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Abstract. Methods of data classifications are considered as a major preprocessing
step for pattern recognition, machine learning, and data mining. In this paper, we
give two topological approaches to generalize multi-granular rough sets using families
of binary relations. In the first approach, we define a family of topological spaces
using families of relations to maximize the interiors and minimize the closures. In the
second approach we define minimal neighborhoods to classify multi-data of information
systems and generate a multi-granular knowledge base. Moreover, we present some
important algorithms to reduce all topological reductions of the information system
using topological bases. We round off by studying real life applications of this work
using medical data.

Keywords: multi-granulation, rough sets, data classifications, information systems,
interior operators, closure operators, approximation spaces.

1. Introduction

According to the very rapid growth of data and the high incidence of Internet
broadcasting it becomes a seriously urgent issue to extract useful information to
make decisions. In order to do this accurately, quickly and cost less, researchers
need to work together in this field to unify their research frameworks.
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Many researchers have solved some of the problems of data sharing, but
without a general conceptual framework governing their techniques. Some of
them have used old mathematical techniques, some have used modern statisti-
cal methods, and others have developed hybrid methods between mathematics,
statistics, and computer science.

In 1982 Z.Pawlak, introduced the theory of rough sets, [1], which may con-
sidered as the first mathematical tool to deal with uncertainty, incomplete and
imprecise knowledge. The approximation space in the sense of Pawlak is an
ordered pair AS = (U,R), where U is a universal set and R is an equivalence
relation on U . The equivalence classes of U are called the knowledge base. The
lower approximation of a subset A of U is the union of all equivalence classes
contained in A, while the upper approximation is the intersection of all equiva-
lence classes which intersect A non-trivially. A rough set is a pair of two exact
sets the lower approximation of A and the upper approximation of A.

Since equivalence relations are too restrictive for many real life applications,
the classical rough set theory of Pawlak needed to be generalized. The gener-
alization process is twofold; The first, is to replace the equivalence relation by
tolerance relation [2],[3], similarity relation [4] , characteristic relation [5],[6] and
arbitrary binary relation [7]. The second, is to replace the partition induced by
the equivalence relation by a covering and use it to approximate any subset of
the universe [8].

These frameworks are called granular computing, which are models providing
solutions to problems in data mining, machine learning, pattern recognition and
cognitive science. But, still there are problems that require more extensions. In
2006, Y. Qian introduced the multi-granular computing using rough set instead
of a single granular. Multi-granular computing approach is replacing the single
relation used in a single granular by a set of relations on the same universe (see
[9], [10], [11]).

One of the important branches in mathematics is topology. Topology is
the best implementation of relationship between objects or features so when we
deal with complicated relationships topology becomes a very satisfactory tool.
Pawlak has pointed out that topology is closely linked to rough set theory and
on the full conviction that the topological structure of the rough sets is one of
the key issues of rough set theory. This convenient relationship has prompted
researchers to study this relationship, it’s properties and its applications in real
life (see [12], [13], [14], [15], [16], [17], [18], [19], [20]]. In 2013, Y. Qian has
investigated a new theory on multi-granulation rough sets from the topological
point of view, by inducing n-topological spaces on the universe set U from n-
equivalence relations on U . He also has studied the multi-granulation topological
rough space and its topological properties (see [21]).

An improvement of rough sets’ accuracy measure using containment neigh-
borhoods with a medical application and a comparison of two types of rough
approximations based on neighborhoods, for new applications at the same re-
search point can found in (see [22],[23],[24],[25],[26],[27],[28]).
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In this paper, we offer a convenient hybrid method using topology and rough
set theory to solve the problem of multi-source, variable, and large-scale data-
sharing. We also develop algorithms based on the extraction of knowledge from
such data.

This paper is arranged as follows:
In Section 2, we present the fundamental concepts and properties of the gen-

eral topology and some concepts of information systems. In section 3 we present
two topological approaches for generalized multi-granulation in two categories.
The first approach used minimization in the boundary region, while the second
approach used the idea of minimal neighborhoods. In Section 4 we apply our
results to the problem of attribute reduction in medical information systems.
Section 5 lists some important results and some directions for future studies.

2. Preliminaries

In this section, we provide the basic definitions and results on topological spaces
and rough sets. In classical rough set theory the approximation space is defined
as (U, R) where U is non-empty finite set and R is an equivalence relation on
U .

Definition 2.1 ([1]). Let (U,R) be a classical approximation space, the lower
and upper approximation of a given set X ⊆ U are defined as follows:

RX = {x : [x]R ⊆ X},
RX = {x : [x]R ∩X ̸= ϕ},

where [x]R is the equivalence class of x ∈ U with respect to the equivalence
relation R.

Remark 1. The boundary region of X is given by RX −RX, RX is called the
positive region while U −RX is called the negative region.

Definition 2.2 ([29]). A topological space is a pair (U, τ) consisting of a set U
and a family τ of subsets of U satisfying the following conditions:

(τ1) ∅ ∈ τ and U ∈ τ .

(τ2) τ is closed under arbitrary union.

(τ3) τ is closed under finite intersection.

the members of τ are called open sets and the complement of members of τ are
called closed sets.

Definition 2.3 ([29]). Let (U, τ) be topological space then the τ − closure of a
subset A ⊂ U is defined as follows:

τ − cl(A) = ∩{F ⊆ U : A ⊆ F and F is closed set}.
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Definition 2.4 ([29]). Let (U, τ) be topological space then the τ − interior of a
subset A ⊂ U is defined as follows:

τ − int(A) = ∪{G ⊆ U : G ⊆ A and G is open set}.

Z. Pawlak pointed out in [1]that lower approximations correspond to interiors
and upper approximations correspond to closures. This idea has prompted the
researchers to study the theory of rough set from the topological point of view
to know more about rough sets.

Definition 2.5 ([29]). If U is a finite universe and R is a binary relation on
U , then we define, the right neighborhood of x ∈ U as follows:

xR = {y : xRy}.

Definition 2.6 ([30]). Let U be non-empty set, a basis for a topology on U is
a collection β of subsets of U such that

1. For each x ∈ U , there is at least one basis element B containing x.

2. If x belongs to the intersection of two basis elements B1 and B2, then there
is a basis element B3 containing x such that B3 ⊂ B1 ∩B2.

There are many ways to induce a topology from a given relation. One of
them is achieved as follows: using Definition 2.5 we construct the collection
{xR} for all x in U , the family of all intersections of {xR}x∈U is a base β for a
topology on U . If the union of all members of β ̸= U then we add U to β to be
a base for a topology on U .

The classification of a rough set to three region as in Remark 1 can also be
done by a membership function as follows:

Definition 2.7 ([29]). Let τ be a topology on a finite set U , with base β, then
the rough membership function is

µτ
X(x) =

|{∩Bx} ∩X|
| ∩Bx|

, x ∈ U,

where Bx is any member of β containing x.

Theorem 2.1 ([30]). Let (U, τ) be a topological space, A ⊆ U then x ∈ τ−cl(A)
if and only if G ∩A ̸= ∅, for all G ∈ τ and x ∈ G.

The idea of the multi-granulation is based on using multi-relation instead of
a single relation to obtain better approximation. Thus, we start by giving the
definition of multi-granular rough sets based on equivalence relations.

Definition 2.8 ([21]). Let (Ω, τ1), (Ω, τ2), . . . , (Ω, τn) be n topological spaces in-
duced by equivalence relations R1, R2, . . . , Rn, respectively, and X ⊆ Ω. Then, we
define mint and mcl operators of X with respect to Γ, where Γ = {τ1, τ2, . . . , τn},
respectively, as follows:

mint(X) =
⋃
{A ∈ τi| ∨ (A ⊆ X), i ≤ n},

mcl(X) =
⋃
{A ∈ τi| ∧ (A ∩X ̸= ∅), i ≤ n}.
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3. Topological approaches for generalized multi-granulation

In this section we introduce a new theory on multi-granulation rough sets from
the point of view of topological spaces. We generalize the equivalence relations
to binary relations to be suitable in real life problems in other branches like
artificial intelligence, knowledge discovery, machine learning and data mining.
Also, our approach can be regarded as a generalization of Pawlak rough set,
and we introduce a new algorithmic method for the reduction of attributes in
information (decision) system.

3.1 First approach (maximization of interior and minimization of
closure)

Definition 3.1. Let U be a non-empty set, X ⊂ U , R1, R2, . . . , Rn be n binary
relations on U and τ1, τ2, . . . , τn be n topologies on U induced by the binary
relations R1, R2, . . . , Rn. We define the Gmint and Gmcl of X as follows

Gmint(X) =

n⋃
i=1

τi − int(X),(1)

Gmcl(X) =

n⋂
i=1

τi − cl(X).(2)

Lemma 3.1. Let U be a non-empty set and X ⊆ U and τ1, τ2, . . . , τn be n
topologies on U.Then

1. τi − int(Gmint(X)) = τi − int(X),

2. τi − cl(Gmcl(X)) = τi − cl(X).

Proof. (1) By Definition 3.1, we have

Gmint(X) =

n⋃
i=1

τi − int(X) =

n⋃
i=1

Gi,

where Gi is the greatest τi − open contained in X. Now,

τi − int(Gmint(X)) = τi − int(
n⋃

i=1

Gi). = Gi.

Since Gi ⊆
⋃n

i=1Gi and Gi is the greatest τi − open contained in X which
contains Gi ⊆

⋃n
i=1Gi , then the greatest τi − open contained in Gi ⊆

⋃n
i=1Gi

is Gi.
(2) By Definition 3.1, we have

Gmcl(X) =

n⋂
i=1

τi − cl(X) =

n⋂
i=1

Fi,



298 S. HUSSEIN, A.S. SALAMA and A.K. SALAH

where Fi is the smallest τi − closed containing X. Now,

τi − cl(Gmcl(X)) = τi − cl(

n⋂
i=1

Fi).

We claim that τi − cl(
⋂n

i=1 Fi) = Fi.
Suppose contrarily that there exists a τi−closed Fi

′ such that Fi
′ ⊊ Fi and

τi − cl(
⋂n

i=1 Fi) = Fi
′. Then, X ⊆ (

⋂n
i=1 Fi) ⊆ Fi

′ ⊊ Fi. Therefore, there exists
a τi− closed Fi

′ smaller than Fi containing X, which contradicts the fact that
τi − cl(X) = Fi. Hence, τi − cl(

⋂n
i=1 Fi) = Fi, and then τi − cl(Gmcl(X)) =

τi − cl(X).

Proposition 3.1. Let (U, τ1), (U, τ2), . . . , (U, τn) be n topological spaces induced
by n binary relations R1, R2, . . . , Rn respectively, and X,Y ⊆ U . Then,

1. Gmint(U)=U,

2. Gmint(∅)=∅,

3. Gmint(X)⊆ X,

4. X ⊆ Y ⇒ Gmint(X)⊆ Gmint(Y),

5. Gmint(Gmint(X))=Gmint(X).

Proof. The first three assertions are direct consequences of Definition 3.1. For
(4), we have

x ∈ Gmint(X)⇒ x ∈
n⋃

i=1

τi − int(X)

⇒ x ∈ τi0 − int(X) for some i0 ∈ {1, . . . , n}
⇒ x ∈ τi0 − open G such that x ∈ G ⊆ X

⇒ x ∈ τi0 − open G such that x ∈ G ⊆ Y, since X ⊆ Y

⇒ x ∈ τi0 − int(Y ) for some i0 ∈ {1, . . . , n}

⇒ x ∈
n⋃

i=1

τi − int(Y ), i.e x ∈ Gmint(Y )

⇒ (X ⊆ Y ⇒ Gmint(X) ⊆ Gmint(Y )).

For (5), we observe that

Gmint(Gmint(X)) =

n⋃
i=1

τi − int(Gmint(X))

=

n⋃
i=1

τi − int(X) by Lemma 3.1.
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Proposition 3.2. Let (U, τ1), (U, τ2), . . . , (U, τn) be n topological spaces induced
by n binary relations R1, R2, . . . , Rn respectively, and X,Y ⊆ U . Then,

1. Gmcl(U)=U,

2. Gmcl(∅)=∅,

3. Gmcl(X)⊆ X,

4. X ⊆ Y ⇒ Gmcl(X)⊆ Gmcl(Y),

5. Gmcl(Gmcl(X))=Gmcl(X).

Proof. The first three assertions are direct consequences of Definition 3.1. For
(4), let x ∈ Gmcl(x) then x ∈ τi − cl(x) for all i ∈ {1, 2, . . . , n}, by applying
Theorem 2.1 we get x ∈ τi − cl(X) if and only if G ∩X ̸= ∅ for all G ∈ τi , x ∈
G, because X ⊆ Y . Then, G ∩ Y ̸= ∅ for all G ∈ τi , x ∈ G. Therefore,
x ∈ τi − cl(Y ) for all i ∈ {1, 2, . . . , n}. Hence, x ∈ Gmcl(Y ), and then X ⊆ Y
⇒ Gmcl(X) ⊆ Gmcl(Y ). For (5), we observe that

Gmcl(Gmcl(X)) =

n⋂
i=1

τi − cl(Gmcl(X))

=

n⋂
i=1

τi − cl(X) by Lemma 3.1.

Proposition 3.3. Let (U, τ1), (U, τ2), . . . , (U, τn) be n topological spaces induced
by n binary relations R1, R2, . . . , Rn respectively. If X,Y ⊆ U , then

Gmint(X ∩ Y ) = Gmint(X) ∩Gmint(Y ).

Proof. Because X ∩ Y ⊆ X and X ∩ Y ⊆ Y then Gmint(X ∩ Y ) is a subset
of both Gmint(X) and Gmint(Y ). Hence, Gmint(X ∩ Y ) ⊆ Gmint(X) ∩
Gmint(Y ). Now, if

p /∈ Gmint(X ∩ Y )⇒ p /∈ τi − int(X ∩ Y ) for all i ∈ {1, 2, . . . , n}
⇒ p /∈ τi − int(X) ∩ τi − int(Y ) for all i

⇒ p /∈ Gmint(X) ∩Gmint(Y ).

Therefore, Gmint(X ∩ Y ) ⊇ Gmint(X) ∩Gmint(Y ). Thus,

Gmint(X ∩ Y ) = Gmint(X) ∩Gmint(Y ).

Proposition 3.4. Let (U, τ1), (U, τ2), . . . , (U, τn) be n topological spaces induced
by binary relations R1, R2, . . . , Rn, respectively. If X,Y ⊆ U . Then

Gmcl(X ∪ Y ) = Gmcl(X) ∪Gmcl(Y ).



300 S. HUSSEIN, A.S. SALAMA and A.K. SALAH

Proof. Since X ⊆ X ∪ Y and Y ⊆ X ∪ Y then Gmcl(X) ⊆ Gmcl(X ∪ Y ) and
Gmcl(Y ) ⊆ Gmcl(X ∪ Y ). Hence, Gmcl(X ∪ Y ) ⊇ Gmcl(X) ∪Gmcl(Y ). Now,
let

p ∈ Gmcl(X ∪ Y )⇒ p ∈ τi − cl(X ∪ Y ) for all i ∈ {1, 2, . . . , n}
⇒ p ∈ τi − cl(X) ∪ τi − cl(Y ) for all i

⇒ p ∈ Gmcl(X) ∪Gmcl(Y ).

Therefore, Gmcl(X ∪ Y ) ⊆ Gmcl(X) ∪Gmcl(Y ). Thus,

Gmcl(X ∪ Y ) = Gmcl(x) ∪Gmcl(Y ).

Theorem 3.1. Let (U, τ1), (U, τ2), . . . , (U, τn) be n topological spaces induced by
n binary relations R1, R2, . . . , Rn, respectively. If X,Y ⊆ U , then, Gmint and
Gmcl are interior and closure operators, respectively.

Proof. The proof follows directly by applying Propositions 3.1, 3.2, 3.3 and
3.4.

Example 1. Let U = {1, 2, 3, 4, 5}, X1 = {1, 2, 4}, X2 = {3, 4, 5}. R1, R2 and
R3 be binary relations on U defined as follows

R1 = {(1, 2), (1, 3), (2, 4), (2, 5), (5, 1)}
R2 = {(2, 2), (3, 4), (4, 5), (4, 1), (5, 3)}
R3 = {(1, 1), (5, 2), (5, 3), (3, 4), (3, 2), (4, 1)}

according to Definition 2.5 we have the following induced topologies

τ1 = {∅, {2, 3}, {4, 5}, {1}, {2, 3, 4, 5}, {1, 2, 3}, {1, 4, 5}, U},
τ2 = {∅, {2}, {4}, {1, 5}, {3}, {2, 4}, {1, 2, 5}, {1, 4, 5}, {2, 3}, {3, 4}, {1, 3, 5},
{1, 2, 4, 5}, {2, 3, 4}, {1, 2, 3, 5}, {1, 3, 4, 5}, U},

τ3 = {∅, {1}, {2, 4}, {2, 3}, {2}, {1, 2, 4}, {1, 2, 3}, {2, 3, 4}, {1, 2}, {1, 2, 3, 4}, U}.

In tables 1 and 2 we make a comparison between the accuracy in each topology
alone and in our approach to X1 and X2.

Approximation Space Int(X1) Cl(X1) Accuracy

(U, τ1) {1} U 0.2

(U, τ2) {2,4} {1,2,4,5} 0.5

(U, τ3) {1,2,4} U 0.6

our approach {1,2,4} {1,2,4,5} 0.75

Table 1: Comparison among accuracy measures of category X1

Depends on Definition 2.7 we define rough membership function in our ap-
proach as follows.



TOPOLOGICAL APPROACHES FOR GENERALIZED MULTI-GRANULATION ROUGH ... 301

Approximation Space Int(X2) Cl(X2) Accuracy

(U, τ1) {4,5} {2,3,4,5} 0.5

(U, τ2) {3,4} {1,3,4,5} 0.5

(U, τ3) ∅ {3,4,5} 0

our approach {3,4,5} {3,4,5} 1

Table 2: Comparison among accuracy measures of category X2

Definition 3.2. Let (U, τ1), (U, τ2), . . . , (U, τn) be n topological spaces induced
by n binary relations R1, R2, . . . , Rn, respectively. Then a membership function
is defined, for every x ∈ U , as follows:

µΓ
X(x) =


1, if maxni=1(µ

τi
X(x)) = 1,

0, elseif minni=1(µ
τi
X(x)) = 0,

maxni=1(µ
τi
X(x)), otherwise,

where Γ = {τ1, τ2, . . . , τn}.

The following example illustrates Definition 3.2.

Example 2. Let U , R1, R2 and R3 be as in Example 1 and

β1 = {{2, 3}, {4, 5}, {1}},
β2 = {{2}, {4}, {1, 5}, {3}},
β3 = {{1}, {2, 4}, {2, 3}, {2}, U}.

where β1, β2 and β3 are the basis of τ1, τ2 and τ3, respectively. For X1 = {1, 2, 4}
we have,

µτ1
X1

(1) = 1, µτ1
X1

(2) =
1

2
, µτ1

X1
(3) =

1

2
, µτ1

X1
(4) =

1

2
, µτ1

X1
(5) =

1

2
,

µτ2
X1

(1) =
1

2
, µτ2

X1
(2) = 1, µτ2

X1
(3) = 0, µτ2

X1
(4) = 1, µτ2

X1
(5) =

1

2
,

µτ3
X1

(1) = 1, µτ3
X1

(2) = 1, µτ3
X1

(3) =
1

2
, µτ3

X1
(4) = 1, µτ3

X1
(5) =

3

5
.

Then, Gmint(X1) = {1, 2, 4} and Gmcl(X1) = {1, 2, 4, 5} which ensures the
result in Example 1, Table 1. For X2 = {3, 4, 5}

µτ1
X2

(1) = 0, µτ1
X2

(2) =
1

2
, µτ1

X2
(3) =

1

2
, µτ1

X2
(4) = 1, µτ1

X2
(5) = 1,

µτ2
X2

(1) =
1

2
, µτ2

X2
(2) = 0, µτ2

X2
(3) = 1, µτ2

X2
(4) = 1, µτ2

X2
(5) =

1

2
,

µτ3
X2

(1) = 0, µτ3
X2

(2) = 0, µτ3
X2

(3) =
1

2
, µτ3

X2
(4) =

1

2
, µτ3

X2
(5) =

3

5
,

also Gmint(X2) = {3, 4, 5} = Gmcl(X2) which insures the result in Example 1,
Table 2.
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3.2 Second approach ( minimal neighborhood approach)

Definition 3.3 (Neighborhood-map). Let U be a non-empty set, R be a binary
relation on U, τ is the topology on U induced by R and β is a base for τ . Then,
we define the map N : U 7−→ β as follows, for x ∈ U , N(x) = ∩Bx where Bx

is any member of β containing x (i.e., the map N is mapping the element x to
the minimal member of β containing x). Obviously, the map N is a well defined
map.

Definition 3.4 (Minimal Neighborhood-map). Let U be a non-empty set, R1, R2,
. . . , Rn be n binary relations on U, and β1, β2, . . . , βn be n basis for the topologies
τ1, τ2, . . . , τn on U induced by R1, R2, . . . , Rn, respectively. We define the map
H H : U 7−→ P (U) as follows: for x ∈ U , H(x) =

⋂n
i=1Ni(x) where Ni is the

neighborhood-map corresponding to the base βi. Briefly the map H obtain the
smallest neighborhood of an element x in all topologies τi for i ∈ {1, 2, . . . , n}
and the collection {H(x) : x ∈ U} is called multi-granular knowledge base
denoted by ≬ni=1 βi.

Theorem 3.2. Let U be a non-empty set, R1, R2 be two binary relations on
U, and β1, β2 are two basis for the topologies τ1, τ2 on U induced by R1, R2,
respectively. Then β1 ≬ β2 = {H(x) : x ∈ U} is also a topological base for U .

Proof. Clearly, for each x ∈ U , H(x) contains x. Finally let B1, B2 ∈ β1 ≬ β2
and p ∈ B1 ∩ B2 since B1, B2 ∈ β1 ≬ β2, then there exist x, x′ ∈ U such that
B1 = H(x) and B2 = H(x′). Therefore, p ∈ B1∩B2 if and only if p ∈ B1 = H(x)
and p ∈ B2 = H(x′). Clearly p ∈ H(p) ⊆ H(x) and p ∈ H(p) ⊆ H(x′).
Therefore, there exist B3 = H(p) ∈ β1 ≬ β2 such that p ∈ B3 ⊆ B1 ∩B2.

Corollary 3.1. Let U be a non-empty set, R1, R2, . . . , Rn be n binary relations
on U, and β1, β2, . . . , βn are n basis for the topologies τ1, τ2, . . . , τn on U induced
by R1, R2, . . . , Rn, respectively. Then, ≬ni=1 βi = {H(x) : x ∈ U} is also a
topological base on U .

Proof. Using mathematical induction, we find that this is an immediate con-
sequence of Theorem 3.2.

Definition 3.5. Let U be a non-empty set, R1, R2, . . . , Rn be n binary relations
on U and β1, β2, . . . , βn be n topological basis on U induced by the binary re-
lations R1, R2, . . . , Rn. We define a generalize multi-granular topological rough
space as follows GMgTRS( ≬ni=1 βi ) = (U,Mτ), where Mτ is the topology
generated by the base ≬ni=1 βi.

Theorem 3.3. Let U be a non-empty finite set of order m, R1, R2, . . . , Rn be n
binary relations on U, and β1, β2, . . . , βn be n basis for topologies on U induced by
R1, R2, . . . , Rn, respectively. If Ri0 for i0 ∈ {1, 2, . . . , n} is the identity relation
then GMgTRS( ≬ni=1 βi ) is equal to (U, τi0) where τi0 is the topology induced
by Ri0.
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Proof. Let U = {x1, x2, . . . , xm}. Since Ri0 is identity relation on U then the
induced base by Ri0 is βio = {{x1}, {x2}, . . . , {xm}} and by Definition 3.4 we
have H(x) = {x} for all x in U so ≬ni=1 βi = {{x1}, {x2}, . . . , {xm}} and hence
≬ni=1 βi = βio therefore they generate the same topology on U .

The following example illustrates the second approach.

Example 3. Let U = {1, 2, 3, 4, 5, 6}, X = {2, 4, 5} ⊆ U and R1, R2 and R3 be
binary relations on U defined as follows

R1 = {(1, 1), (1, 2), (3, 3), (3, 5), (4, 6), (6, 4)}
R2 = {(1, 5), (1, 6), (2, 1), (2, 2), (3, 3), (3, 4), (4, 4)}
R3 = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (4, 3),

(4, 4), (4, 6), (5, 5), (5, 6), (6, 4), (6, 5), (6, 6)}

According to the paragraph below Definition 2.2 we induced the following bases:

β1 = {{1, 2}, {3, 5}, {4}, {6}}
β2 = {{1, 2}, {3, 4}, {4}, {5, 6}}
β3 = {{1, 2}, {3, 4}, {3, 4, 6}, {5, 6}, {4, 5, 6}, {4}, {6}, {4, 6}}

So, the multi-granular knowledge base ≬3i=1 βi = {{1, 2}, {3}, {4}, {5}, {6}}. In
Table 3 we make a comparison between the accuracy in each basis alone and
in our approach to the set X. We compute the interior and closure using the
Definition 2.7 of membership function.

Approximation Space Int(X) Cl(X) Accuracy

using β1 {4} {1,2,3,4,5} 20%

using β2 {4} U 16.66%

using β3 {4} {1,2,3,4,5} 20%

using ≬3i=1 βi {4,5} {1,2,4,5} 50%

Table 3: Interior and closure comparison by basis

The reduction process of data is very important since we express the whole
data by a part of it with conservation of the structure of the whole data. So
we introduce two algorithms for bases reduction, the first algorithm gets one
bases reduct in polynomial time and the second algorithm gets all reducts but
in exponential time.

Algorithm 1 (Bases Reduct).
Input: The non-empty set U and the basis (β1, β2, . . . , βn) induced by the
binary relations R1, R2, . . . , Rn.
Output: One reduct
Steps are shown as follows:



304 S. HUSSEIN, A.S. SALAMA and A.K. SALAH

I: X ←− Compute (≬ni=1 βi)

reduct = list of (β1, β2, . . . , βn)

II: For(i = 1; i ≤ n; i++)

remove the first element in reduct and store it in E.

if ( ≬ reduct == X)

continue

else

add E in the last position of reduct

end

III: return reduct.

The following example illustrate the Algorithm 1 to get bases reduct.

Example 4. Let U = {1, 2, 3, 4, 5, 6}, and

β1 = {{1, 2, 3}, {4, 5, 6}},
β2 = {{1, 2, 3, 4, 6}, {5}},
β3 = {{1, 4}, {2, 5}, {3, 6}}.

Then

≬3i=1 βi = {{1}, {2}, {3}, {4}, {5}, {6}}; reduct = {β1, β2, β3};
β2 ≬ β3 = {{1, 4}, {2}, {3, 6}, {5}}; reduct = {β2, β3, β1};
β3 ≬ β1 = {{1}, {2}, {3}, {4}, {5}, {6}}; reduct = {β3, β1};

β1 = {{1, 2, 3}, {4, 5, 6}}; reduct = {β1, β3};

Hence, β2 is redundant base which can be omit, and the basis reduct needed for
classification are β1 and β3

The following algorithm computing all reducts but with exponential run time
because we compute the power set of the set of bases.

Algorithm 2 (All Basis reduct).
Input: The non-empty set U and the basis (β1, β2, . . . , βn) induced by the
binary relations R1, R2, . . . , Rn.
Output: List of all reducts
Steps are shown as follows:

I: X ←− Compute( ≬ni=1 βi ) ;

allsubsets = powerset of ({β1, β2, . . . , βn});
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allReducts = null;

II: For(i = 1; i ≤ 2n; i++)

if ( ≬ allsubsets[i] == X);

add i into allReducts;

end

III: return allReducts.

4. Real life applications

4.1 Clinical data description

Patients with digestive disease have become so many of these lesions due to the
high number of fast foods which contain high calories as well as processed meat.
As a direct result of this food many people suffer from excessive infusion and
as a result of the subsequent diseases of the digestive system, the most serious
of which are stomach cancers and colon. Because of eradication of the stomach
up the food, directly go to the intestine, causing confusion in the absorption.
The patients have some violent symptoms after the meal, such as dizziness,
headache, colic and increasing the blood sugar. After a period, the patient is
highest and most dangerous complications such as high cholesterol and clogged
arteries leading to heart attacks.

The most general forms of innate stomach and colon cancer syndromes are:

� Hereditary nonpolyposis colorectal cancer (HNPCC). HNPCC, also called
Lynch syndrome, increases the risk of stomach and colon cancer and other
cancers. People with HNPCC tend to expand stomach and colon cancer
before age 50.

� Familial adenomatous polyposis (FAP). FAP is a rare confusion that causes
you to expand thousands of polyps in the inside layer of your stomach
and colon and rectum. People with unprocessed FAP have a very much-
increased risk of developing stomach and colon cancer before age 40.

4.2 Analysis of the problem

Our aim in this study to find the recommendations for patients show them ap-
propriately greeted approach combines treatment and exercise to reach results
explain the function of each presentation of the positive and negative impact on
the patient. The decision of the Physician, according to the medical reports is
the continuation of the medical tests are all for another or off the medical ana-
lyzes the patient’s condition is stable loft insensitively to healthy style workout
constantly.
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4.3 Problem formulation

According to the medical reports requested by the doctor for patients in this
case the following attributes:

1) Liver Functions: of the type S. GPT (Natural percent between 0 to 45 U/L)
and of the type S. GOT (Natural percent between 0 to 37 U/L).

2) Kidney Functions: The measurements of uric acid in the blood (Uric Acid
varies between 3 to 7 mg/dl).

3) Fats Percentage: Fats in the blood are divided into two types, the cholesterol
level that has a natural range less than 200 mg/dl. The border range is
between 200 to 240 mg/dl. The critical range of it that causes arteriosclerosis
or heart is higher than 240 mg/dl. Second, the so-called triglycerides range
that has reference up to 150 mg/dl.

4) Heart Efficiency: we measured the enzyme (Serum LDH) that has ranged
reference between 0 to 480 U/L.

5) Signs of Tumors: we tested the digestive system through the scale (CEA)
and normal Non-smoking rooms if less than 5 mg/ml. The other measure
so-called CA 19.9 and extent of reference from 0 to 39 U/ml.

6) Viruses Hepatitis: Test the patient’s immunity against of viruses of type B
(HBC) and of type C (Highly infectious) furthermore is positive or negative.

7) Blood Sugar: The patient measurement of sugar of fasting for 6 hours, and
an hour after eating, and then two hours after eating.

The results of the seven patients were collected from official files in the
physician, which has been done after six months of surgery (see Table 4).

Patients ID Age LF1 LF2 VH1 VH2 KF FP1 FP2 HE ST1 ST2 BS D

P1 12 63 45 N N 11.2 180 210 526 36 44 N C

P2 5 50 44 N P 4.7 255 188 512 11 26 N C

P3 18 34.5 23 N N 5.6 177 112 430 16 36 P S

P4 22 55 33 P P 14.2 311 240 515 28 49 P S

P5 8 36 22 N N 6.3 166 99 310 11 23 N C

P6 13 49 50 P N 8.5 230 120 420 18 24 N C

P7 15 57.5 41 N P 7.6 206 144 460 17 25 P S

Table 4: Medical Decision Information System
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We define a suitable relation for each attribute and apply our approach on
this data as follows.

Rage = {(x, y) : |fage(x)− fage(y)| ≤ 3},
RLF1 = {(x, y) : fFL1(x) and fFL1(y) ≤ 45 or fFL1(x) and fFL1(y) > 45},
RLF2 = {(x, y) : fFL2(x) and fFL2(y) ≤ 37 or fFL2(x) and fFL2(y) > 37},
RV H1 = {(x, y) : fV H1(x) = fV H1(y)},
RV H2 = {(x, y) : fV H2(x) = fV H2(y)},
RKF = {(x, y) : 3 ≤ fKF (x) and fKF (y) ≤ 7, fKF (x) and fKF (y) < 3 or

fKF (x) and fKF (y) > 7},
RFP1 = {(x, y) : 200 ≤ fFP1(x) and fFP1(y)≤240, fFP1(x) and fFP1(y)<200

or fFP1(x) and fFP1(y) > 240},
RFP2 = {(x, y) : fFP2(x) and fFP2(y) ≤ 150 or fFP2(x) and fFP2(y) > 150},
RHE = {(x, y) : fHE(x) and fHE(y) ≤ 480 or fHE(x) and fHE(y) > 480},
RST1 = {(x, y) : fST1(x) and fST1(y) ≤ 5 or fST1(x) and fST1(y) ≤ 15 or

fST1(x) and fST1(y) > 15},
RST2 = {(x, y) : fST2(x) and fST2(y) ≤ 39 or fST2(x) and fST2(y) > 39},
RBS = {(x, y) : fBS(x) = fBS(y)}.

Hence, we compute the basis of every relation as we did before in Example 2 to
get the following bases.

β1 = {{3, 7}, {1, 3, 6, 7}, {1, 6, 7}, {2, 5}, {7}, {4}},
β2 = {{3, 5}, {1, 2, 4, 6, 7}},
β3 = {{1, 2, 6, 7}, {3, 4, 5}},
β4 = {{1, 2, 3, 5, 7}, {4, 6}},
β5 = {{1, 3, 5, 6}, {2, 4, 7}},
β6 = {{2, 3, 5}, {1, 4, 6, 7}},
β7 = {{1, 3, 5}, {6, 7}, {2, 4}},
β8 = {{1, 2, 4}, {3, 5, 6, 7}},
β9 = {{1, 2, 4}, {3, 5, 6, 7}},
β10 = {{2, 5}, {1, 3, 4, 6, 7}},
β11 = {{1, 4}, {2, 3, 5, 6, 7}},
β12 = {{1, 2, 5, 6}, {3, 4, 7}},

hence the multi-granular knowledge base will be as follows

≬12i=1 βi = {{1}, {2}, {3}, {4}, {5}, {6}, {7}}

and Mτ is the topology generated by the base ≬12i=1 βi. Now we want to ap-
proximate the concept XC = {p1, p2, p5, p6} represent the set of patients with
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decision C (continue check up)

Mτ − int(XC) = {p1, p2, p5, p6} = Mτ − cl(XC)

so, the accuracy of approximating the concept XC only with information in
the data table is 100 % and when we apply the basis reduct algorithm we get
the bases β7, β11, β12 is a reduct of β1, β2, . . . , β12. This reduct represent the
information of the whole table where ≬ {β7, β11, β12} =≬12i=1 βi so we use it
instead of the 12th bases.

After reduction the table of information reduced to be as in Table 5 and has
the same structure of original data in Table 4 where {β7, β11, β12} represent the
attributes {FP1, ST2, BS} respectively. From this reduct we get the decision
rules to be used in the decision making in the future tests by a decision program.

Patients ID FP1 ST2 BS D

P1 180 44 N C

P2 255 26 N C

P3 177 36 P S

P4 311 49 P S

P5 166 23 N C

P6 120 24 N C

P7 206 25 P S

Table 5: Reduct Information System

4.4 Results analysis

This method of dividing patient data from the results of the 12 medical examina-
tions has been reduced to only three tests to being sufficient to make the right
decision for these patients. There are other alternatives for decision-making
where using the pathological method of data analysis and division, we have
been able to find more than one reduction of medical examinations and each
patient can choose the appropriate alternative in terms of financial capacity and
likelihood.

5. Conclusions and future works

The amount of research papers available online on the topological application is
growing and this growth has generated a need for a unifying theory to compare
the results. Also, we need new techniques and tools that can intelligently and
automatically extract implicit knowledge from these data.

These tools and technicality are the subjects of future research trends using
general topological concepts. We deduce that the development of topology in
the construction of some knowledge base concepts will help to get rich results
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that yield a lot of logical statements that discover hidden relationships among
data and moreover, probably help in producing accurate rules.

In future papers, we hope to study more generalizations using topological
concepts such as near open and near closed sets. And apply these generalized
concepts to realistic medical data of large size. The topic of multivariate data
reduction can also be studied using generalized topological concepts.

The following are some problems and lines for future study:

1. Developing a unifying theory of topological generalizations that using
rough concepts.

2. Scaling up for design topological softwares to handle big dimensional clas-
sification problems.

3. Topological methods for mining complex knowledge from complex data.

Abbreviations

Gmint Generalized multi interior.

Gmcl Generalized multi closure.

GMgTRS Generalized multi-granular topological rough space.
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