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Abstract. In this paper, the full discrete scheme of mixed finite element approxima-
tion is introduced for second-order nonlinear hyperbolic equation. In order to deal with
the nonlinear mixed-method equations efficiently, a two-grid algorithm is considered.
Numerical stability and error estimate are proved on both the coarse grid and fine grid.
It is shown that the two-grid method can achieve asymptotically optimal approxima-
tion as long as the mesh sizes satisfy h = O(H(2k+1)/(k+1)). Some numerical results are
provided to confirm the theoretical analysis.
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1. Introduction

In this paper, we consider the following nonlinear hyperbolic equation

utt −∇ · (K(u)∇u) = f, (x, t) ∈ Ω× J,(1.1)

u(x, t) = 0, (x, t) ∈ ∂Ω× J,(1.2)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,(1.3)

where Ω ⊂ R2 is a bounded polygonal domain, J = (0, T ], K(u) : Ω×R → R2×2

is a symmetric and uniformly positive definite bounded tensor.
Hyperbolic equations can demonstrate many physical processes and phenom-

ena such as vibrations of a membrane, acoustic vibrations of a gas, hydrody-
namics, displacement problems in porous media, etc. Lots of numerical methods
have been developed for solving these model problems. Such as finite difference
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methods [1, 2], finite element methods [3, 4, 15, 18], mixed finite element meth-
ods [5-7] and so on. In this paper, we consider a mixed element method for
nonlinear hyperbolic equation in which the coefficient K is nonlinear.

The mixed finite element method (MFEM), as a type of powerful numeri-
cal tool for solving differential problems, was extensively used in the analysis
of engineering and scientific computation. In the past decades, the theoretical
framework and the basic tools for the analysis of the MFEM have been de-
veloped. Perhaps the most important property of the MFEM is that it can
simultaneously approximate both the scalar (pressure) and vector (flux) func-
tions. The advantage of this approach has attracted many researchers to do
research in this field. For example, there are some papers such as [8, 11, 19] on
elliptic equations and parabolic equations. There are also some papers such as
[5-7] on the MFEM for the linear and semilinear hyperbolic problems.

For the mixed method, the problem (1.1) is often rewritten by introducing
a new variable

z = −K(u)∇u,

or equivalently

κ(u)z = −∇u,(1.4)

as

utt +∇ · z = f,(1.5)

where κ(u) = K−1(u) is a square-integrable, symmetric, uniformly positive-
definite tensor defined on Ω, and there exist constants K∗, K

∗ > 0, such that

K∗|y|2 ≤ yTκ(u)y ≤ K∗|y|2, y ∈ R2.(1.6)

As we know, the resulting algebraic system of equations is a large systems
of nonlinear equations. Therefore, it is necessary for us to study an effective
algorithm for this essential system. We will consider a two-grid method inspired
by Xu [9, 10]. The key feature of this method is that it can reduce the complexity
of the original problem and save the computational time. Thus, many articles
utilize this method to numerically solve differential equations and developed
some new numerical techniques based on the idea of two-grid algorithm [11-
18]. Now, the two-grid methods have been proved to be efficient discretization
techniques for the complicated problems (nonsymmetric indefinite or nonlinear,
etc.) of various type.

For the hyperbolic equations, Chen et al. [16] discussed a two-grid method
for semilinear problem by using finite volume element method. Later on, they
also investigate this method for the nonlinear case [17]. Recently, in [18], the two-
grid method was presented to solve the two-dimensional nonlinear hyperbolic
equation by the bilinear finite element. In this work, we use a two-grid method
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based on MFEM to approximate the solution of (1.1). We first solve a nonlinear
MFE system on a coarse grid, then we use the known coarse grid solution
and a Taylor expansion to get the solution of a linear system on the fine grid.
As shown in [9, 10], the coarse mesh can be quite coarse and still maintain
a good accuracy approximation. The novelty and major achievement of this
paper is that we successfully extend the two-grid method to solve the nonlinear
hyperbolic problems by the MFEM. Convergence rate in both time and space
is proved.

This paper is organized as follows. In Section 2, we present a two-grid
algorithm combined with the fully discrete MFEM for (1.1). In Section 3, we
carry out the stability analysis for two-grid method. In Section 4, we deduce
the error estimates for both the coarse grid and fine grid. In Section 5, we give
some numerical experiments to verify the theoretical results.

Throughout this paper, let C denote a generic positive constant independent
of mesh parameters with possibly different values in different contexts. Let
Lp(Ω) for 1 ≤ p < ∞ denote the standard Banach space defined on Ω, with
norm || · ||p. For any nonnegative integer m, let Wm,p(Ω) = {µ ∈ Lp(Ω), Dϑµ ∈
Lp(Ω), |ϑ| ≤ m} denote the Sobolev spaces endowed with the norm ||µ||pm,p =∑

|ϑ|≤m ||Dϑµ||pLp(Ω). When p = 2, we omit the subscript.

2. The two-grid algorithm based on MFEM

Let W = L2(Ω) and V = H(div; Ω). The weak form for the mixed problem
(1.4)-(1.5) is to seek a pair of functions: (u, z) : (0, T ) →W × V satisfying

(utt, w) + (∇ · z, w) = (f, w), ∀w ∈W,(2.7)

(κ(u)z,v)− (∇ · v, u) = 0, ∀v ∈ V ,(2.8)

with u(0) = u0 and ut(0) = u1.

Let Th be a quasi-uniform family of finite element partition of Ω into triangles
or rectangles with the mesh size h. We take finite-dimensional subspaces Wh ×
V h ⊂ W × V , using Raviart-Thomas (RT ) mixed finite element space [19] of
index k, where k is fixed nonnegative integer, associated with Th. The following
inclusion holds for the RTk spaces

∇ · vh ∈Wh, ∀vh ∈ V h.(2.9)

Let Qh be the L2 projection of W onto Wh such that

(α,wh) = (Qhα,wh), ∀wh ∈Wh, α ∈ L2(Ω).(2.10)

Associated with the standard mixed finite element spaces is Fortin projection
Πh : (H1(Ω))2 → V h, such that for q ∈ H(div,Ω)

(2.11) (∇ ·Πhq, wh) = (∇ · q, wh), ∀wh ∈Wh.
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The following approximation properties hold for the projections Qh and Πh

(see [19])

∥Qhα∥0,q ≤ C∥α∥0,q, 2 ≤ q <∞,(2.12)

∥α−Qhα∥0,q ≤ C∥α∥r,qhr, 0 ≤ r ≤ k + 1,(2.13)

∥q −Πhq∥0,q ≤ C∥q∥r,qhr, 1/q < r ≤ k + 1,(2.14)

∥∇ · (q −Πhq)∥0,q ≤ C∥∇ · q∥r,qhr, 0 ≤ r ≤ k + 1.(2.15)

For discretization of time variable, let

tn = n∆t, n = 0, 1, · · · , N,

where ∆t = T/N is the step size of time variable.
For any function φ of time, let φn denote φ(·, tn). Moreover, we describe

some of the notations which will be frequently used in our analysis:

φn+ 1
2 =

1

2
(φn+1 + φn), ∂tφ

n+ 1
2 =

1

∆t
(φn+1 − φn),

∂tφ
n =

1

2∆t
(φn+1 − φn−1), ∂ttφ

n =
1

(∆t)2
(φn+1 − 2φn + φn−1),

(2.16)

obviously, we have

∂tφ
n =

1

2
(∂tφ

n+ 1
2 + ∂tφ

n− 1
2 ), ∂ttφ

n =
1

∆t
(∂tφ

n+ 1
2 − ∂tφ

n− 1
2 ).

The fully discrete scheme of (2.7)-(2.8) is as follows: find (un+1
h , zn+1

h ) ∈
Wh × V h such that

(u0h, wh) = (Qhu0, wh), ∀wh ∈Wh,(2.17)

(z0
h,vh) = (z0,vh), ∀vh ∈ V h,(2.18) (
2

∆t
∂tu

1
2
h , wh

)
+ (∇ · z0

h, wh) =

(
f0 +

2

∆t
Qhu1, wh

)
, ∀wh ∈Wh,(2.19)

(∂ttu
n
h, wh) + (∇ · zn

h, wh) = (fn, wh), ∀wh ∈Wh,(2.20)

(κ(un+1
h )zn+1

h ,vh)− (∇ · vh, u
n+1
h ) = 0, ∀vh ∈ V h.(2.21)

In order to prove the existence and uniqueness of the discrete problem (2.17)-
(2.21), we rewrite (2.20) as(

1

(∆t)2
un+1
h , wh

)
= −(∇ · zn

h, wh) +

(
unh − un−1

h

(∆t)2
, wh

)
+ (fn, wh),(2.22)

∀wh ∈Wh.

Let Bu and Bz be bases of Wh and V h, respectively. So, uh = Y · Bu and
zh = X ·Bz, whereX and Y are nodal variables. Let (uh, wh) = (Y ·Bu, α·Bu) =
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α ·LY , where L is the matrix associated with the operator whose quadratic form
is the L2 inner products. Similarly, to L, introduce matrices A, B and D,

(κ(un+1
h )zn+1

h ,vh) = χ ·AX,
−(∇ · vh, u

n+1
h ) = Bχ · Y = BTY · χ,(

1

(∆t)2
un+1
h , wh

)
= DY · α,

where vh = χ · Bz and wh = α · Bu. Then, the matrix form of (2.17)-(2.21),
relative to the bases Bu and Bz, is[

A BT

0 D

] [
X
Y

]
=

[
0
G

]
.(2.23)

Recalling the assumptions on κ(u), and noting that A and D are positive def-
inite, as required by [20], there exists a unique solution (X,Y ) to the system
(2.23). Therefore, we can deduce that there exists a unique solution (un+1

h , zn+1
h )

to (2.17)-(2.21).
To speed up the scheme (2.17)-(2.21), we present two-grid algorithm for

problem (2.17)-(2.21) based on another mixed finite element space WH × V H

(⊂ Wh × V h), having mesh size h ≪ H < 1. The basic idea in our approach is
to solve the original nonlinear problem on a coarse grid TH(Ω), and then solve
a corresponding linear problem on the fine grid Th(Ω).

Now, we give the two-grid algorithm which has two steps:
Algorithm 2.1.
Step 1. On the coarse grid TH , find (un+1

H , zn+1
H ) ∈ WH × V H , solve the

following nonlinear system:

(u0H , wH) = (QHu0, wH), ∀wH ∈WH ,(2.24)

(z0
H ,vH) = (z0,vH), ∀vH ∈ V H ,(2.25) (
2

∆t
∂tu

1
2
H , wH

)
+ (∇ · z0

H , wH) =

(
f0 +

2

∆t
QHu1, wH

)
,∀wH ∈WH ,(2.26)

(∂ttu
n
H , wH) + (∇ · zn

H , wH) = (fn, wH), ∀wH ∈WH ,(2.27)

(κ(un+1
H )zn+1

H ,vH)− (∇ · vH , u
n+1
H ) = 0, ∀vH ∈ V H .(2.28)

Step 2. On the fine grid Th, find (Un+1
h ,Zn+1

h ) ∈Wh×V h, solve the following
linear system:

(U0
h , wh) = (Qhu0, wh), ∀wh ∈Wh,(2.29)

(Z0
h,vh) = (z0,vh), ∀vh ∈ V h,(2.30) (
2

∆t
∂tU

1
2
h , wh

)
+ (∇ ·Z0

h, wh) =

(
f0 +

2

∆t
Qhu1, wh

)
, ∀wh ∈Wh,(2.31)

(∂ttU
n
h , wh) + (∇ ·Zn

h, wh) = (fn, wh), ∀wh ∈Wh,(2.32)

(κ′(un+1
H )zn+1

H (Un+1
h − un+1

H ) + κ(un+1
H )Zn+1

h ,vh)

= (∇ · vh, U
n+1
h ),∀vh ∈ V h.(2.33)
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3. Stability analysis

In this section, we will carry out the stability analysis for two-grid scheme (2.24)-
(2.33). We suppose that κ(u) is triple continuously differentiable with bounded
derivatives up to the second order on Ω, i.e., there exists M1, M2 > 0, such that
∥κu∥0,∞ ≤M1, ∥κuu∥0,∞ ≤M2. Moreover, we also assume ∥z∥0,∞ ≤M3, where
M3 > 0. As in [6], we use the ”inverse assumption”, which states that there
exists a constant C0 independent of ℏ, such that

∥∇ · φ∥ ≤ C0ℏ−1∥φ∥,(3.34)

for φ ∈Wℏ, where ℏ is either h or H depending on whether we work on the fine
grid space or coarse grid space.

In order to derive the stability for our two-grid method, we need to obtain
a stability result first for the coarse grid system (2.24)-(2.28).

Theorem 3.1. The scheme defined by (2.24)-(2.28) is stable for ∆t < 2H
C0

, and

∥uN+1
H ∥2 + ∥zN+1

H ∥2 ≤ C(∥u1H∥2 + ∥z1
H∥2 + ∥∂tu

1
2
H∥2

+ ∥∇ · z0
H∥2) + C∆t

N∑
n=1

max
1≤i≤n

∥f i∥2(3.35)

holds.

Proof. Let

z0
H =

∆t

2
z0
H , zn

H =
∆t

2
z0
H +∆t

n∑
i=1

zi
H .

Summing over time levels and multiplying (2.27) by ∆t, we have

(∂tu
n+ 1

2
H − ∂tu

1
2
H , wH) + (∇ · (zn

H − z0
H), wH)

=

(
∆t

n∑
i=1

f i, wH

)
, ∀wH ∈WH .(3.36)

We rewrite (2.28) by noting that zn+1
H = ∂tz

n+ 1
2

H , so that

(κ(un+1
H )∂tz

n+ 1
2

H ,vH)− (∇ · vH , u
n+1
H ) = 0, ∀vH ∈ V H .(3.37)

Let wh = u
n+ 1

2
H and vh = z

n+ 1
2

H are the test functions in (3.36) and (3.37), then
add those equations to get

(un+1
H − unH , u

n+1
H + unH) + (κ(un+1

H )(zn+1
H − zn

H), zn+1
H + zn

H)

+ ∆t(∇ · zn
H , u

n
H)−∆t(∇ · zn+1

H , un+1
H )(3.38)

= 2∆t

{(
∂tu

1
2
H , u

n+ 1
2

H

)
+

(
∇ · z0

H , u
n+ 1

2
H

)
+

(
∆t

n∑
i=1

f i, u
n+ 1

2
H

)}
.
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Using the Cauchy-Schwarz inequality, the terms on the right-hand side of the
previous inequality are bounded as(

∂tu
1
2
H , u

n+ 1
2

H

)
+

(
∇ · z0

H , u
n+ 1

2
H

)
+

(
∆t

n∑
i=1

f i, u
n+ 1

2
H

)

≤ C(∥∂tu
1
2
H∥+ ∥∇ · z0

H∥+ ∥
n∑

i=1

f i∥)∥un+
1
2

H ∥.
(3.39)

In addition, the first two terms in the left-hand side of (3.38) are evaluated as

(un+1
H − unH , u

n+1
H + unH) + (κ(un+1

H )(zn+1
H − zn

H), zn+1
H + zn

H)

≥ ∥un+1
H ∥2 − ∥unH∥2 +K∗(∥zn+1

H ∥2 − ∥zn
H∥2).

(3.40)

Summing (3.38) from n = 1, · · · , N , and using (3.39) and (3.40), we get

∥uN+1
H ∥2−∥u1H∥2+∥zN+1

H ∥2−∥z1
H∥2 −∆t

[(
∇ · zN+1

H , uN+1
H )− (∇ · z1

H , u
1
H

)]
≤ C∆t

N∑
n=1

(∥∂tu
1
2
H∥+ ∥∇ · z0

H∥+ ∥
n∑

i=1

f i∥)∥un+
1
2

H ∥.

Employing the Cauchy-Schwarz inequality, the inverse assumption (3.34), and
choosing H and ∆t such that ∆t < 2H

C0
, we obtain

∆t(∇ · zN+1
H , uN+1

H ) ≤∆t∥∇ · zN+1
H ∥ · ∥uN+1

H ∥ ≤ ∆tC0H
−1∥zN+1

H ∥ · ∥uN+1
H ∥

≤∆tC0

2H

(
∥zN+1

H ∥2 + ∥uN+1
H ∥2

)
<∥zN+1

H ∥2 + ∥uN+1
H ∥2.

(3.41)

Thus, we have

∥uN+1
H ∥2 + ∥zN+1

H ∥2 ≤ ∥u1H∥2 + ∥z1
H∥2

+ C∆t

N∑
n=1

(∥∂tu
1
2
H∥+ ∥∇ · z0

H∥+ ∥
n∑

i=1

f i∥)∥un+
1
2

H ∥(3.42)

≤∥u1H∥2+∥z1
H∥2+C∆t

N∑
n=1

(∥un+1
H ∥2+∥∂tu

1
2
H∥2+∥∇ · z0

H∥2+max
1≤i≤n

∥f i∥2).

Note that ∆t
∑N

n=1 ≤ T , use Gronwall’s lemma to get

∥uN+1
H ∥2 + ∥zN+1

H ∥2 ≤ ∥u1H∥2 + ∥z1
H∥2 + C(∥∂tu

1
2
H∥2 + ∥∇ · z0

H∥2)

+ C∆t
N∑

n=1

max
1≤i≤n

∥f i∥2.

The desired inequality (3.35) follows from the above inequality, and the proof is
completed.
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Following a similar analysis as that carried above for the coarse grid, we can
obtain the following stability on the fine grid Th.

Theorem 3.2. For the scheme (2.29)-(2.33), we have the following stable in-
equality

∥UN+1
h ∥2 + ∥ZN+1

h ∥2 ≤C(∥u1H∥2 + ∥z1
H∥2 + ∥∂tu

1
2
H∥2 + ∥∇ · z0

H∥2 + ∥U1
h∥2

+ ∥Z1
h∥2+∥∂tU

1
2
h ∥

2+∥∇ ·Z0
h∥2)+C∆t

N∑
n=1

max
1≤i≤n

∥f i∥2.

Proof. Let

Z
0
h =

∆t

2
Z0

h, Z
n
h =

∆t

2
Z0

h +∆t

n∑
i=1

Zi
h.

Similarly as in Theorem 3.1, we have (cf. (3.38)):

(Un+1
h −Un

h , U
n+1
h +Un

h )+(κ(un+1
H )(Z

n+1
h −Z

n
h),Z

n+1
h +Z

n
h)+∆t(∇ ·Zn

h, U
n
h )

−∆t(∇ ·Zn+1
h , Un+1

h )

= 2∆t{(∂tU
1
2
h , U

n+ 1
2

h ) + (∇ ·Z0
h, U

n+ 1
2

h )− (κ′(un+1
H )zn+1

H (Un+1
h − un+1

H ),Z
n+ 1

2
h

+ (∆t
n∑

i=1

f i, U
n+ 1

2
h )}.

Following a similar analysis as that carried out for (3.42), using the boundedness
assumption on ∥z∥0,∞ ≤M3, we see that

∥UN+1
h ∥2 + ∥ZN+1

h ∥2

≤ ∥U1
h∥2 + ∥Z1

h∥2 + 2∆t
N∑

n=1

(∥∂tU
1
2
h ∥+ ∥∇ ·Z0

h∥+ ∥
n∑

i=1

f i∥)∥Un+ 1
2

h ∥

+ C∆t
N∑

n=1

∥zn+1
H ∥0,∞(∥Un+1

h ∥+ ∥un+1
H ∥)∥Zn+ 1

2
h ∥

≤ ∥U1
h∥2+∥Z1

h∥2+C∆t
N∑

n=1

(∥Un+1
h ∥2+∥∂tU

1
2
h ∥

2+∥∇ ·Z0
h∥2+∥Zn+1

h ∥2+∥un+1
H ∥2)

+ C∆t
N∑

n=1

max
1≤i≤n

∥f i∥2.

Noting that ∆t
∑N

n=1 ≤ T , and using Gronwall’s lemma and (3.35), we derive
that

∥UN+1
h ∥2+∥ZN+1

h ∥2≤∥U1
h∥2+∥Z1

h∥2+C(∥∂tU
1
2
h ∥

2+∥∇ ·Z0
h∥2+∥u1H∥2+∥z1

H∥2

+ ∥∂tu
1
2
H∥2 + ∥∇ · z0

H∥2) + C∆t
N∑

n=1

max
1≤i≤n

∥f i∥2.
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Thus, the proof of this theorem is completed.

4. Error analysis based on two-grid algorithm

In this section, we will prove the optimal a priori error estimate for schemes on
both coarse and fine grids. As in [21], we shall use the following result

(4.43) ∥φ∥0,∞ ≤ Cℏ−1∥φ∥.

The time-space norms ∥ · ∥l∞(L2) and ∥ · ∥Lp(L2) are defined as

∥φ∥l∞(L2) = ∥φ∥l∞(0,T ;L2(Ω)) = max
1≤n≤N

||φn||L2(Ω),

∥φ∥Lp(L2) = ∥φ∥Lp(0,T ;L2(Ω)) =

(∫ T

0
||φ||2L2(Ω)

) 1
p

,

in the case 1 ≤ p < ∞, and in the case p = ∞, the integral is replaced by the
essential supremum.

In order to derive the error estimates for our two-grid method, we need to
obtain an error estimate for the coarse grid system (2.24)-(2.28).

Theorem 4.1. Define (unH , z
n
H) ∈WH × V H by (2.24)-(2.28). If the time step

satisfies ∆t < 2H
C0

, then there exists a positive constant C such that

(4.44) ||u− uH ||l∞(L2) + ||z − zH ||l∞(L2) ≤ C((∆t)2 +Hk+1),

where k is associated with the degree of the finite element polynomial.

Proof. Set ξn = unH − QHu
n, ηn = zn

H − ΠHzn, ζn = un − QHu
n and δn =

zn − ΠHzn. Subtracting (2.7) from (2.27), (2.8) from (2.28), respectively, we
obtain the error equations

(∂ttξ
n, wH)+(∇ · ηn, wH)=(∂ttζ

n, wH)+(untt−∂ttun, wH),∀wH ∈WH ,(4.45)

(κ(un+1
H )ηn+1,vH)− (∇ · vH , ξ

n+1) = (I,vH), ∀vH ∈ V H ,(4.46)

where

I =(κ(un+1)− κ(un+1
H ))zn+1 − (κ(un+1)− κ(un+1

H ))(zn+1 −ΠHzn+1)

+ κ(un+1)(zn+1 −ΠHzn+1) =

3∑
i=1

Ii.

Using (2.17) in (4.45) yields(
∂tξ

n+ 1
2 − ∂tξ

n− 1
2

∆t
, wH

)
+ (∇ · ηn, wH)

=

(
∂tζ

n+ 1
2 − ∂tζ

n− 1
2

∆t
, wH

)
+ (βn1 , wH),(4.47)
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for any wH ∈WH , where

βn1 = untt − ∂ttu
n =

1

6(∆t)2

∫ ∆t

−∆t
(|t| −∆t)3

∂4u

∂t4
(tn + t)dt.

We introduce

ϕ0 =
∆t

2
η0, ϕn =

∆t

2
η0 +∆t

n∑
i=1

ηi.

Summing over time levels and multiplying both sides of (4.47) by ∆t, we find
that

(∂tξ
n+ 1

2 − ∂tξ
1
2 , wH) + (∇ · (ϕn − ϕ0), wH)

= (∂tζ
n+ 1

2 − ∂tζ
1
2 , wH) +

(
∆t

n∑
i=1

βi1, wH

)
, ∀wH ∈WH ,

(4.48)

where ∆t
n∑

i=1
ηi = ϕn − ϕ0. For t = 0, by (2.7), we have

(u0tt, wH) + (∇ · z0, wH) = (f0, wH), ∀wH ∈WH .(4.49)

It is simple to see

1

2∆t

∫ ∆t

0
(∆t− t)2

∂3u

∂t3
(t)dt = −∆t

2
u0tt +

1

∆t

∫ ∆t

0
(∆t− t)

∂2u

∂t2
(t)dt

= −∆t

2
u0tt − u0t −

1

∆t

∫ ∆t

0

∂u

∂t
(t)dt

= −∆t

2
u0tt − u0t −

1

∆t
(u1 − u0)

= −∆t

2
u0tt − u1 − ∂tu

1
2 .

(4.50)

Using the projection operators of QH and ΠH , (2.11), (4.49) and (4.50), (2.26)
can be transformed into the following:

(∂tξ
1
2 , wH) +

∆t

2
(∇ · η0, wH)

= −(∂tQHu
1
2 , wH)− ∆t

2
(∇ ·ΠHz

0, wH) +

(
∆t

2
f0 +QHu1, wH

)
= −(∂tQHu

1
2 , wH) +

(
∆t

2
u0tt, wH

)
+ (QHu1, wH)(4.51)

= (∂tζ
1
2 , wH) + (QHu1 − u1, wH) +

(
∆t

2
u0tt + u1 + ∂tu

1
2 , wH

)
= (∂tζ

1
2 , wH) + (QHu1 − u1, wH)− 1

2∆t

∫ ∆t

0
(∆t− t)2

(
∂3u

∂t3
, wH

)
dt,

∀wH ∈WH .
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Thus, it follows from (4.48) and (4.51) that

(4.52) (∂tξ
n+ 1

2 , wH) + (∇ · ϕn, wH) = (∂tζ
n+ 1

2 , wH) + (βn2 , wH), ∀wH ∈WH ,

where

βn2 = Qhu1 − u1 +∆t

n∑
i=1

βi1 −
1

2∆t

∫ ∆t

0
(∆t− t)2

∂3u

∂t3
(t)dt.

Noting that ηn+1 = ∂tϕ
n+ 1

2 , we rewrite (4.46) as follows:

(4.53) (κ(un+1
H )∂tϕ

n+ 1
2 ,vH)− (∇ · vH , ξ

n+1) = (I,vH), ∀vH ∈ V H .

Choosing the test functionswH = ξn+
1
2 and vH = ϕn+

1
2 in (4.52) and (4.53),

respectively. Then, multiplying the two resulting equations by 2∆t, we have

(ξn+1 − ξn, ξn+1 + ξn) + ∆t(∇ · ϕn, ξn+1 + ξn)

= 2∆t(∂tζ
n+ 1

2 + βn2 , ξ
n+ 1

2 ),(4.54)

(κ(un+1
H )(ϕn+1 − ϕn), ϕn+1 + ϕn)−∆t(∇ · (ϕn+1 + ϕn), ξn+1)

= 2∆t(I, ϕn+
1
2 ).(4.55)

Combine (4.54) and (4.55) to obtain

∥ξn+1∥2 − ∥ξn∥2 + (κ(un+1
H )(ϕn+1 − ϕn), ϕn+1 + ϕn) + ∆t(∇ · ϕn, ξn)

−∆t(∇ · ϕn+1, ξn+1)(4.56)

= 2∆t(∂tζ
n+ 1

2 + βn2 , ξ
n+ 1

2 ) + 2∆t(I, ϕn+
1
2 ).

Using (1.6), the third term on the left-hand side of (4.56) can be bounded as

(κ(un+1
H )(ϕn+1 − ϕn), ϕn+1 + ϕn) ≥ K∗(∥ϕn+1∥2 − ∥ϕn∥2).(4.57)

Next, we estimate the right-hand terms of (4.56). For the first term, using the
Cauchy-Schwarz inequality, we have the following estimation

(∂tζ
n+ 1

2 + βn2 , ξ
n+ 1

2 ) ≤ (∥∂tζn+
1
2 ∥+ ∥βn2 ∥)∥ξn+

1
2 ∥.(4.58)

For the second term, by the assumptions on κ(u) and z, the inverse inequality
and the Cauchy-Schwarz inequality, we have

|(I1, ϕn+
1
2 )| = |((κ(un+1)− κ(QHu

n+1) + κ(QHu
n+1)− κ(un+1

H ))zn+1, ϕn+
1
2 )|

≤ C(∥ξn+1∥+ ∥ζn+1∥)∥ϕn+
1
2 ∥,

|(I2, ϕn+
1
2 )| = |((κ(un+1)− κ(QHu

n+1) + κ(QHu
n+1)

− κ(un+1
H ))(zn+1 −ΠHzn+1), ϕn+

1
2 )|

≤ C(∥ξn+1∥0,∞ + ∥ζn+1∥0,∞)∥δn+1∥ · ∥ϕn+
1
2 ∥

≤ CH−1(∥ξn+1∥+ ∥ζn+1∥)∥δn+1∥ · ∥ϕn+
1
2 ∥,

|(I3, ϕn+
1
2 )| = |(κ(un+1)(zn+1 −ΠHzn+1), ϕn+

1
2 )|

≤ C∥δn+1∥ · ∥ϕn+
1
2 ∥.
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Hence, by (4.43), we conclude that

|(I, ϕn+
1
2 )| ≤ C

[
∥ζn+1∥+ ∥ξn+1∥+H−1(∥ξn+1∥+ ∥ζn+1∥)∥δn+1∥

+∥δn+1∥
]
∥ϕn+

1
2 ∥.(4.59)

Summing (4.56) over time levels, and using (4.57)-(4.59), we derive

∥ξn+1∥2−∥ξ0∥2+∥ϕn+1∥2−∥ϕ0∥2−∆t
[(
∇ · ϕn+1, ξn+1)−(∇ · ϕ0, ξ0

)]
≤ 2∆t

n∑
i=0

(∥∂tζi+
1
2 ∥+ ∥βi2∥)∥ξi+

1
2 ∥+ C∆t

n∑
i=0

[∥ζi+1∥+ ∥ξi+1∥(4.60)

+H−1(∥ξi+1∥+ ∥ζi+1∥)∥δi+1∥+ ∥δi+1∥]∥ϕi+
1
2 ∥.

After imposing the initial conditions (2.24) and (2.25) in (4.60), we have

∥ξn+1∥2 + ∥ϕn+1∥2 −∆t
(
∇ · ϕn+1, ξn+1

)
≤ 2∆t

n∑
i=0

(∥∂tζi+
1
2 ∥+ ∥βi2∥)∥ξi+

1
2 ∥+ C∆t

n∑
i=0

[∥ζi+1∥+ ∥ξi+1∥

+H−1(∥ξi+1∥+ ∥ζi+1∥)∥δi+1∥+ ∥δi+1∥]∥ϕi+
1
2 ∥.

Similar to (3.41), we have

∆t(∇ · ϕn+1, ξn+1) ≤∆t∥∇ · ϕn+1∥ · ∥ξn+1∥ ≤ ∆tC0H
−1∥ϕn+1∥ · ∥ξn+1∥

≤∆tC0

2H

(
∥ϕn+1∥2 + ∥ξn+1∥2

)
<∥ϕn+1∥2 + ∥ξn+1∥2.

Thus, we obtain

∥ξn+1∥2 + ∥ϕn+1∥2 ≤ ∆t
n∑

i=0

(∥∂tζi+
1
2 ∥

+ ∥βi2∥)∥ξi+
1
2 ∥+ C∆t

n∑
i=0

[∥ζi+1∥+ ∥ξi+1∥

+H−1(∥ξi+1∥+ ∥ζi+1∥)∥δi+1∥

+ ∥δi+1∥]∥ϕi+
1
2 ∥ ≤ C∆t∥ξ∥l∞(L2)

n∑
i=0

(∥∂tζi+
1
2 ∥+ ∥βi2∥)

+ C∆t∥ϕ∥l∞(L2)

n∑
i=0

[∥ζi+1∥+ ∥ξi+1∥
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+H−1(∥ξi+1∥+ ∥ζi+1∥)∥δi+1∥+ ∥δi+1∥] ≤ 1

4
∥ξ∥2l∞(L2)(4.61)

+ C

(
∆t

n∑
i=0

∥∂tζi+
1
2 ∥

)2

+ C

(
∆t

n∑
i=0

∥βi2∥

)2

+
1

4
∥ϕ∥2l∞(L2)

+ C

(
∆t

n∑
i=0

∥ξi∥

)2

+ C

(
∆t

n∑
i=0

∥δi∥

)2

+ C

(
∆t

n∑
i=0

∥ζi∥

)2

,

since ∥ξi+
1
2 ∥ ≤ ∥ξ∥l∞(L2) and ∥ϕi+

1
2 ∥ ≤ ∥ϕ∥l∞(L2). Taking the supremum on n

on the left-hand side of (4.61), we have

∥ξ∥2l∞(L2) + ∥ϕ∥2l∞(L2)

≤ C

(
∆t

n∑
i=0

∥∂tζi+
1
2 ∥

)2

+ C

(
∆t

n∑
i=0

∥βi2∥

)2

+ C

(
∆t

n∑
i=0

∥ζi∥

)2

(4.62)

+ C

(
∆t

n∑
i=0

∥δi∥

)2

+ C

(
∆t

n∑
i=0

∥ξi∥

)2

.

In the following, we analyse the right-hand side of (4.62). A direct bound shows
that

(4.63) ∆t

n∑
i=0

∥∂tζi+
1
2 ∥ ≤ C

(
Hk+1∥u∥L∞(Hk+1(Ω)) + (∆t)2

∥∥∥∥∂3u∂t3
∥∥∥∥
L1(L2)

)
.

By (2.13), we have

∥βi2∥ ≤ ∆t

n∑
i=1

∥βi1∥+ ∥QHu1 − u1∥+
∥∥∥∥ 1

2∆t

∫ ∆t

0
(∆t− t)3

∂3u

∂t3
(t)dt

∥∥∥∥
≤ C(∆t)2

∥∥∥∥∂4u∂t4
∥∥∥∥
L∞(L2)

+ CHk+1 + C(∆t)2
∥∥∥∥∂3u∂t3

∥∥∥∥
L∞(L2)

≤ C(Hk+1 + (∆t)2),

and hence

∆t

n∑
i=0

∥βi2∥ ≤ C∥β2∥l∞(L2) ≤ C(Hk+1 + (∆t)2).(4.64)

Using (2.13), (2.14) (4.63) and (4.64) in (4.62), and applying discrete Gronwall’s
inequality, we know that for ∆t and H sufficiently small

∥ξ∥2l∞(L2) + ∥ϕ∥2l∞(L2) ≤ C((∆t)4 +H2k+2).(4.65)

Finally, by (2.13), (2.14), (4.65) and the triangle inequality, we can
derive (4.44).
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Now, we can prove the following theorem for the solution of the fine grid.

Theorem 4.2. Let (Un
h ,Z

n
h) ∈Wh×V h be the solution of the two-grid algorithm

of step 2 for solving the MFE scheme (2.29)-(2.33). If ∆t < 2h
C0

, then there is a
positive constant C such that

(4.66) ||u− Uh||l∞(L2) + ||z −Zh||l∞(L2) ≤ C((∆t)2 + hk+1 +H2k+1),

where k is associated with the degree of the finite element polynomial.

Proof. Set ρn = Un
h −Qhu

n and γn = Zn
h−Πhz

n. Let us first note the following
error equations from (2.7)-(2.8) and (2.32)-(2.33),

(∂ttρ
n, wh) + (∇ · γn, wh) = (∂ttζ

n, wh) + (βn1 , wh), ∀wh ∈Wh,(4.67)

(E,vh)− (∇ · vh, ρ
n+1) = 0, ∀vh ∈ V h,(4.68)

where βn1 is defined by (4.47),

E =κ′(un+1
H )zn+1

H (Un+1
h − un+1

H ) + κ(un+1
H )Zn+1

h − κ(un+1)zn+1

+ κ(un+1)Πhz
n+1 − κ(un+1)Πhz

n+1,

applying the Taylor expansions to κ(un+1) at un+1
H , i.e.

κ(un+1) = κ(un+1
H ) + κ′(un+1

H )(un+1 − un+1
H ) +

1

2
κ′′(u∗)(un+1 − un+1

H )2,

where κ′′(u∗) means κ′′(u) evaluated at a point u∗ between un+1 and un+1
H .

Then, we have

E =κ(un+1)(Πhz
n+1 − zn+1)− κ(un+1

H )(Πhz
n+1 −Zn+1

h )

+ κ′(un+1
H )(Un+1

h −Qhu
n+1 +Qhu

n+1 − un+1)zn+1
H

+ κ′(un+1
H )(un+1 − un+1

H )(zn+1
H −Πhz

n+1)

− 1

2
κ′′(u∗)(un+1 − un+1

H )2(Πhz
n+1 − zn+1 + zn+1 − zn+1

H )

− 1

2
κ′′(u∗)(un+1 − un+1

H )2zn+1
H .

(4.69)

By (4.68) and (4.69), we get

(κ(un+1
H )γn+1,vh)− (∇ · vh, ρ

n+1) = (F,vh), ∀vh ∈ V h,

where

(F,vh) =(κ(un+1)δn+1,vh)− (κ′(un+1
H )(ρn+1 − ζn+1)zn+1

H ,vh)

− (κ′(un+1
H )(un+1 − un+1

H )(zn+1
H −Πhz

n+1),vh)

+ (
1

2
κ′′(u∗)(un+1 − un+1

H )2(zn+1 − zn+1
H − δn+1),vh)

+ (
1

2
κ′′(u∗)(un+1 − un+1

H )2zn+1
H ,vh) =

5∑
i=1

Ti.
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Let us define

ψ0 =
∆t

2
γ0, ψn =

∆t

2
γ0 +∆t

n∑
i=1

γi.

By the center difference operator ∂ttφ
n = 1

∆t(∂tφ
n+ 1

2 − ∂tφ
n− 1

2 ), we obtain(
∂tρ

n+ 1
2 − ∂tρ

n− 1
2

∆t
, wh

)
+ (∇ · γn, wh)

=

(
∂tζ

n+ 1
2 − ∂tζ

n− 1
2

∆t
, wh

)
+ (βn1 , wh), ∀wh ∈Wh.(4.70)

Summing over time levels of (4.70) and multiplying through by ∆t, we have

(∂tρ
n+ 1

2 − ∂tρ
1
2 , wh) + (∇ · (ψn − ψ0), wh) = (∂tζ

n+ 1
2 − ∂tζ

1
2 , wh)

+
(
∆t
∑n

i=1 β
i
1, wh

)
, ∀wh ∈Wh,

since ∆t
n∑

i=1
γi = ψn − ψ0. Similar to (4.52), we have

(4.71) (∂tρ
n+ 1

2 , wh) + (∇ · ψn, wh) = (∂tζ
n+ 1

2 , wh) + (βn2 , wh), ∀wh ∈Wh,

where βn2 is defined in (4.52). Observe that γn+1 = ∂tψ
n+ 1

2 , therefore, we get

(4.72) (κ(un+1
H )∂tψ

n+ 1
2 ,vh)− (∇ · vh, ρ

n+1) = (F,vh), ∀vh ∈ V h.

Choosing wh = ρn+
1
2 and vh = ψn+ 1

2 in (4.71) and (4.72), adding them and
multiplying by 2∆t, we find that

∥ρn+1∥2 − ∥ρn∥2 + ∥κ
1
2 (un+1

H )ψn+1∥2 − ∥κ
1
2 (unH)ψn∥2

+((κ(unH)− κ(un+1
H ))ψn, ψn)

+∆t(∇ · ψn, ρn)−∆t(∇ · ψn+1, ρn+1)

= 2∆t(∂tζ
n+ 1

2 + βn2 , ρ
n+ 1

2 ) + 2∆t(F,ψn+ 1
2 ).(4.73)

Apply the Cauchy-Schwarz inequality, it is easy to get

(∂tζ
n+ 1

2 + βn2 , ρ
n+ 1

2 ) ≤ (∥∂tζn+
1
2 ∥+ ∥βn2 ∥)∥ρn+

1
2 ∥.(4.74)

Using (2.13)-(2.15), (4.44), and the assumptions on κ(u) and z, we have

|T1| = |(κ(un+1)δn+1, ψn+ 1
2 )| ≤ Chk+1∥ψn+ 1

2 ∥,

|T2| ≤ |(κ′(un+1
H )(ρn+1 + ζn+1)zn+1

H , ψn+ 1
2 )|
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≤ C(∥ρn+1∥+ ∥ζn+1∥)∥zn+1
H ∥0,∞∥ψn+ 1

2 ∥

≤ C(∥ρn+1∥+ hk+1)∥ψn+ 1
2 ∥,

|T3| = |(κ′(un+1
H )(un+1 − un+1

H )(zn+1
H −Πhz

n+1), ψn+ 1
2 )|

≤ C∥(un+1 − un+1
H )(zn+1

H −Πhz
n+1)∥ · ∥ψn+ 1

2 ∥

≤ C∥un+1 − un+1
H ∥0,4∥zn+1 −Πhz

n+1∥0,4∥ψn+ 1
2 ∥

+ C∥un+1 − un+1
H ∥0,4∥zn+1

H − zn+1∥0,4∥ψn+ 1
2 ∥

≤ C(∥un+1 − un+1
H ∥20,4 + ∥zn+1 −Πhz

n+1∥20,4
+ ∥zn+1

H − zn+1∥20,4)∥ψn+ 1
2 ∥

≤ C(H2k+1 + h2k+2 +∆t4)∥ψn+ 1
2 ∥,(4.75)

|T4| = |(1
2
κ′′(u∗)(un+1 − un+1

H )2zn+1
H , ψn+ 1

2 )|

≤ C∥un+1 − un+1
H ∥20,4∥zn+1

H ∥0,∞∥ψn+ 1
2 ∥

≤ CH2k+1∥ψn+ 1
2 ∥,

|T5| = |(1
2
κ′′(u∗)(un+1 − un+1

H )2(zn+1 − zn+1
H − δn+1), ψn+ 1

2 )|

≤ C∥(1
2
κ′′(u∗)(un+1 − un+1

H )2(zn+1 − zn+1
H − δn+1)∥ · ∥ψn+ 1

2 ∥

≤ C∥un+1 − un+1
H ∥20,8∥zn+1 − zn+1

H ∥0,4∥ψn+ 1
2 ∥

+ C∥un+1 − un+1
H ∥20,8∥δn+1∥0,4∥ψn+ 1

2 ∥

≤ C(H2k+1 + h2k+2)∥ψn+ 1
2 ∥.

It follows from (4.75) that

(4.76) |(F,ψn+ 1
2 )| ≤ C(hk+1 +H2k+1 + (∆t)2 + ∥ρn+1∥)∥ψn+ 1

2 ∥.

Using (4.74) and (4.76), and summing (4.73) over time levels, we have

∥ρn+1∥2 + ∥ψn+1∥2 −∆t(∇ · ψn+1, ρn+1)

≤ 2C∆t
n∑

i=0

(hk+1 +H2k+1 + (∆t)2 + ∥ρi+1∥)∥ψi+ 1
2 ∥

+ 2∆t
n∑

i=0

(∥∂tζi+
1
2 ∥+ ∥βi2∥)∥ρi+

1
2 ∥,

where we used ρ0 = 0 and ψ0 = 0 since the initial conditions (2.29) and (2.30).
In the following, similarly as the proof of (4.65), we deduce that

∥ρ∥2l∞(L2) + ∥ψ∥2l∞(L2) ≤ C((∆t)4 + h2k+2 +H4k+2).(4.77)

Thus, applying (2.13), (2.14), (4.77) and the triangle inequality, we can derive
(4.66).
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Remark 4.1. From Theorem 4.2, we see that the optimal error estimate is

O((∆t)2 + hk+1) by taking H = O(h
k+1
2k+1 ), which is coincide with the error

result (4.44) obtained for the original MFE system (2.17)-(2.21).

5. Numerical experiments

In the section, we consider the following second-order nonlinear hyperbolic prob-
lem:

utt −∇ · (K(u)∇u) = f, (x, t) ∈ Ω× J,

u(x, t) = 0, (x, t) ∈ ∂Ω× J,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

where Ω = [0, 1]2, J = [0, 1], x = (x1, x2)
T ,

K(u) =

(
1 + sin2(u) 0

0 1 + sin2(u)

)
,

the functions f , u0 and u1 are chosen so that the exact solution u(x, t) =
etx1x2(1− x1)(1− x2) or u(x, t) = et sin(πx1) sin(πx2).

We use the Raviart-Thomas spaces (RT1) with k = 1. J is uniformly divided
so that △t is a constant. We present the two-grid discretization error with
coarse and fine mesh size pairs (H,h)=(1/4, 1/8), (1/9, 1/27), (1/16, 1/64)
which satisfy the relation h = H3/2. When the exact solution is chosen as
u(x, t) = etx1x2(1 − x1)(1 − x2), we take the time step ∆t = 1.0e − 3, the
error results, convergence rates and computational time of MEFM and two-grid
method are demonstrated in Tabs. 1 and 2. When the exact solution is chosen
as u(x, t) = et sin(πx1) sin(πx2), we couple the time step with spatial mesh as
∆t = h, the numerical results of MEFM and two-grid method are presented in
Tabs. 3 and 4.

Table 1: Numerical results by MFEM with u(x, t) = etx1x2(1− x1)(1− x2).

h ||u− uh|| ||z − zh|| Computing time (s)

1/8 1.5826e-03 4.1845e-03 1.52
1/27 1.4147e-04 3.7821e-04 16.33
1/64 2.4891e-05 6.7930e-04 70.65
Rates 2.0 2.0

Table 2: Numerical results by two-grid method with u(x, t)=etx1x2(1−x1)(1−x2).
(H , h) ||u− Uh|| ||z −Zh|| Computing time (s)

(1/4,1/8) 1.6114e-03 4.5097e-03 1.71
(1/9,1/27) 1.4475e-04 4.0349e-04 9.47
(1/16,1/64) 2.5978e-05 7.2536e-04 22.54

Rates 2.0 2.0
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Table 3: Numerical results by MFEM with u(x, t) = et sin(πx1) sin(πx2).

h = ∆t ||u− uh|| ||z − zh|| Computing time (s)

1/8 3.2017e-03 9.6503e-03 0.12
1/27 2.9004e-04 8.8632e-04 3.97
1/64 5.1916e-05 1.5965e-04 19.32
Rates 2.0 2.0

Table 4: Numerical results by two-grid method with u(x, t) = et sin(πx1) sin(πx2).

(H , h = ∆t) ||u− Uh|| ||z −Zh|| Computing time (s)

(1/4,1/8) 3.5235e-03 1.1218e-02 0.19
(1/9,1/27) 3.1622e-04 9.9945e-04 2.08
(1/16,1/64) 5.6992e-05 1.8016e-04 8.46

Rates 2.0 2.0

From the numerical results in Tabs. 1-4, we observe that the proposed two
methods are of second-order accuracy, which is coincided with our theoretical
analysis. Moreover, we also observe that the two-grid method spends less time
than the usual MFEM. Thus, we can see that two-grid algorithm is a very
effective algorithm when it comes to deal with the nonlinear problems.

6. Conclusions

In this paper, we develop a two-grid mixed finite element method for a class of
nonlinear hyperbolic equation. We prove the stability and the error estimate for
the two-grid scheme. It is shown theoretically and numerically that when the
coarse and fine mesh sizes satisfy h = O(H(2k+1)/(k+1)), the two-grid solution
can achieve the same accuracy as the mixed finite element solution.
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