determined by α .

Proposition 4.1. For the matrix (α_{ij}) , α_{ii} is a unit modulo m for i = 1, 2.

Proof. We note that $\alpha(0, q_2) = (0, q_2)$ since $(0, q_2) \in F$. Also $\alpha(0, q_2) = (q_2\alpha_{12}, q_2\alpha_{22})$. Thus $(0, q_2) = (q_2\alpha_{12}, q_2\alpha_{22})$ and we have that m divides α_{12} . In particular q divides α_{12} while α_{22} is a unit modulo m. Therefore the matrix of α is of the form $\begin{pmatrix} \alpha_{11} & tq \\ \alpha_{21} & u \end{pmatrix}$ where $t, u \in \mathbb{Z}$. Now $\det(\alpha) = \alpha_{11}u - \alpha_{21}tq$.

We claim that α_{11} is a unit modulo m. Suppose that α_{11} is not a unit modulo m then let p be a common prime divisor of α_{11} and m. Then p divides q and p divides det (α) which is a contradiction since det (α) is a unit modulo m (α is an automorphism). Thus α_{11} is a unit modulo m.

Proposition 4.2. The inner automorphism \bigwedge of J coincides with the identity automorphism of J.

Proof. For the inner automorphism \bigwedge induced by α , there exists a matrix (\bigwedge_{ij}) of integers such that $\bigwedge \omega_i = \omega_1^{\bigwedge_{1i}} \omega_2^{\bigwedge_{2i}}$ for each *i*. Let $\bigwedge \omega_i = v_i$. Then $\bigwedge \omega_i = \alpha \omega_i \alpha^{-1} = v_i$ and $\alpha \omega_i = v_i \alpha$. On one hand $\alpha \omega_i(e_i) = \alpha(u_i e_i) = \sum_{j=1}^2 u_i^{\delta(i,j)} \alpha_{ji} e_j$ and on the other hand $v_i \alpha(e_i) = v_i \left(\sum_{j=1}^2 \alpha_{ji} e_j\right) = \sum_{j=1}^2 \alpha_{ji} u_i^{\delta(i,j) \bigwedge_{ji}} e_j$. That is, $\sum_{j=1}^2 u_i^{\delta(i,j)} \alpha_{ji} e_j = \sum_{j=1}^2 \alpha_{ji} u_i^{\delta(i,j) \bigwedge_{ji}} e_j$.

For j = i, we have from , that α_{ii} is a unit modulo m, therefore $u_i^{\bigwedge_{ii}} \equiv u_i \mod m$. Thus $\bigwedge_{ii} \equiv 1 \mod d$ and consequently $\bigwedge_{ii} \equiv 1 \mod t$.

For the case $j \neq i$, we have $\alpha \omega_i(e_j) = \alpha(e_j) = \sum_{k=1}^2 \alpha_{kj} e_k$ and $v_i \alpha(e_j) = \sum_{k=1}^2 \alpha_{kj} u_k^{\bigwedge_{ki}} e_k$. Therefore $\sum_{k=1}^2 \alpha_{kj} e_k = \sum_{k=1}^2 \alpha_{kj} u_k^{\bigwedge_{ki}} e_k$. For the case k = j. Since α_{jj} is a unit modulo m then $u_j^{\bigwedge_{ji}} \equiv 1 \mod m$, that is, $\bigwedge_{ji} \cong 0 \mod d$. Consequently $\bigwedge_{ji} \equiv 0 \mod t$. Thus det $(\bigwedge) = 1$ and \bigwedge is coincides with the identity automorphism on J.

Proposition 4.3. Let $G_i = G(m_i, u_i)$, i = 1, 2 and $(G_1 \times G_2, h)$ be an object of \mathcal{K}_F . Let d_i be the multiplicative order of u_i modulo m_i . Then, $\chi(G_1 \times G_2, h) \cong \mathbb{Z}_t^* / \pm 1$, where $(t = d_1d_2, if(d_1, d_2) = 1)$ or $(t = (d_1, d_2), otherwise)$.

Proof. The Proposition follows from Theorem 3.1 and Proposition 4.2. \Box

This construction can be generalized to compute $\chi(G_1 \times \cdots \times G_n, h)$ and $\chi(G_i^k, l)$. This will be done in our future work.

References

- C. Casacuberta, P. Hilton, Calculating the Mislin genus for a certain family of nilpotent groups, Comm. Algebra, 19 (1991), 2051-2069.
- [2] A. Fransman, P. Witbooi, Non-cancellation sets of direct powers of certain metacyclic groups, Kyungpook Math. J., 41 (2001), 191-197.
- [3] P. Hilton, G. Mislin, On the genus of a nilpotent group with finite commutator subgroup, Math. Z., 146 (1976), 201-211.
- [4] P. Hilton, D. Scevenels, Calculating the genus of a direct product of certain nilpotent groups, Publ. Mat., 39 (1995), 241-261.
- [5] P. Hilton, C. Schuck, On the structure of nilpotent groups of a certain type, Topol. Methods Nonlinear Anal., 1 (1993), 323-327.
- [6] R. Hirshon, On cancellation in groups, Amer. Math. Monthly, 76 (1969), 1037-1039.
- [7] A.G. Kurosh, *The theory of groups*, Vol. II. Translated from the Russian and edited by K. A. Hirsch., Chelsea Publishing Company, New York, N.Y., 1956.
- [8] M. Lazard, Sur les groupes nilpotents et les anneaux de Lie, (French) Ann. Sci. Ecole Norm. Sup., 71 (1954), 101-190.
- [9] A.I. Mal'cev, Nilpotent torsion-free groups, (Russian) Izvestiya Akad. Nauk. SSSR. Ser. Mat., 13 (1949), 201-212.
- [10] J.C. Mba, P.J. Witbooi, Induced morphisms between localization genera of groups, Algebra Colloquium, 21 (2014), 285-294.
- [11] G. Mislin, Nilpotent groups with finite commutator subgroups, in: P. HILTON (ED), Localization in Group Theory and Homotopy Theory, Lecture Notes in Mathematics, Springer-Verlag Berlin, 418 (1974), 103-120.
- [12] N. O'Sullivan, Genus and cancellation, Comm. Algebra, 28 (2000), 3387-3400.
- [13] G. Peschke, Localization and genus in group theory, Trans. Amer. Math. Soc, 347 (1995), 155-174
- [14] D. Scevenels, On the Mislin genus of a certain class of nilpotent groups. Comm. Algebra, 26 (1998), 1367-1376
- [15] D. Scevenels, P. Witbooi, Non-cancellation and Mislin genus of certain groups and H₀-spaces, J. Pure Appl. Algebra, 170 (2002), 309-320.

- [16] E.A. Walker, Cancellation in direct sums of groups, Proc. Amer. Math. Soc., 7 (1956), 898-902.
- [17] R. Warfield, Genus and cancellation for groups with finite commutator subgroup, J. Pure Appl. Algebra, 6 (1975), 125-132.
- [18] P. Witbooi, Generalizing the Hilton-Mislin genus group, J. Algebra, 239 (2001), 327-339.
- [19] P.J. Witbooi, Non-cancellation for groups with non-abelian torsion, J. Group Theory, 6 (2003), 505-515.

Accepted: January 16, 2021