Strongly *m*-system and strongly primary ideals in posets

J. Catherine Grace John

Department of Mathematics Karunya Institute of Technology and Sciences Coimbatore-641114, Tamilnadu India catherinegracejohn@gamil.com

B. Elavarasan^{*}

Department of Mathematics Karunya Institute of Technology and Sciences Coimbatore-641114, Tamilnadu India belavarasan@gmail.com

Abstract. In this paper, we study and establish some interesting results of strongly prime ideal and strongly *m*-system in posets. Also, we study the notion of strongly primary ideals in posets and show some properties of the set $\sqrt{I} = \{x : L(x)^* \cap I \neq \phi\}$ for ideal I of P.

Keywords: Posets, ideals, strongly prime ideal, strongly *m*-system, strongly primary ideal, minimal strongly prime ideal.

1. Introduction

Throughout this paper (P, \leq) denotes a poset with smallest element 0. For basic terminology and notation for posets, we refer [8] and [9]. For $M \subseteq P$, let $L(M) = \{x \in P : x \leq m, \text{ for all } m \in M\}$ denote the lower cone of M in P and $U(M) = \{x \in P : m \leq x, \text{ for all } m \in M\}$ be the upper cone of M in P. Let $A, B \subseteq P$, we write L(A, B) instead of $L(A \cup B)$ and dually for the upper cones. If $M = \{x_1, x_2, ..., x_n\}$ is finite, then we use the notation $L(x_1, x_2, ..., x_n)$ instead of $L(\{x_1, x_2, ..., x_n\})$ (and dually). It is clear that for any subset A of P, we have $A \subseteq L(U(A))$ and $A \subseteq U(L(A))$. If $A \subseteq B$, then $L(B) \subseteq L(A)$ and $U(B) \subset U(A)$. Moreover, LUL(A) = L(A) and ULU(A) = U(A). Following [12], a non-empty subset I of P is called semi-ideal if $b \in I$ and $a \leq b$, then $a \in I$. A subset I of P is called ideal if $a, b \in I$ implies $L(U((a, b)) \subseteq I$ (see [8]). Following [7], for any subset X of P, [X] is the smallest ideal of P containing X and $X^* = X \setminus \{0\}$. If $X = \{b\}$, then L(b) is called the principle ideal of P generated by b. A proper semi-ideal (ideal) I of P is called prime if $L(a, b) \subseteq I$ implies that either $a \in I$ or $b \in I$ (see [9]). An ideal I of P is called semi-prime if $L(a,b) \subseteq I$ and $L(a,c) \subseteq I$ together imply $L(a,U(b,c))) \subseteq I$ (see [8]). Following

^{*.} Corresponding author

[4], an ideal I of P is called strongly prime if $L(A^*, B^*) \subseteq I$ implies that either $A \subseteq I$ or $B \subseteq I$ for different proper ideals A, B of P. A non-empty subset M of P is called m-system if for any $x_1, x_2 \in M$, there exists $t \in L(x_1, x_2)$ such that $t \in M$. Following [6], a non-empty subset M of P is called strongly m-system if $A \cap M \neq \phi$ and $B \cap M \neq \phi$ imply $L(A^*, B^*) \cap M \neq \phi$ for any different proper ideals A, B of P. It is clear that an ideal I of P is strongly prime if and only if $P \setminus I$ is a strongly *m*-system of *P* and every strongly *m*-system of P is m-system. Following [4], an ideal I of P is called strongly semi-prime if $L(A^*, B^*) \subseteq I$ and $L(A^*, C^*) \subseteq I$ together imply $L(A^*, U(B^*, C^*)) \subseteq I$ for any different proper ideals A, B and C of P. For any semi-ideal I of P and a subset A of P, we define $\langle A, I \rangle = \{ z \in P : L(a, z) \subseteq I, \text{ for all } a \in A \} = \bigcap_{a \in A} \langle a, I \rangle$ (see [4]). If $A = \{x\}$, then we write $\langle x, I \rangle$ instead of $\langle \{x\}, I \rangle$. For any ideal I of P, a strongly prime ideal Q of P is said to be a minimal strongly prime ideal of I if $I \subseteq Q$ and there is no strongly prime ideal R of P such that $I \subset R \subset Q$. The set of all strongly prime ideals of P is denoted by Sspec(P) and the set of minimal strongly prime ideals of P is denoted by Smin(P). For any ideal I of P, P(I) and SP(I) denotes the intersection of all prime semi-ideals and strongly prime ideals of P containing I respectively. It is clear from Theorem 6 of [9] and Example 1.1 of [6] that P(I) = I and $SP(I) \neq I$ for any ideal I of P. Following [2], let I be a semi-ideal of P. Then, I is said to have (*) condition if whenever $L(A,B) \subseteq I$, we have $A \subseteq \langle B,I \rangle$ for any subsets A and B of P. From [8], a non empty subset F of a poset P is called semi-filter if $x \leq y$ and $x \in F$, then $y \in F$. It is clear that for any subset I of P, I is a semi-ideal of P if and only if $P \setminus I$ is a semi-filter of P. A subset F of P is called filter if for $x, y \in F$ implies $U(L(x,y)) \subseteq F$. A filter F is called prime, whenever $U(x,y) \subseteq F$ implies $x \in F$ or $y \in F$.

2. Minimal strongly prime ideals

Lemma 2.1. Let M be a strongly m-system of P. Then, the following statements hold:

- (i) $P \setminus M$ satisfies the condition that $L(A^*, B^*) \subseteq P \setminus M$ implies $A \subseteq P \setminus M$ or $B \subseteq P \setminus M$ for any different proper ideals A, B of P.
- (ii) If $P \setminus M$ is a semi-ideal of P, then M is a prime filter of P.
- (iii) If $P \setminus M$ is an ideal of P, then $P \setminus M$ is a strongly prime ideal of P.

Proof. (i) Let A and B be different proper ideals of P such that $L(A^*, B^*) \subseteq P \setminus M$. If $A \notin P \setminus M$ and $B \notin P \setminus M$, then $A \cap M \neq \phi$ and $B \cap M \neq \phi$ imply that $L(A^*, B^*) \cap M \neq \phi$, a contradiction.

(ii) Let $x, y \in M$. Then, $L(x) \cap M \neq \phi$ and $L(y) \cap M \neq \phi$, there exists $t \in L(x, y) \cap M$ with $U(L(x, y)) \subseteq U(t) \subseteq M$. So, M is a filter.

Let $U(a,b) \subseteq M$ for some $a,b \in P$. Then, $U(a) \cap M \neq \phi$ and $U(b) \cap M \neq \phi$ which imply there exists $a_1 \in U(a) \cap M$ and $b_1 \in U(b) \cap M$ such that

 $L(L(a_1)^*, L(b_1)^*) \cap M \neq \phi$, so $L(L(a)^*, L(b)^*) \cap M \neq \phi$. Thus, $L(L(a)^*, L(b)^*) \notin P \setminus M$. By (i), we have $a \in M$ and $b \in M$. So, M is a prime filter. (iii) It is trivial from (i).

The following example shows the condition " $P \setminus M$ is an ideal of P "is not superficial in Lemma 2.1 (iii).

Example 2.2. Consider $P = \{0, 1, 2, 3\}$ and define a relation \leq on P as follows.

 $\begin{array}{c}
\bullet & 3 \\
\bullet & 2 \\
\bullet & 1 \\
\bullet & 0
\end{array}$

Then, (P, \leq) is a poset and $M = \{1, 2\}$ is a strongly *m*-system of *P*, but $P \setminus M$ is not an ideal of *P*.

The below example shows that every prime filter of P need not to be strongly m-system of P in general.

Example 2.3. Consider $P = \{0, a, b, c, d, e\}$ and define a relation \leq on P as follows.

Then, (P, \leq) is a poset and $F = \{b, c, e\}$ is a prime filter of P, but not strongly m-system as $A = \{0, b\}$ and $B = \{0, a, b, c\}$ are the ideals of P with $A \cap F \neq \phi$ and $B \cap F \neq \phi$, but $L(A^*, B^*) \cap F = \phi$.

In the papers [10], [11] and [13], authors related the concept of minimal prime ideal over an ideal I and the maximal multiplicative system disjoint from I in rings, semigroups and lattices. Following the above papers, we have some interesting results in posets.

Theorem 2.4. Let I be an ideal of P. If $P \setminus I$ is a maximal strongly m-system of P, then I is a minimal strongly prime of P.

Proof. Let *I* be an ideal of *P* such that $P \setminus I$ is a maximal strongly *m*-system of *P*. Then, *I* is strongly prime ideal. If *J* is a strongly prime ideal of *P* such that $J \subset I$, then $P \setminus I \subset P \setminus J$, a contradiction to the maximality of $P \setminus I$. \Box

Example 2.5. Let $n \in Z^+ \setminus \{0, 1\}$ and ρ be the "less than or equal "relation on set of integers. Then, $P_n = \{a : a \text{ is an integer and } a\rho n\}$ is a poset and $I_n = \{a : a\rho(n-1)\}$ is a minimal strongly prime ideal of P_n . Here $P_n \setminus I_n$ is not a maximal strongly *m*-system of P_n as $P_n \setminus I_n$ is contained in a strongly *m*system $P_n \setminus \{0\}$ of P_n .

The above example shows that the converse of Theorem 2.4 is not true in general, but we have the following.

Theorem 2.6. Let I be an ideal of P. If the complement of every strongly m-system of P is a semi-ideal of P and I is minimal strongly prime ideal, then $P \setminus I$ is a maximal strongly m-system of P.

Proof. Let *I* be a minimal strongly prime ideal of *P*. Then, $P \setminus I$ is a strongly *m*-system of *P*. If there exists a strongly *m*-system *M* of *P* such that $P \setminus I \subset M$. Then, $P \setminus M \subset I$. We now prove $P \setminus M$ is an ideal of *P*. Let $x, y \in P \setminus M$ and $L(U(x,y)) \nsubseteq P \setminus M$. Then, there exists $t \in L(U(x,y)) \cap M$ with $U(x,y) \subseteq U(t) \subseteq M$ which implies that $U(x) \cap M \neq \phi$ and $U(y) \cap M \neq \phi$, there exists $t_1 \in U(x) \cap M$ and $t_2 \in U(y) \cap M$ such that $t_1, t_2 \in M$. Since *M* is strongly *m*-system, we have $L(L(t_1)^*, L(t_2)^*) \cap M \neq \phi$ which implies $L(L(x)^*, L(y)^*) \cap M \neq \phi$. Thus $L(L(x)^*, L(y)^*) \nsubseteq P \setminus M$. By Lemma 2.1(i), we have $x \in M$ and $y \in M$, a contradiction. So, $P \setminus M$ is an ideal of *P*. By Lemma 2.1(ii), we have $P \setminus M$ is a strongly prime ideal of *P*, a contradiction to the minimality of *I*.

As a consequence of above theorem, we have the following.

Corollary 2.7. Let M be a strongly m-system of P. If M is a semi-filter of P, then $P \setminus M$ is an ideal of P.

Theorem 2.8. Let $I \neq 0$ be an ideal of P satisfies (*) condition and M be a strongly *m*-system of P. If M is semi-filter, then the following are equivalent:

- (i) M is a maximal strongly m-system of P with respect to $M \cap I = \phi$.
- (ii) $P \setminus M$ is a minimal strongly prime ideal of P containing I.
- (iii) For a strongly prime ideal $P \setminus M$ containing I, for each $x \in P \setminus M$, there exists $t \in U(x)$ and $y \in M$ such that $L(L(t)^*, L(y)^*) \subseteq I$.

Proof. (i) \Rightarrow (ii) It follows from Corollary 2.7 and Theorem 2.4, $P \setminus M$ is a minimal strongly prime ideal of P containing I.

(ii) \Rightarrow (iii) It is trivial from Theorem 2.2 of [3].

(iii) \Rightarrow (i) From (iii), we have M is a strongly m-system of P with $M \cap I = \phi$.

Suppose N is a strongly m-system of P such that $N \cap I = \phi$ and $M \subset N$. Then, there exists $a \in N \setminus M$, $y \in M$ and $t \in U(a)$ such that $L(L(t)^*, L(y)^*) \subseteq I$ which implies $L(y)^* \subseteq \langle L(t)^*, I \rangle \subseteq \langle L(a)^*, I \rangle$. So, $L(L(a)^*, L(y)^*) \subseteq I$. Since $y, a \in N$ and N is strongly m-system, we have $L(L(a)^*, L(y)^*) \cap N \neq \phi$ which implies $I \cap N \neq \phi$, a contradiction.

Theorem 2.9. Let I be an ideal of P and M be a strongly m-system of P such that $M \cap I = \phi$. Then, there exists a maximal strongly m-system N containing M with $N \cap I = \phi$.

Proof. It follows from Theorem 2.1 of [3].

Lemma 2.10. Let P be a poset and $r \in P$. If $P \setminus U(r)$ satisfies (*) condition, then U(r) is a strongly m-system of P.

Proof. Let A and B be different proper ideals of P such that $A \cap U(r) \neq \phi$ and $B \cap U(r) \neq \phi$. Suppose $L(A^*, B^*) \cap U(r) = \phi$. Then, $L(A^*, B^*) \subseteq P \setminus U(r)$ and $B^* \subseteq \langle A^*, P \setminus U(r) \rangle = \bigcap_{a \in A^*} \langle a, P \setminus U(r) \rangle \subseteq \langle q, P \setminus U(r) \rangle \subseteq \langle r, P \setminus U(r) \rangle$ for some $q \in A \cap U(r)$. Since U(r) is a m-system of P, then $P \setminus U(r)$ is a prime semi-ideal of P. By Theorem 20 of [8], we have $B^* \subseteq \langle r, P \setminus U(r) \rangle = P \setminus U(r)$, a contradiction.

For any subset X of P, we define $V'(X) = \{Q \in Smin(P) : X \subseteq Q\}$ and $D'(X) = Smin(P) \setminus V'(X)$.

Theorem 2.11. Let A be a non empty subset of P and $J \neq \{0\}$ be an ideal of P. If every semi-ideal of P satisfies (*) condition and every m-system of P is a semi-filter of P, then $\langle A, J \rangle = \bigcap \{Q : Q \in V'(J) \cap D'(A)\}.$

Proof. Let $x \in \langle A, J \rangle$. Then, $L(a, x) \subseteq J$, for all $a \in A$. For $Q \in V'(J) \cap D'(A)$, there exists $a_1 \in A \setminus Q$ such that $L(L(x)^*, L(a_1)^*) \subseteq J \subseteq Q$ which implies $x \in Q$. Hence, $x \in \bigcap \{Q : Q \in V'(J) \cap D'(A)\}$.

Conversely, let $x \in \bigcap \{Q : Q \in V'(J) \cap D'(A)\}$ and $x \notin \langle A, J \rangle$. Then, $L(x,t) \notin J$ for some $t \in A$, so there exists $r \in L(x,t) \setminus J$ with $U(r) \cap J = \phi$. By Lemma 2.10, we have U(r) is a strongly *m*-system such that $U(r) \cap J = \phi$. Then, by Theorem 2.9, there exists a maximal strongly *m*-system K of P containing U(r) such that $K \cap J = \phi$ and, by Theorem 2.8, $P \setminus K \in V'(J)$. Since $r \leq x$ and $r \in K$, we have $U(x) \subseteq U(r) \subseteq K$ which implies $x \notin \bigcap \{Q : Q \in V'(J) \cap D'(A)\}$, a contradiction. \Box

Theorem 2.12. Let $J \neq \{0\}$ be an ideal of P. If every maximal m-system is a semi-filter of P and every semi-ideal satisfies (*) condition, then J is a strongly semi-prime ideal of P.

Proof. Let J be an ideal of P such that $L(A^*, B^*) \subseteq J$ and $L(A^*, C^*) \subseteq J$ for different proper ideals A, B, C of P. If $L(A^*, \cup(B^*, C^*)) \notin J$, then there exists $t \in L(A^*, U(B^*, C^*)) \setminus J$ with $U(t) \cap J = \phi$. By Lemma 2.10 and Theorem 2.9, there exists a maximal strongly *m*-system *K* of *P* containing U(t) of *P* such that $K \cap J = \phi$. Then, by Theorem 2.8, $P \setminus K \in V'(J)$ which implies $L(A^*, B^*) \subseteq P \setminus K$ and $L(A^*, C^*) \subseteq P \setminus K$. Since $P \setminus K$ is strongly prime ideal, we have $A \subseteq P \setminus K$ or $B, C \subseteq P \setminus K$ which imply $L(L(a)^*, L(t)^*)) \subseteq P \setminus K$, for all $a \in A^*$ and $t \in L(U(B^*, C^*)$. Since $t \in U(t) \subseteq K$ with $t \leq a$ and *K* is strongly *m*-system, we have $L(L(a)^*, L(t)^*)) \cap K \neq \phi$, a contradiction. \Box

Following [6], for an ideal I and a strongly prime ideal Q of P, $I_Q = \{x \in P : L(x, y) \subseteq I \text{ for some } y \notin Q\}.$

Theorem 2.13. Let I be a strongly prime ideal of P and $J \neq \{0\}$ be an ideal of P with (*) condition. Then, the following statements are equivalent:

- (i) $I \in V'(J)$.
- (ii) I contains precisely one of x or $\langle x, J \rangle$, for any $x \in P$.
- (*iii*) $\langle x, J \rangle \setminus I \neq \phi$, for any $x \in I$.
- $(iv) J_I = I.$

Proof. (i) \Rightarrow (ii) Assume on the contrary that $\langle x, J \rangle \subseteq I$ for $x \in I$. Since $I \in V'(J)$, we have by Theorem 2.2 of [3], for each $x \notin P \setminus I$, there exists $t \in U(x)$ and $y \in P \setminus I$ such that $L(L(t)^*, L(y)^*) \subseteq J$ which implies $L(y) \subseteq \langle L(t)^*, J \rangle \subseteq \langle L(x)^*, J \rangle \subseteq \langle x, J \rangle$. So, $y \in I$, a contradiction. If $x \notin I$, let $t \in \langle x, J \rangle$. Then, $L(L(t)^*, L(x)^*) \subseteq L(x, t) \subseteq J \subseteq I$. Since I is strongly prime ideal and $x \notin I$, we have $t \in I$.

(ii) \Rightarrow (iii) It is trivial.

(iii) \Rightarrow (iv) By the definition of J_I , we have $J_I \subseteq I$. Let $x \in I$. Then, $\langle x, J \rangle \nsubseteq I$ which implies there exists $t \in \langle x, J \rangle \setminus I$. Hence, $L(t, x) \subseteq J$ for some $t \notin I$. So, $x \in J_I$.

 $(iv) \Rightarrow (i)$ It is follows from Theorem 2.10 of [6].

Theorem 2.14. Let $J \neq \{0\}$ be an ideal of P with (*) condition and $I \in V'(J)$. Then, $\langle \langle x, J \rangle, J \rangle \subseteq I$.

Proof. Let $I \in V'(J)$ and $x \in I$. Then, by Theorem 2.2 of [3], there exists $t \in U(x)$ and $y \in P \setminus I$ such that $L(L(t)^*, L(y)^*) \subseteq J$, so $y \in \langle L(t)^*, J \rangle \subseteq \langle L(x)^*, J \rangle \subseteq \langle x, J \rangle$. Suppose $\langle \langle x, J \rangle, J \rangle \nsubseteq I$. Then, there exists $z \in \langle \langle x, J \rangle, J \rangle \setminus I$. Now, for $y, z \in P \setminus I$, we have $L(L(z)^*, L(y)^*) \cap P \setminus I \neq \phi$ which implies $L(z, y) \cap P \setminus I \neq \phi$. Then, there exists $t \in L(y, z)$ and $t \in P \setminus I$. Since $z \in \langle \langle x, J \rangle, J \rangle$, we have $L(z, r) \subseteq J$, for all $r \in \langle x, J \rangle$ which imply $L(z, y) \subseteq J \subseteq I$, a contradiction.

Theorem 2.15. Let I be an ideal of P with (*) condition and $M = \{x : \langle x, I \rangle = I\}$. Then, M is a strongly m-system of P.

Proof. Let A and B be different proper ideals of P such that $A \cap M \neq \phi$ and $B \cap M \neq \phi$. Then, there exists $x \in A$ and $y \in B$ such that $x, y \in M$. Suppose $L(A^*, B^*) \cap M = \phi$. Then, for all $t \in L(A^*, B^*)$ there exists $r \in P \setminus I$ and $L(r,t) \subseteq I$ which implies $t \in \langle r, I \rangle$. So, $L(A^*, B^*) \subseteq \langle r, I \rangle$ which implies $L(A^*, B^*, r) \subseteq I$. Since I satisfies (*) condition, we have $L(B^*, r) \subseteq \langle A^*, I \rangle \subseteq$ $\langle x, I \rangle = I$ which implies $r \in \langle B^*, I \rangle \subseteq \langle y, I \rangle = I$, a contradiction.

Lemma 2.16. Let I be an ideal of P. Then, $SP(I) = \{c \in P : every strongly m-system in P which contains c has a non empty intersection with I\}.$

Proof. Let $H = \{c \in P : \text{ every strongly m-system in } P \text{ which contains } c \text{ has a non empty intersection with } I\}$ and $c \notin H$. Then, there is a strongly m-system M of P which contains c and $M \cap I = \phi$. By Theorem 2.1 of [3], there exists a strongly prime ideal Q of P with $I \subseteq Q$ and $Q \cap M = \phi$ which implies $c \notin \cap Q_i$. So, $\cap Q_i \subseteq H$.

Conversely, let $c \notin \cap Q_i$. Then, there is a strongly prime ideal Q_i of P for some i such that $c \notin Q_i$ which implies $c \in P \setminus Q_i$ and $P \setminus Q_i$ is a strongly m-system of P. Since $P \setminus Q_i \cap I = \phi$, we have $c \notin H$. Hence, $H \subseteq \cap Q_i$. \Box

Theorem 2.17. Let A and B be ideals of P. Then, the following statements hold:

- (i) $A \subseteq B$ implies $SP(A) \subseteq SP(B)$.
- (*ii*) $SP(L(A^*, B^*)) = SP(A \cap B) = SP(A) \cap SP(B).$

Proof. (i) It is trivial.

(ii) We have $L(A^*, B^*) \subseteq A \cap B \subseteq A$. Then, by (i), $SP(L(A^*, B^*)) \subseteq SP(A \cap B) \subseteq SP(A)$ which imply $SP(L(A^*, B^*)) \subseteq SP(A \cap B) \subseteq SP(A) \cap SP(B)$. Let $x \in SP(A) \cap SP(B)$ and K be a strongly *m*-system containing x. Then, by Lemma 2.16, $K \cap A \neq \phi$ and $K \cap B \neq \phi$. Since K is strongly *m*-system, we have $L(A^*, B^*) \cap K \neq \phi$ which implies $x \in SP(L(A^*, B^*))$.

3. Strongly primary ideals

Theory of primary ideals played an important role in commutative ring theory. Because every ideal can be written as the intersection of finitely many primary ideals. In [1], A. Anjaneyulu developed the theory of primary ideals in arbitrary semigroup. Primary ideals in semigroup. In this section we study the notion of primary in poset. Following [1], we define $\sqrt{I} = \{x : L(x)^* \cap I \neq \phi\}$ for ideal Iof P. An ideal I of P is called *primary* if $L(a,b) \subseteq I$ implies $a \in I$ or $b \in \sqrt{I}$. An ideal I of P is called *strongly primary* if $L(A^*, B^*) \subseteq I$ implies $A \subseteq I$ or $B \subseteq \sqrt{I} \cup \{0\}$ for different proper ideals A, B of P. Every strongly primary ideal of P is a primary ideal of P, and every strongly prime ideal of P is a strongly primary ideal of P. But the converse need not be true in each case in general. **Example 3.1.** Consider $P = \{0, a, b, c, d, e\}$ and define a relation \leq on P as follows.

Then, (P, \leq) is a poset and $I = \{0, a\}, A = \{0, b\}$ and $B = \{0, a, d\}$ are ideals of P. Here I is a strongly primary ideal of P, but not a strongly prime as $L(A^*, B^*) \subseteq I$ with $A \notin I$ and $B \notin I$.

Lemma 3.2. Let A and B be ideals of P. Then, the following statements hold:

- (i) $A \subseteq \sqrt{A} \cup \{0\}.$
- (*ii*) $\sqrt{\sqrt{A}} = \sqrt{A}$.
- (*iii*) If $A \subseteq B$, then $\sqrt{A} \subseteq \sqrt{B}$.
- $(iv) \ \sqrt{L(A^*,B^*)} = \sqrt{A \cap B} = \sqrt{A} \cap \sqrt{B}.$

The following theorem relates the strongly primary and strongly primness between I and \sqrt{I} .

Theorem 3.3. Let I be a strongly primary ideal of P and $\sqrt{I} \cup \{0\}$ be an ideal of P. Then, $\sqrt{I} \cup \{0\}$ is a strongly prime ideal of P.

Proof. Let A and B be different proper ideals of P such that $L(A^*, B^*) \subseteq \sqrt{I} \cup \{0\}$ and $A \not\subseteq \sqrt{I} \cup \{0\}$. Then, for all $t \in L(A^*, B^*)$, we have $t \in \sqrt{I} \cup \{0\}$ which imply $L(t)^* \cap I \neq \phi$. There exists $s \in I$ and $s \in A^*, B^*$ which imply $L(A^*, B^*) \subseteq L(s) \subseteq I$. Since I is strongly primary ideal and $A \not\subseteq I$, we have $B \subseteq \sqrt{I} \cup \{0\}$.

The condition " $\sqrt{I} \cup \{0\}$ is an ideal of P "is not superficial in Theorem 3.3. In Example 2.3, if $I = \{0, b\}$, then $\sqrt{I} \cup \{0\} = \{0, b, c, e\}$ is not an ideal of P.

Definition 3.4. Let Q be a strongly prime ideal of P. A strongly primary ideal I of P is said to be Q- strongly primary if $\sqrt{I} \cup \{0\} = Q$.

Theorem 3.5. Let $I_1, I_2, ..., I_n$ be Q-strongly primary ideals of P. Then, $\bigcap_{i=1}^n I_i$ is a Q-strongly primary ideal of P.

Proof. Let $J = \bigcap_{i=1}^{n} I_i$. Then, $\sqrt{J} \cup \{0\} \subseteq \bigcap_{i=1}^{n} \sqrt{I_i} \cup \{0\}$ and $\bigcap_{i=1}^{n} \sqrt{I_i} \cup \{0\} \subseteq \sqrt{J} \cup \{0\}$ as $J \subseteq I_i \subseteq \sqrt{I_i}$. Since I'_i s are Q-strongly primary ideals, we have $\sqrt{J} \cup \{0\} = \bigcap_{i=1}^{n} \sqrt{I_i} \cup \{0\} = Q$. We now prove that J is a strongly primary ideal of P. Let A and B be different proper ideals of P such that $L(A^*, B^*) \subseteq J$ and $A \notin J$. Then, there is an ideal I_j of P such that $A \notin I_j$. Since $L(A^*, B^*) \subseteq J \subseteq J \subseteq I_j$ and I_j is strongly primary, we have $B \subseteq \sqrt{I_j} \cup \{0\} = Q = \sqrt{J} \cup \{0\}$. \Box

Theorem 3.6. Let I be a strongly primary ideal of P. If I is a semi-prime ideal of P, then $\langle x, I \rangle$ is a strongly primary ideal of P for any $x \in P$.

Proof. Let A and B be different proper ideals of P such that $L(A^*, B^*) \subseteq \langle x, I \rangle$ for any $x \in P \setminus I$. Then, $L(A^*, B^*, L(x)^*) \subseteq I$. If $L(A^*, B^*) \subseteq I$, then $A \subseteq I \subseteq \langle x, I \rangle$ or $B \subseteq \sqrt{I} \cup \{0\} \subseteq \sqrt{\langle x, I \rangle} \cup \{0\}$. If $L(A^*, B^*) \notin I$, then by Theorem 2.4 of [5], $L(A^*, L(x)^*) \subseteq I$ and $L(L(x)^*, B^*) \subseteq I$. Since I is primary and $x \notin I$, we have $A \subseteq \langle x, I \rangle \cup \{0\}$ and $B \subseteq \langle x, I \rangle \cup \{0\}$.

Lemma 3.7. Let I be an ideal of P and $I \subseteq Q$ for some strongly prime ideal Q of P. Then, $SP(I) \subseteq \sqrt{I} \cup \{0\}$.

Proof. Let $x \in SP(I)$. Then, $x \in \bigcap_{I \subseteq Q_i} Q_i$, where Q_i 's are strongly prime ideals of P which implies $L(Q_i) \cap I \neq \phi$ and $L(x) \cap I \neq \phi$, so $x \in \sqrt{I} \cup \{0\}$. Hence, $SP(I) \subseteq \sqrt{I} \cup \{0\}$.

Theorem 3.8. Let I be an ideal of P and $I \subseteq Q$ for some strongly prime ideal Q of P. Then, I is a strongly primary ideal of P.

Theorem 3.9. Let I be an ideal of P with (*) condition and Q be a strongly prime ideal of P. If $I_Q \subseteq \sqrt{I} \cup \{0\}$, then I is strongly primary.

Proof. Let $I_Q \subseteq \sqrt{I} \cup \{0\}$ and $L(A^*, B^*) \subseteq I$ with $A \nsubseteq I$ for different proper ideals A, B of P.

Case (i). If $I \subseteq Q$, then by Theorem 3.8, I is a strongly primary ideal of P. Case (ii). Let $I \nsubseteq Q$. Then, there is $x \in I \setminus Q$. We now prove $B \subseteq \sqrt{I} \cup \{0\}$. Suppose not, $B \nsubseteq \sqrt{I} \cup \{0\}$. Since $I_Q \subseteq \sqrt{I} \cup \{0\}$, we have $B \nsubseteq I_Q$. Then, there exists $y \in B \setminus I_Q$ which implies $L(y,t) \nsubseteq I$, for all $t \notin Q$. In particular $L(x,y) \nsubseteq I$ which implies $B^* \nsubseteq \langle x, I \rangle = P$, a contradiction. \Box

Acknowledgment

The authors would like to express their gratitude to the referees for their insightful comments and suggestions for improving the paper.

References

 A. Anjaneyulu, Primary ideals in semigroups, Semigroup Forum, 20 (1980), 129-144.

- [2] J. Catherine Grace John, B. Elavarasan, Primeness of extension of semiideals in posets, Appl. Math. Sci., 164 (2014), 8227-8232.
- [3] J. Catherine Grace John, B. Elavarasan, Strongly prime ideals and primal ideals in posets, Kyungpook Math. J., 56 (2016), 727-735.
- [4] J. Catherine Grace John, B. Elavarasan, Strongly prime and strongly semiprime ideals in posets, Glob. J. Pure Appl. Math., 11 (2015), 2965-2970.
- [5] J. Catherine Grace John, B. Elavarasan, weakly n-prime ideals of posets, Int. J. Pure Appl. Math., 86 (2013), 905-910.
- [6] J. Catherine Grace John , B. Elavarasan, z^J-ideals and Strongly prime ideals in posets, Kyungpook Math. J., 57 (2017), 385-391.
- [7] J. Paseka, Note on distributive posets, Math. Appl., 1 (2012), 197-206.
- [8] V. S. Kharat, K. A. Mokbel, Primeness and semiprimeness in posets, Math. Bohem., 134 (2009), 19-30.
- [9] R. Halaš, On extension of ideals in posets, Discrete Math., 308 (2008), 4972-4977.
- [10] G. C. Rao, S. Ravi Kumar, Minimal prime ideals in almost distributive lattices, Int. J. Contemp. Math. Science, 4 (2009), 475-484.
- [11] N. K. Thakare, S. K. Nimbhorkar, Space of minimal prime ideals of a ring without nilpotent elements, J. Pure Appl. Algebra, 27 (1983), 75-85.
- [12] P. V. Venkatanarasimhan, Semi ideals in posets, Math. Ann., 185 (1970), 338-348.
- [13] K. Venu Raju, J. Hanumanthachari, A note on maximal and minimal prime ideals belonging to an ideal in semigroups, Indian J. Pure Appl. Math., 11 (1980), 1566-1571.

Accepted: July 30, 2021