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1. Introduction

The purpose of this paper is to provide an illustration of an interesting and
nontrivial interaction between analytic and geometric properties of a group. We
provide approximation property of operator algebras associated with discrete
groups. There are various notions of finite dimensional approximation prop-
erties for C∗− algebras and more generally operator algebras. Some of these
(approximation properties) notations will be defined in this paper, the reader
is referred to [2], [3], [4], [7], [10], [11], [12], [13], and [15] for these beautiful
concepts: Haagerup discovery that the reduced C∗− algebra Fn has the metric
approximation property, Higson and Kasparov’s resolution of the Baum-connes
conjecture for the Haagerup groups. We study analytic techniques from opera-
tor theory that encapsulate geometric properties of a group. The approximation
properties of group C∗− algebra are everywhere; it is powerful, important, back-
bone of countless breakthroughs.

Roe considered the discrete group of the reduced group C∗− algebra of
C∗
r (G) is the fixed point algebra {Adρ(t) : t ∈ G} acting on the uniform Roe

algebra C∗
u(G) [14]. A discrete group G has natural coarse structure which

allows us to define the the uniform Roe algebra, C∗
u(G) [14]. We say that the

uniform Roe algebra, C∗
u(G), is the C∗− algebra completion of the algebra of

bounded operators on ℓ2(X) which have finite propagation. The reduced C∗−
algebra C∗

r (G) is naturally contained in C∗
u(G) [14]. According to [Roe] [14], G

has the invariant approximation property (IAP) if

C∗
λ(G) = C∗

u(G)G.
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2. Preliminaries

In this section we shall establish the basic definitions and notations for the
category of coarse metric spaces. Coarse geometry is the study of the large
scale properties of spaces. The notion of large scale is quantified by means of a
coarse structure.

Example 2.1 ([14]). Let G be a finitely generated group. Then the bounded
coarse structure associated to any word metric onG is generated by the diagonals

∆g = {(h, hg) : h ∈ G} .

We next recall some basic fact about uniform Roe algebra and metric prop-
erty of a discrete group. Next we recall the following definitions; Let X be a
discrete metric space.

Definition 2.2 ([14]). We say that discrete metric space X has bounded geom-
etry if for all R there exists N in N such that for all x ∈ X , |BR(x)| < N ,
where B(x, r) = {x ∈ X : d(y, x) ≤ r}.

Definition 2.3 ([14]). A kernel ϕ : X ×X −→ C:

� is bounded if there, exists M > 0 such that |ϕ(s, t)| < M for all s, t ∈ X

� has finite propagation if there exists R > 0 such that ϕ(s, t) = 0 if
d(s, t) > R.

Let B(X) be a set of bounded finite propagation kernels on X × X. Each
such ϕ defines a bounded operator on ℓ2(X) via the usual formula for matrix
multiplication

ϕ ∗ ζ(s) =
∑
r∈G

ϕ(s, r)ζ(r) for ζ ∈ ℓ2(X).

We shall denote the finite propagation kernels on X by A∞(X).

Definition 2.4 ([14]). The uniform Roe algebra of a metric space X is the
closure of A∞(X) in the algebra B(ℓ2(X)) of bounded operators on X.

If a discrete group G is equipped with its bounded coarse structure intro-
duced in Example 2.1, then one can associate with its uniform Roe algebra
C∗
u(G) by repeating the above. A discrete group G has a natural coarse struc-

ture which allows us to define the uniform Roe algebra C∗
u(G). A group G can

be equipped with either the left or right-invariant of the metric. A choice of one
of the determines whether C∗

λ(G) or C∗
ρ(G) is a sublagebra of the uniform Roe

algebra C∗
u(G) of G.

Hence, any element of C[G] will give the finite propagation and this assign-
ment extends to an inclusion

C∗
λ(G) ↪→ C∗

u(G).
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Next, if the metric on G is left-invariant then

C∗
ρ(G) ⊂ C∗

u(G).

Let d1 be the left-invariant metric on G

d1(x, y) = d1(gx, gy) ∀ g ∈ G.

Now, we choose a right invariant metric for G so that C∗
λ(G) ↪→ C∗

u(G). The
right regular representation ρ gives the adjoint action on C∗

u(G) defined by

Adρ(g)T = ρ(g)Tρ(g)∗ = ρ(g)Tρ(g)−1,

for all t ∈ G, T ∈ C∗
u(G). Our remarks above show that the elements of C∗

λ(G)
are invariant with respect to this action and so C∗

λ(G) is contained in invariant
subalgebra C∗

u(G)G.

Lemma 2.5. If T ∈ C∗
u(G) has kernel A(x, y), then Adρ(t)T has kernel A(xt, yt)

Proof. We have that:

(Adρ(t)Tζ)(s) = ρ(t)(Tρ(t)∗ζ)(s)

= Tρ(t)∗ζ(st)

=
∑
x∈G

A(st, x)(ρ(t)−1ζ)(x)

=
∑
x∈G

A(st, x)ζ(xt−1).

Now, A(st, x) is non-zero whenever x, y, t ∈ G such that y = xt−1,
so x = yt and we have

(Adρ(t)Tζ)(s) =
∑
x∈G

A(st, yt)ζ(y)

Thus, Adρ(t)T has kernel A(st, yt).

In general, if T ∈ C∗
u(X), then ∀ x, y ∈ G:

⟨Ad(ρ(t))Tδx, δy⟩ =
〈
ρ(t)Tρ(t−1)δx, δy

〉
=

〈
Tρ(t−1)δx, ρ(t

−1)δy
〉

= ⟨Tδxt, δyt⟩ .

So, the operator T is Adρ− invariant if and only if

∀ x, y ∈ X ∀ t ∈ G ⟨Tδxt, δyt⟩ = ⟨Tδx, δy⟩ .

We now define the invariant approximation: property (IAP).

Definition 2.6 ([14]). We say that G has the invariant approximation prop-
erty(IAP) if

C∗
λ(G) = C∗

u(G)G.
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3. The IAP passes to extensions with a finite quotient

In this section, we show that the invariant approximation property passes to
extensions. For details of extensions see [15] . Consider two groups H and N ,
and let G be an extension of H by N where N ∼= G/H. Let

1 −→ H
i
↪→ G

π−→ G/H −→ 1

be an exact sequence.

Let G be the set G = H × N and i : H −→ G be given by i(a) = (a, e)
(for any a ∈ H), with π : G −→ N given by π(a, γ) = γ (for any (a, γ) ∈ G).
We choose a set-theoretic cross-section σ : N −→ G, 1 7−→ 1 of σ such that
π ◦ σ = IdG/H . We define

f : N ×N −→ G

by

f(n1, n2) = σ(n1)σ(n2)σ(n1n2)
−1, ∀ n1, n2 ∈ N.

Let ρ(γ) be the conjugation by σ(γ) in H:

ρ(γ)(h) = σ(γ)hσ(γ)−1.

For α ∈ N ,

Ad(α) : N −→ N and γ 7−→ αγα−1.

Then, the function f and ρ are related as follows [5]:

(3.1) ρ(β)ρ(γ) = Ad(f(β, γ))ρ(βγ),

and

(3.2) f(γ1, γ2)f(γ1γ2, γ3) = ρ(γ1)f(γ2, γ3)f(γ1, γ2γ3).

Since

Ad(f(β, γ))ρ(βγ) = f(β, γ)f(β, γ)−1ρ(βγ) = ρ(β)ρ(γ)

and

f(γ1, γ2)f(γ1γ2, γ3) = σ(γ1)σ(γ2)σ(γ1γ2)
−1σ(γ1γ2)σ(γ3)σ(γ1γ2γ3)

−1

= σ(γ1)σ(γ2)σ(γ3)σ(γ1γ2γ3)
−1

= σ(γ1)1σ(γ1)
−1σ(γ1)σ(γ2)σ(γ3)σ(γ1γ2γ3)

−1

= ρ(γ1)σ(γ2)σ(γ2)
−1σ(γ1)σ(γ2γ3)σ(γ1γ2γ3)

−1

= ρ(γ1)σ(γ2)σ(γ3)σ(γ3)
−1σ(γ2)

−1σ(γ1)σ(γ2γ3)σ(γ1γ2γ3)
−1

= ρ(γ1)σ(γ2)σ(γ3)σ(γ2γ3)
−1σ(γ1)σ(γ2γ3)σ(γ1γ2γ3)

−1

= ρ(γ1)f(γ2, γ3)f(γ1, γ2γ3)
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The set group law is given by (h1, γ1)(h2, γ2) = (h1ρ(γ1)(h2)f(γ1, γ2), γ1γ2). Let
G be a group. Now, we choose a set-theoretic section in

1 −→ H
i
↪→ G

π−→ G/H −→ 1

is the same as to choose coset representatives in G/H: r1, · · · , rn. G/H is a
group, but it is not true in general that

rirj ∈ R = {set of coset representatives}

since rirj is product in G, there is a new product on R (which is a product on
G/H). Let r1∗r2 ∈ G such that r1∗r2 = r ↭ the choosen coset representatives
of [r1r2]. And, also

(Hr1)(Hr2) = Hr1r2 = H
(
r1r2 (r1 ∗ r2)−1

)
(r1 ∗ r2) ,

and (r1r2(r1 ∗ r2)−1) ∈ H. So, r1 ∗ r2 is the product in G/H. To choose coset
representatives, we have a set-theoretic identification:

G = H ×G/H (This is called Jolissaint product).

We assume that there is a bijective

ϕ : G −→ H ×G/H,

g = hgrg 7−→ (hg, rg).

Where ϕ is a group isomorphism if H × G/H is equipped with the Jolissaint
product. Coset representation, ∀g ∈ G, ∃ hg ∈ H, rg ∈ G/H such that g = hgrg
and ∀g′ ∈ G, ∃ hg′ ∈ H, rg′ ∈ G/H such that g′ = hg′rg′ . Since H is normal
subgroup of G, so Hg ∼= gH. Right G action on H ×G/H. Consider

gg′ = (hgrg)
(
hg′rg′

)
= hg

(
rghg′r

−1
g

)
rgrg′

= hg
(
rghg′r

−1
g

)
rgrg′

(
rg ∗ rg′

)−1 (
rg ∗ rg′

)
,

where rg ∗ rg′ ∈ R and hg(rghg′r
−1
g ) ∈ H. rg ∗ rg′ and rgrg′ determine the same

coset, so ∃ s ∈ H such that s(rg ∗ rg′) = rgrg′ ,

s = rgrg′
(
rg ∗ rg′

)−1
.

To show that ϕ is a group homomorphism we compute:

gg′ 7−→
{
hg
(
rghg′r

−1
g

)
rgrg′

(
rg ∗ rg′

)−1
,
(
rg ∗ rg′

)}
= (hg, rg) ∗

(
hg′ , rg′

)



350 KANKEYANATHAN KANNAN

but
hg
(
rghg′r

−1
g

)
rgrg′

(
rg ∗ rg′

)−1 ∈ H.

Since ϕ becomes a group isomorphism ϕ : G −→ H ×G/H, when the space on
the left is equipped with the product

(hg, rg)(hg′ , rg′) =
{
hg
(
rghg′r

−1
g

)
rgrg′

(
rg ∗ rg′

)−1
, rg ∗ rg′

}
.

Therefore H ×G/H is a group. While H is a subgroup of G, N is not subgroup
of G, since, for example if rg = rg′ = e, then (hg, e)(hg′ , e) = (hghg′ , e) or if
hg = hg′ = e, then

(e, rg)(e, rg′) =
{
rgrg′

(
rg ∗ rg′

)−1
, rg ∗ rg′

}
.

Next, we consider the left G action on

G = G/H ×H (This is called Jolissaint product)

We assume that there is a bijective ϕ : G −→ G/H × H. This is a group
isomorphism when the right hand side is equipped with the Jolissaint product
g = rghg 7−→ (rg, hg). Coset representation, ∀g ∈ G ∃ hg ∈ H, rg ∈ G/H such
that g = rghg and ∀g′ ∈ G ∃ hg′ ∈ H, rg′ ∈ G/H such that g′ = rg′hg′ . To
show that ϕ is a group homomorphism, we compute:

gg′ = (rghg)
(
rg′hg′

)
= rgrg′

(
r−1
g′ hgrg′

)
hg′

=
(
rg ∗ rg′

) (
rg ∗ rg′

)−1
rgrg′

(
r−1
g′ hgrg′

)
hg′ .

We have
gg′ 7−→ (rg, hg) ∗

(
rg′ , hg′

)
.

Since ϕ becomes a group isomorphism ϕ : G −→ G/H ×H, when the space on
the right is equipped with the product

(rg, hg)(rg′ , hg′) =
{(

rg ∗ rg′
)
,
(
rg ∗ rg′

)−1
(rgrg′)(rg′)

−1hgrg′hg′
}
.

Therefore, G/H ×H is a group.
While H is a subgroup of G, G/H is not subgroup of G, since, for example

if rg = r′g = e, then

(e, hg)(e, hg′) =
{
(e ∗ e) , (e ∗ e)−1 (ee′)(e)−1hgehg′

}
=
{
e, hghg′

}
or if hg = hg′ = e, then

(rg, e)(rg′ , e) =
{(

rg ∗ rg′
)
,
(
rg ∗ rg′

)−1
(rgrg′)(rg′)

−1rg′
}

=
{(

rg ∗ rg′
)
,
(
rg ∗ rg′

)−1
(rgrg′)

}
.
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G/H is a subgroup when the assignment [r] 7−→ r ∈ R ⊂ G is a group
homormophsim, i.e., when rg ∗ rg′ = rgrg′ .

Next, we show that the main result of this Chapter:

Theorem 3.1. Let G be a discrete group. If H is a finite index normal subgroup
of G with IAP, and

0 −→ H
i−→ G −→ G/H −→ 0,

then G has IAP.

Proof. Since ϕ : G
∼=−→ G/H×H, which is a fact becomes a group isomorphism

when the space on the right is equipped with Jolissaint product [5]. We want
to understand if there is an isomorphism

C∗
u(G)G ∼= C∗

u(G/H ×H)G/H×H .

Since
ϕ : G

∼=−→ G/H ×H,

we have
C∗
λ(G)

∼=−→ C∗
λ(G/H ×H).

We need to show that
C∗
u(G)G ∼= C∗

ρ(G).

The left coset decomposition of G

G =
∐
r∈R

rH,

where R is the set of left coset representatives. This space has a natural right
multiplication action by H, as it preserves left cosets. R can be made into a
group (R ⊂ G, a subset of G) with the ∗− product and R is not a subgroup of
G. It follows that there is a corresponding action on

ℓ2 (G) =
⊕
r∈R

ℓ2 (rH) ,

where ℓ2 (rH) is invariant under ρ(H). That is: For every r ∈ R is the set of
left coset representatives

ℓ2 (rH) = span {δrh | r ∈ R, h ∈ H} ,

we have s ∈ H, ρ(s)δrh = δrhs ∈ ℓ2 (rH) . On the other hand, the bijection ϕ
gives a Hilbert spaces isomorphism ℓ2 (G) = ℓ2 (G/H) ⊗ ℓ2 (H) . But G/H is
finite, so this is just

ℓ2(G) = Cn ⊗ ℓ2(H), n = |R| =
⊕
r∈R

ℓ2(H),
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where
⊕

r∈R ℓ2 (H) is the n copies of ℓ2 (H). The isomorphism ϕ works by
means of unitary maps

Vr : ℓ
2(rH) −→ ℓ2(H),

δrh 7−→ δh,

the inverse map
V ∗
r : ℓ2(H) −→ ℓ2(rH),

δh 7−→ δrh,

On ℓ2 (G) we can define a family of projections Ps : ℓ2(G) −→ ℓ2(sH), s ∈ H.
Using the decomposition

G =
∐
r∈R

rH.

We can represent each function ζ ∈ ℓ2(G) as a linear combination ζ =
∑

r∈R ζr,
where ζr ∈ ℓ2(rH) (this is understood as a subspace of ℓ2(G) so that ζr is a
function on ℓ2(G) which vanishes outside rH) Ps(ζ) = ζs (it seems that this
works for infinite G/H as well). Note that Ps commutes with ρ(h), h ∈ H
s ∈ R. So:

ρ(h)ζ(t) =
∑
r∈R

ζr(th).

We have (Psρ(h)ζ)(t) = ρ(h)ζs(t) = ζs(th) = (ρ(h)Psζ)(t). Now, take T ∈
C∗
u(G). With respect to the decomposition

G =
∐
r∈R

rH,

this can be represented as

T =
∑

r,r′∈R
PrTPr′

where PrTPr′ : ℓ2(rH) −→ ℓ2(r′H). In other words, T can be represented as
matrix 

...
· · · PrTPr′ · · ·

...

 .

The points is that this decomposition is invariant with respect to the action of
ρ(H):

∀ h, h′ ∈ H Pr′ρ(h
′)Tρ(h)Pr = ρ(h′)Pr′TPrρ(h).

Note that in particular PeTPe : C∗
ρ(G) −→ C∗

ρ(G) and is a conditional expec-
tation. Note also that ∀s ∈ R, the unitary operator Vs : ℓ2(sH) −→ ℓ2(H)
commute with ρ(H)

ρ(h′)δsh = δs(hh′)
Vs7−→ δhh′ = ρ(h′)Vsδsh.
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We want to understand the right regular representation ρ of H in terms of the

bijection G
∼=−→ G/H ×H or G

∼=−→ H ×G/H. If we use left cosets of G, then

ϕ : G −→ G/H ×H.

Now, we call the isomorphism Φ : C∗
u(G)

∼=−→ C∗
u(G/H)⊗ C∗

u(H) given by

Φ : T =
∑
r,s∈R

PrTPs 7−→
∑
r,s∈R

Er,s ⊗ VrPrTPsV
∗
s ,

where

Vr : ℓ
2(rH) −→ ℓ2(H)

and

Pr : ℓ
2(G) =

⊕
r∈R

ℓ2(rH) −→ ℓ2(rH).

This commutes with the action of ρ(H). Note that H is a subgroup of G/H×H

h 7−→ (e, h).

We have

(r, h)(e, h′) = ((r ∗ e), (r ∗ e)−1(re)(e)−1heh′) = (r, r−1rhh′) = (r, hh′).

So, (e, h′) acts trivially on the first factor in G/H × H. Next, we show the
following important proposition, which is used for the main result (Theorem
3.1) of this Chapter.

Proposition 3.2. The isomorphism Φ commutes with the adjoint action Adρ
of H.

Proof. ∀ h ∈ H

Φ(Adρ(h)T ) = Φ(
∑
r,s∈R

PrAdρ(h)TPs)

=
∑
r,s∈R

(Er,s ⊗ VrPrAdρ(h)TPsV
∗
s )

=
∑
r,s∈R

Er,s ⊗Adρ(h) (VrPrTPsV
∗
s )

= Adρ(h)

∑
r,s∈R

Er,s ⊗ VrPrTPsV
∗
s


= Adρ(h)Φ(T ).
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Conclusion 3.3. Since G/H ×H is the right equipped with Jolissaint product
[5], taking the induce action of H on both side, we have

C∗
u(G)H ∼= C∗

u(G/H ×H)H ∼= C∗
u(G/H)H ⊗ C∗

u(G)H .

So, if H has the IAP:

C∗
u(G)H ∼= C∗

u(G/H)⊗ C∗
λ(H) = Mn(C

∗
λ(H)),

then, we know
C∗
u(G)G ⊆ C∗

u(G)H ⊆ Mn(C
∗
λ(H)).

Proposition 3.4. If T ∈ C∗
u(G) is H− invariant then

∑
r∈R Adρ(r)T is a G−

invariant .

Proof. Take g ∈ G, such that g = rghg, where rg ∈ R and hg ∈ H. We have

Adρ(g)

(∑
r∈R

Adρ(r)T

)
=

∑
r∈R

g(rTr−1)g−1

=
∑
r∈R

(rghg) rTr
−1(rghg)

−1

=
∑
r∈R

rghgrTr
−1h−1

g r−1
g .

If we take hgr ∈ G ∃ s ∈ R, h ∈ H such that hgr = sh. Then

Adρ(g)

(∑
r∈R

Adρ(r)T

)
=

∑
r∈R

rghgrTr
−1h−1

g r−1
g

=
∑
r∈R

rgshTr
−1h−1s−1r−1

g

=
∑
r∈R

rgsTr
−1s−1r−1

g .

We need to claim that rgs runs through R and hgr = r(r−1hgr). So:

Adρ(g)

(∑
r∈R

Adρ(r)T

)
=

∑
r∈R

rghgrTr
−1h−1

g r−1
g

=
∑
r∈R

rgr(r
−1hgr)Tr

−1h−1
g r−1

g

=
∑
r∈R

rgrT (rgr)
−1

=
∑
r∈R

(rg ∗ r)(rg ∗ r)−1rgrT (rgr)
−1(rg ∗ r)(rg ∗ r)−1

=
∑
r∈R

(rg ∗ r)T (rg ∗ r)−1

=
∑
s∈R

rsTr
−1
s .



INVARIANT APPROXIMATION PROPERTY UNDER GROUP PASSES ... 355

When we define C∗
u(G)G, we consider the right action of G on ℓ2(G) which

induces the Adρ− action on C∗
u(G). Take g ∈ G, such that g = rghg, where

rg ∈ R and hg ∈ H

Adρ(g)T=ρ(rghg)Tρ(rghg)
∗=ρ(rg)ρ(hg)Tρ(hg)

−1ρ(rg)
−1=Adρ(rg)(Adρ(hg)T ).

It seems that when T ∈
(
C∗
u(G)H

)G/H
(which still needs to be defined) then

Adρ(hg)T = T, and Adρ(rg) (Adρ(hg)T ) = T.

So, Adρ(g)T = T. Consider C∗
u(G)H . Take r, t ∈ R, T ∈ C∗

u(G)H . We have

Adρ(rt)T = Ad
(
ρ(r ∗ t)(r ∗ t)−1rt

)
T

= Adρ(r ∗ t)
(
Ad(ρ(r ∗ t)−1rt)T

)
= Adρ(r ∗ t)T.

Conclusion 3.5. We seem to have an R− action G/H on C∗
u(G)H . If this is

so, this could imply that

C∗
u(G)G ∼=

(
C∗
u(G)H

)G/H
.

We define
(
C∗
u(G)H

)G/H
:a possible action of R on C∗

u(G)H . R ⊂ G, so it
makes sense to consider Adρ(r)T , for any r ∈ R, T ∈ C∗

u(G), where ρ is the
right regular representation of G. Since ρ(r)ρ(s) ̸= ρ(r ∗ s)r, s ∈ R, then for
T ∈ C∗

u(G)H , we have:

Adρ(r)Adρ(s)T = Adρ(r) (Adρ(s)T )

= ρ(r)
(
ρ(s)Tρ(s)−1

)
ρ(r)−1

= ρ(rs)Tρ(rs)−1

= ρ(r ∗ s)ρ
(
(r ∗ s)−1rs

)
Tρ
(
(r ∗ s)−1rs

)−1
ρ(r ∗ s)−1

= Adρ(r ∗ s)T.

We obtain the following important proposition, which is used for the main result
(Theorem 3.1) of this Chapter.

Proposition 3.6. The group (R, ∗) ∼= G/H acts on C∗
u(G)H , and the action is

induced by the right regular representation ρ of G.

We need to show that

C∗
u(G)G ∼=

{
C∗
u(G)H

}G/H
.

If T ∈
(
C∗
u(G)H

)G/H
, then T ∈ C∗

u(G)G. Since for every g ∈ G, such that g =
rghg and

Adρ(rghg)T = Adρ(rg)Adρ(hg)T = T
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So,
(
C∗
u(G)H

)G/H ⊆ C∗
u(G)G. We also have C∗

u(G)G ⊆ C∗
u(G)H . If T ∈ C∗

u(G)G

then T ∈ C∗
u(G)H . Since, for every g ∈ G, g = rghg. Then Adρ(hg)T = T. We

have Adρ(rg)(Adρ(hg)T ) = ρ(rg)(ρ(hgTρ(h
−1
g )ρ(rg)

−1 = ρ(rghg)Tρ(rghg)
−1 =

Adρ(g)T. So, C∗
u(G)G ⊆

(
C∗
u(G)H

)G/H
. Which would give

C∗
u(G)G ∼=

(
C∗
u(G)H

)G/H
.

Next, we need to show that:(
(C∗

u(G/H)⊗ C∗
u(H))H

)G/H ∼= C∗
u(G/H)G/H ⊗ C∗

u(H)H .

We denote by Pi the projection onto ℓ2(Hi);

Pi : ℓ
2(G) −→ ℓ2(Hi).

For every r ∈ R, there is also a unitary isomorphism Vi : ℓ2(Hi) −→ ℓ2(H),
induced by the map hi 7−→ h,∀h ∈ H. We have

(Piρ(r))(Piρ(r))
∗ = Piρ(r)ρ(r)

∗P ∗
i = PiP

∗
i = Pi

and
ρ(s)Pi : ℓ

2(Hr) −→ ℓ2(H(r ∗ s)),

(ρ(s)Pr)
∗(ρ(s)Pr) = P ∗

r ρ(r)
∗ρ(r)Pr = P ∗

r Pr = Pr = idHr

we get the unitary isomorphsim Piρ(r)
∗ : Hs

∼=−→ Hi, i = s ∗ r−1. Then

ρ(r)(PiV
∗
i TVjPj)ρ(r)

∗ :ℓ2(Hs)
Pjρ(r)

∗

−→ ℓ2(Hj)
Vj−→ ℓ2(H)

V ∗
i−→

ℓ2(Hi)
ρ(r)Pi−→ ℓ2(H(i ∗ r)).

Thus
ρ(r)(PiV

∗
i TVjPj)ρ(r)

∗ : ℓ2(Hs) −→ ℓ2(H(i ∗ r)).

We get Ei∗r,j∗r = AdρG/H
Ei,j . Then T ⊗ Ei,j 7−→ T ⊗ Ei∗r,j∗r. Therefore,(

(C∗
u(G/H)⊗ C∗

u(H))H
)G/H ∼= C∗

u(G/H)G/H ⊗ C∗
u(H)H .

We know that the isomorphsim

Φ : C∗
u(G)

∼=−→ C∗
u(G/H)⊗ C∗

u(H)

is H− equivariant so that

C∗
u(G)H ∼= C∗

u(G/H ×H)H ∼= C∗
u(G/H)⊗ C∗

u(H)H .

The isomorphsim uses that H is a subgroup of G/H ×H and acts trivially on
G/H. We now need to understand the action ρG/H×H on C∗

u(G/H) ⊗ C∗
u(H).
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We obtain the following: we want to understand the right regular representation

ρ of G in terms of the bijection G
∼=−→ G/H ×H or G

∼=−→ H ×G/H, we have

C∗
u(G)G ∼=

(
C∗
u(G)H

)G/H

∼=
(
C∗
u(G/H)⊗ C∗

u(H)H
)G/H

.

Taking invariants with respect to G/H.

(
C∗
u(G)H

)G/H ∼=
(
(C∗

u(G/H)⊗ C∗
u(H))H

)G/H

∼= C∗
u(G/H)G/H ⊗ C∗

u(H)H .

Since H has IAP. Then

C∗
u(G/H)G/H ⊗ C∗

u(H)H = C∗
u(G/H)G/H ⊗ C∗

λ(H).

Since G/H is finite group, every finite group is amenable group. Roe shows that
the amenable group has IAP [14]. Thus,

C∗
u(G)G ∼=

(
C∗
u(G)H

)G/H

∼= C∗
u(G/H)G/H ⊗ C∗

λ(H)H

∼= C∗
λ(G/H)⊗ C∗

λ(H).

Next, we need to show that the following Proposition:

Proposition 3.7. The left regular representation λG on ℓ2(G) is isomorphic to
the left regular representation λH ⊗ λG/H on ℓ2(H)⊗ ℓ2(G/H).

Proof. Let R be the set of right coset representation. We have a bijection

G =
∐
r∈R

Hr

which induces the Hilbert space isomorphism

ℓ2(G) =
∐
r∈R

ℓ2(Hr).

We denote by Pr the projection onto ℓ2(Hr);

Pr : ℓ
2(G) −→ ℓ2(Hr).

For every r ∈ R there is also a unitary isomorphism Vr : ℓ2(Hr) −→ ℓ2(H),
induced by the map hr 7−→ h,∀h ∈ H. As we have seen before, the coset
decomposition of G induces a bijection

ϕ : G
∼=−→ H ×G/H
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and a Hilbert space isomorphism ℓ2(G) −→ ℓ2(H)⊗ ℓ2(G/H). This gives a rise
to the C∗− algebra isomorphism

Φ : C∗
u(G)

∼=−→ C∗
u(H)⊗ C∗

u(G/H)

given by

T 7−→
∑

r′,r∈R
Vr′Pr′TPrV

∗
r ⊗ Er′r.

The direct sum decomposition of ℓ2(G) allows one to respect it operators in
C∗
u(G) as matrices of size |R| × |R| whose entries are operators

ℓ2(Hr) −→ ℓ2(Hr′), for r′, r ∈ R.

This induces an analogous matrix decomposition of element of C∗
λ(G), and we

shall now use this representation to constrict an isomorphism λG
∼= λH ⊗λG/H .

We have a bijection

sHr ∼= (sHs−1)sr(s ∗ r)−1 ∼= H(s ∗ r),

∀ s, r ∈ R, α(s, r) : H −→ (sHs−1)sr(s ∗ r)−1 ∈ H

h 7−→ (shs−1)sr(s ∗ r)−1.

This is a bijection, which induces a unitary isomorphism

Uα(s,r) : ℓ
2(H) −→ ℓ2(H)

given by (Uα(s,r)ξ)(t) = ξ(α(s, r)t). We extend it to a map

H(s ∗ r) −→ H(s ∗ r),

h(s ∗ r) 7−→ (α(s, r)h)(s ∗ r).

We have

(α(s, r)H)(s ∗ r) ∼= sHr,

where α(s, r) is a composition of ad(s) with ρ(sr(s ∗ r)−1),

ad(s) : H −→ H

is a group isomorphism. And ad(s)(h) = shs−1 and ρ(h′)(h) = hh′. ad(s)H is
an isomorphism of H, while ρ(h′) commutes with the left action of H.

Let g = hs ∈ G, where h ∈ H, s ∈ R. When restricted to ℓ2(Hr)(
by means of projection Pr ), λG(hs) can be explicitly computed as follows :
Thanks to isomorphism ℓ2(G) −→ ℓ2(H) ⊗ ℓ2(G/H). We know that the set of
linear combinations of functions on G of the form ηγ, where η ∈ ℓ2 (H) and



INVARIANT APPROXIMATION PROPERTY UNDER GROUP PASSES ... 359

γ ∈ ℓ2 (G/H) is dense in ℓ2(G). We can therefore assume that ζ ∈ ℓ2(G) is of
the form ζ = ηγ. Then, for every t ∈ H r ∈ R and ξ ∈ ℓ2(Hr).

(λG(hs)ξ(tr)) = ξ
(
s−1h−1tr

)
= ξ

(
s−1(h−1t)ss−1r(s−1 ∗ r)−1(s−1 ∗ r)

)
= ξ

(
α(s−1, r)(h−1t)(s−1 ∗ r)

)
= η

(
α(s−1, r)(h−1t)

)
γ
(
(s−1 ∗ r)

)
.

Now, the operator of multiplication on the left by α(s−1, r) ∈ H induces a
unitary isomorphism

Uα(s,r) : ℓ
2(H) −→ ℓ2(H)

given by
η 7−→ (Uα(s−1,r)η)(t) = η(α(s−1, r)t).

Thus, we have (λG(hs)ξ(tr)) =
(
λH(h)U(s−1,r)η

)
(t)(λG/H(s)γ). Next, we need

to show that the following Lemma:

Lemma 3.8. With the above notations λH(h)Uα(s,r) = Uα(s,r)λH(ad(s)h).

Proof. (
λH(h)Uα(s,r)ζ

)
(t) = Uα(s,r)ζ(h

−1t)

= ζ(α(s, r)(h−1t))

= ζ(s(h−1t)s−1sr(s ∗ r)−1)

= ζ(s(h−1s−1)sts−1sr(s ∗ r)−1)

= ζ(ad(s)(h−1)α(s, r)(t))

= Uα(s,r)λH

(
(ad(s)h−1)−1ζ

)
(t)

= Uα(s,r)λH ((ad(s)h)ζ) (t).

We have λH(h)Uα(s−1,r)ζ = (Uα(s−1,r)λH(ad(s)h))ζ.

Here the Lemma:

Lemma 3.9. The following diagram commutes: r, s ∈ R

ℓ2(G) ℓ2(H)⊗ ℓ2(G/H)

ℓ2(g) ℓ2(H)⊗ ℓ2(G/H)

-
Vs−1∗r

6
Ps−1∗rλG(hs)Pr

-
Vr

6
λH(h)U(s−1,r)⊗λG/H(h)

Proof. Since we have s, r ∈ R

λH(h)Uα(s−1,r)ζ = (Uα(s
−1, r)λH(ad(s)h))ζ.
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The following diagram commutes

ℓ2(H)⊗ ℓ2(G/H) ℓ2(H)⊗ ℓ2(G/H) ℓ2(H)⊗ ℓ2(G/H)

ℓ2(H)⊗ ℓ2(G/H) ℓ2(H)⊗ ℓ2(G/H) ℓ2(H)⊗ ℓ2(G/H)

-
Vs−1∗r

-
∼=

6
λH(h)U(s−1,r)⊗λG/H(h)

-
Vr

6
U(s−1,r)λH(ad(s)h)⊗λG/H(s)

-
∼=

6
λH(ad(s−1)h)⊗λG/H(s)

We have proved:

Ps−1∗rλG(hs)Pr
∼= λH(h)U(s−1, r)⊗ λG/H(h)

∼= U(s−1, r)λH(ad(s)h)⊗ λG/H(h)

∼= λH(ad(s−1)h)⊗ λG/H(s).

On the other hand, next we need to find (e, s)−1 ∈ H × G/H: The inverse
of s ∈ R ∼= G/H will be denoted by s. If (e, s) and (h, s) ∈ H ×G/H: we have

(e, s) ∗ (h, s) =
{
(shs−1)(ss)(s ∗ s)−1, (s ∗ s)

}
.

If (e, s)−1 = (h, s), then{
(shs−1)(ss)(s ∗ s)−1, (s ∗ s)

}
= (e, e).

If s ∗ s = e = s ∗ s, then s = s−1t, for some t ∈ H ⇐⇒ ss = t and

(shs−1)t = e ⇐⇒ t−1 = shs−1 ⇐⇒ t = sh−1s−1,

thus s = s−1t = h−1s−1 ⇐⇒ h = (ss)−1. Thus (e, s)−1 = (h, s) = ((ss)−1, s). If
(e, s) and (h, r) ∈ H ×G/H and ξ ∈ ℓ2(H)⊗ ℓ2(G/H):(

λH×G/H(e, s)ξ
)
(h, r) = ξ

(
(e, s)−1(h′, k′)

)
= ξ

(
((ss)−1, s)(h, r)

)
= ξ

{
(ss)−1(shs−1)(sr)(s ∗ r)−1, (s ∗ r)

}
,

but (shs−1)(sr)(s ∗ r)−1 is an automorphism of H and s ∈ R 7−→ ss ∈ H. But,
then λG(hs)ℓ

2(Hr) will be isomorphic to λH(h) ⊗ λG/H(s) acting on ℓ2(H) ⊗
ℓ2(G/H) via the composition of the map ϕ with the isomorphism. We have the
isomorphism C∗

λ(H)⊗ C∗
λ(G/H) ∼= C∗

λ(G).

We already proved C∗
u(G)G ∼= C∗

λ(H)⊗C∗
λ(G/H). By using Proposition 3.7,

C∗
u(G)G ∼= C∗

λ(H ×G/H) ∼= C∗
λ(G). Therefore, G has IAP.
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