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Abstract. In this paper, we study and establish some interesting results of strongly
prime ideal and strongly m-system in posets. Also, we study the notion of strongly
primary ideals in posets and show some properties of the set

√
I = {x : L(x)∗ ∩ I ̸= ϕ}

for ideal I of P .
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1. Introduction

Throughout this paper (P , ≤) denotes a poset with smallest element 0. For
basic terminology and notation for posets, we refer [8] and [9]. For M ⊆ P, let
L(M) = {x ∈ P : x ≤ m, for all m ∈ M} denote the lower cone of M in P
and U(M) = {x ∈ P : m ≤ x, for all m ∈ M} be the upper cone of M in P.
Let A,B ⊆ P , we write L(A,B) instead of L(A ∪ B) and dually for the upper
cones. If M = {x1, x2, ..., xn} is finite, then we use the notation L(x1, x2, ..., xn)
instead of L({x1, x2, ..., xn})(and dually). It is clear that for any subset A of P ,
we have A ⊆ L(U(A)) and A ⊆ U(L(A)). If A ⊆ B, then L(B) ⊆ L(A) and
U(B) ⊆ U(A). Moreover, LUL(A) = L(A) and ULU(A) = U(A). Following
[12], a non-empty subset I of P is called semi-ideal if b ∈ I and a ≤ b, then
a ∈ I. A subset I of P is called ideal if a, b ∈ I implies L(U((a, b)) ⊆ I (see [8]).
Following [7], for any subset X of P , [X] is the smallest ideal of P containing
X and X∗ = X\{0}. If X = {b}, then L(b) is called the principle ideal of P
generated by b. A proper semi-ideal (ideal) I of P is called prime if L(a, b) ⊆ I
implies that either a ∈ I or b ∈ I (see [9]). An ideal I of P is called semi-prime if
L(a, b) ⊆ I and L(a, c) ⊆ I together imply L(a, U(b, c))) ⊆ I (see [8]). Following
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[4], an ideal I of P is called strongly prime if L(A∗, B∗) ⊆ I implies that either
A ⊆ I or B ⊆ I for different proper ideals A,B of P. A non-empty subset M of
P is called m-system if for any x1, x2 ∈ M , there exists t ∈ L(x1, x2) such that
t ∈ M . Following [6], a non-empty subset M of P is called strongly m-system
if A ∩ M ̸= ϕ and B ∩ M ̸= ϕ imply L(A∗, B∗) ∩ M ̸= ϕ for any different
proper ideals A,B of P . It is clear that an ideal I of P is strongly prime if
and only if P\I is a strongly m- system of P and every strongly m-system of
P is m-system. Following [4], an ideal I of P is called strongly semi-prime if
L(A∗, B∗) ⊆ I and L(A∗, C∗) ⊆ I together imply L(A∗, U(B∗, C∗)) ⊆ I for any
different proper ideals A,B and C of P. For any semi-ideal I of P and a subset
A of P , we define ⟨A, I⟩ = {z ∈ P : L(a, z) ⊆ I, for all a ∈ A} =

⋂
a∈A ⟨a, I⟩

(see [4]). If A = {x}, then we write ⟨x, I⟩ instead of ⟨{x}, I⟩. For any ideal I of
P , a strongly prime ideal Q of P is said to be a minimal strongly prime ideal of
I if I ⊆ Q and there is no strongly prime ideal R of P such that I ⊂ R ⊂ Q.
The set of all strongly prime ideals of P is denoted by Sspec(P ) and the set of
minimal strongly prime ideals of P is denoted by Smin(P ). For any ideal I of P ,
P (I) and SP (I) denotes the intersection of all prime semi-ideals and strongly
prime ideals of P containing I respectively. It is clear from Theorem 6 of [9] and
Example 1.1 of [6] that P (I) = I and SP (I) ̸= I for any ideal I of P . Following
[2], let I be a semi-ideal of P. Then, I is said to have (*) condition if whenever
L(A,B) ⊆ I, we have A ⊆ ⟨B, I⟩ for any subsets A and B of P. From [8], a
non empty subset F of a poset P is called semi-filter if x ≤ y and x ∈ F , then
y ∈ F. It is clear that for any subset I of P , I is a semi-ideal of P if and only if
P\I is a semi-filter of P . A subset F of P is called filter if for x, y ∈ F implies
U(L(x, y)) ⊆ F . A filter F is called prime, whenever U(x, y) ⊆ F implies x ∈ F
or y ∈ F .

2. Minimal strongly prime ideals

Lemma 2.1. Let M be a strongly m-system of P . Then, the following state-
ments hold:

(i) P\M satisfies the condition that L(A∗, B∗) ⊆ P\M implies A ⊆ P\M or
B ⊆ P\M for any different proper ideals A,B of P .

(ii) If P\M is a semi-ideal of P , then M is a prime filter of P .

(iii) If P\M is an ideal of P , then P\M is a strongly prime ideal of P .

Proof. (i) Let A and B be different proper ideals of P such that L(A∗, B∗) ⊆
P\M . If A ⊈ P\M and B ⊈ P\M , then A ∩ M ̸= ϕ and B ∩ M ̸= ϕ imply
that L(A∗, B∗) ∩M ̸= ϕ, a contradiction.

(ii) Let x, y ∈ M . Then, L(x) ∩ M ̸= ϕ and L(y) ∩ M ̸= ϕ, there exists
t ∈ L(x, y) ∩M with U(L(x, y)) ⊆ U(t) ⊆ M. So, M is a filter.

Let U(a, b) ⊆ M for some a, b ∈ P . Then, U(a) ∩ M ̸= ϕ and U(b) ∩
M ̸= ϕ which imply there exists a1 ∈ U(a) ∩M and b1 ∈ U(b) ∩M such that
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L(L(a1)
∗, L(b1)

∗)∩M ̸= ϕ, so L(L(a)∗, L(b)∗)∩M ̸= ϕ. Thus, L(L(a)∗, L(b)∗) ⊈
P\M. By (i), we have a ∈ M and b ∈ M . So, M is a prime filter.

(iii) It is trivial from (i).

The following example shows the condition “P\M is an ideal of P ”is not
superficial in Lemma 2.1 (iii).

Example 2.2. Consider P = {0, 1, 2, 3} and define a relation ≤ on P as follows.

b

b

b

b

0

1

2

3

Then, (P,≤) is a poset and M = {1, 2} is a strongly m-system of P , but P\M
is not an ideal of P . □

The below example shows that every prime filter of P need not to be strongly
m-system of P in general.

Example 2.3. Consider P = {0, a, b, c, d, e} and define a relation ≤ on P as
follows.

Then, (P,≤) is a poset and F = {b, c, e} is a prime filter of P, but not strongly
m-system as A = {0, b} and B = {0, a, b, c} are the ideals of P with A ∩ F ̸= ϕ
and B ∩ F ̸= ϕ, but L(A∗, B∗) ∩ F = ϕ. □

In the papers [10], [11] and [13], authors related the concept of minimal
prime ideal over an ideal I and the maximal multiplicative system disjoint from
I in rings, semigroups and lattices. Following the above papers, we have some
interesting results in posets.

Theorem 2.4. Let I be an ideal of P . If P\I is a maximal strongly m-system
of P , then I is a minimal strongly prime of P .
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Proof. Let I be an ideal of P such that P\I is a maximal strongly m-system
of P . Then, I is strongly prime ideal. If J is a strongly prime ideal of P such
that J ⊂ I, then P\I ⊂ P\J , a contradiction to the maximality of P\I.

Example 2.5. Let n ∈ Z+\{0, 1} and ρ be the “less than or equal ”relation
on set of integers. Then, Pn = {a : a is an integer and aρn} is a poset and
In = {a : aρ(n − 1)} is a minimal strongly prime ideal of Pn. Here Pn\In is
not a maximal strongly m-system of Pn as Pn\In is contained in a strongly m-
system Pn\{0} of Pn.

The above example shows that the converse of Theorem 2.4 is not true in
general, but we have the following.

Theorem 2.6. Let I be an ideal of P . If the complement of every strongly
m-system of P is a semi-ideal of P and I is minimal strongly prime ideal, then
P\I is a maximal strongly m-system of P .

Proof. Let I be a minimal strongly prime ideal of P . Then, P\I is a strongly
m-system of P . If there exists a strongly m-system M of P such that P\I ⊂ M .
Then, P\M ⊂ I. We now prove P\M is an ideal of P . Let x, y ∈ P\M and
L(U(x, y)) ⊈ P\M . Then, there exists t ∈ L(U(x, y)) ∩ M with U(x, y) ⊆
U(t) ⊆ M which implies that U(x) ∩ M ̸= ϕ and U(y) ∩ M ̸= ϕ, there exists
t1 ∈ U(x) ∩M and t2 ∈ U(y) ∩M such that t1, t2 ∈ M. Since M is strongly m-
system, we have L(L(t1)

∗, L(t2)
∗)∩M ̸= ϕ which implies L(L(x)∗, L(y)∗)∩M ̸=

ϕ. Thus L(L(x)∗, L(y)∗) ⊈ P\M. By Lemma 2.1(i), we have x ∈ M and y ∈ M ,
a contradiction. So, P\M is an ideal of P . By Lemma 2.1(iii), we have P\M is
a strongly prime ideal of P , a contradiction to the minimality of I.

As a consequence of above theorem, we have the following.

Corollary 2.7. Let M be a strongly m-system of P . If M is a semi-filter of P ,
then P\M is an ideal of P .

Theorem 2.8. Let I ̸= 0 be an ideal of P satisfies (∗) condition and M be a
strongly m-system of P . If M is semi-filter, then the following are equivalent:

(i) M is a maximal strongly m-system of P with respect to M ∩ I = ϕ.

(ii) P\M is a minimal strongly prime ideal of P containing I.

(iii) For a strongly prime ideal P\M containing I, for each x ∈ P\M , there
exists t ∈ U(x) and y ∈ M such that L(L(t)∗, L(y)∗) ⊆ I.

Proof. (i)⇒(ii) It follows from Corollary 2.7 and Theorem 2.4, P\M is a min-
imal strongly prime ideal of P containing I.

(ii)⇒(iii) It is trivial from Theorem 2.2 of [3].

(iii)⇒(i) From (iii), we have M is a strongly m-system of P with M ∩ I = ϕ.
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Suppose N is a strongly m-system of P such that N ∩ I = ϕ and M ⊂ N .
Then, there exists a ∈ N\M , y ∈ M and t ∈ U(a) such that L(L(t)∗, L(y)∗) ⊆ I
which implies L(y)∗ ⊆ ⟨L(t)∗, I⟩ ⊆ ⟨L(a)∗, I⟩ . So, L(L(a)∗, L(y)∗) ⊆ I. Since
y, a ∈ N and N is strongly m-system, we have L(L(a)∗, L(y)∗) ∩N ̸= ϕ which
implies I ∩N ̸= ϕ, a contradiction.

Theorem 2.9. Let I be an ideal of P and M be a strongly m-system of P such
that M ∩ I = ϕ. Then, there exists a maximal strongly m-system N containing
M with N ∩ I = ϕ.

Proof. It follows from Theorem 2.1 of [3].

Lemma 2.10. Let P be a poset and r ∈ P . If P\U(r) satisfies (∗) condition,
then U(r) is a strongly m-system of P .

Proof. Let A and B be different proper ideals of P such that A ∩ U(r) ̸= ϕ
and B ∩ U(r) ̸= ϕ. Suppose L(A∗, B∗) ∩ U(r) = ϕ. Then, L(A∗, B∗) ⊆ P\U(r)
and B∗ ⊆ ⟨A∗, P\U(r)⟩ =

⋂
a∈A∗ ⟨a, P\U(r)⟩ ⊆ ⟨q, P\U(r)⟩ ⊆ ⟨r, P\U(r)⟩ for

some q ∈ A ∩ U(r). Since U(r) is a m-system of P , then P\U(r) is a prime
semi-ideal of P . By Theorem 20 of [8], we have B∗ ⊆ ⟨r, P\U(r)⟩ = P\U(r), a
contradiction.

For any subset X of P , we define V
′
(X) = {Q ∈ Smin(P ) : X ⊆ Q} and

D
′
(X) = Smin(P )\V ′

(X).

Theorem 2.11. Let A be a non empty subset of P and J ̸= {0} be an ideal of
P . If every semi-ideal of P satisfies (∗) condition and every m-system of P is
a semi-filter of P , then ⟨A, J⟩ =

⋂
{Q : Q ∈ V

′
(J) ∩D

′
(A)}.

Proof. Let x ∈ ⟨A, J⟩. Then, L(a, x) ⊆ J , for all a ∈ A. ForQ ∈ V
′
(J)∩D′

(A),
there exists a1 ∈ A\Q such that L(L(x)∗, L(a1)

∗) ⊆ J ⊆ Q which implies x ∈ Q.
Hence, x ∈

⋂
{Q : Q ∈ V

′
(J) ∩D

′
(A)}.

Conversely, let x ∈
⋂
{Q : Q ∈ V

′
(J) ∩ D

′
(A)} and x /∈ ⟨A, J⟩. Then,

L(x, t) ⊈ J for some t ∈ A, so there exists r ∈ L(x, t)\J with U(r) ∩ J = ϕ. By
Lemma 2.10, we have U(r) is a strongly m-system such that U(r)∩J = ϕ. Then,
by Theorem 2.9, there exists a maximal strongly m-system K of P containing
U(r) such that K ∩J = ϕ and, by Theorem 2.8, P\K ∈ V

′
(J). Since r ≤ x and

r ∈ K, we have U(x) ⊆ U(r) ⊆ K which implies x /∈
⋂
{Q : Q ∈ V

′
(J)∩D

′
(A)},

a contradiction.

Theorem 2.12. Let J ̸= {0} be an ideal of P . If every maximal m-system is a
semi-filter of P and every semi-ideal satisfies (∗) condition, then J is a strongly
semi-prime ideal of P .

Proof. Let J be an ideal of P such that L(A∗, B∗) ⊆ J and L(A∗, C∗) ⊆ J
for different proper ideals A,B,C of P . If L(A∗,∪(B∗, C∗)) ⊈ J, then there
exists t ∈ L(A∗, U(B∗, C∗))\J with U(t)∩J = ϕ. By Lemma 2.10 and Theorem
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2.9, there exists a maximal strongly m-system K of P containing U(t) of P
such that K ∩ J = ϕ. Then, by Theorem 2.8, P\K ∈ V

′
(J) which implies

L(A∗, B∗) ⊆ P\K and L(A∗, C∗) ⊆ P\K. Since P\K is strongly prime ideal,
we have A ⊆ P\K or B,C ⊆ P\K which imply L(L(a)∗, L(t)∗)) ⊆ P\K, for all
a ∈ A∗ and t ∈ L(U(B∗, C∗). Since t ∈ U(t) ⊆ K with t ≤ a and K is strongly
m-system, we have L(L(a)∗, L(t)∗)) ∩K ̸= ϕ, a contradiction.

Following [6], for an ideal I and a strongly prime ideal Q of P , IQ = {x ∈
P : L(x, y) ⊆ I for some y /∈ Q}.

Theorem 2.13. Let I be a strongly prime ideal of P and J ̸= {0} be an ideal
of P with (∗) condition. Then, the following statements are equivalent:

(i) I ∈ V
′
(J).

(ii) I contains precisely one of x or ⟨x, J⟩, for any x ∈ P .

(iii) ⟨x, J⟩ \I ̸= ϕ, for any x ∈ I.

(iv) JI = I.

Proof. (i)⇒(ii) Assume on the contrary that ⟨x, J⟩ ⊆ I for x ∈ I. Since
I ∈ V

′
(J), we have by Theorem 2.2 of [3], for each x /∈ P\I, there exists

t ∈ U(x) and y ∈ P\I such that L(L(t)∗, L(y)∗) ⊆ J which implies L(y) ⊆
⟨L(t)∗, J⟩ ⊆ ⟨L(x)∗, J⟩ ⊆ ⟨x, J⟩. So, y ∈ I, a contradiction. If x /∈ I, let
t ∈ ⟨x, J⟩. Then, L(L(t)∗, L(x)∗) ⊆ L(x, t) ⊆ J ⊆ I. Since I is strongly prime
ideal and x /∈ I, we have t ∈ I.

(ii)⇒(iii) It is trivial.

(iii)⇒(iv) By the definition of JI , we have JI ⊆ I. Let x ∈ I. Then, ⟨x, J⟩ ⊈
I which implies there exists t ∈ ⟨x, J⟩ \I. Hence, L(t, x) ⊆ J for some t /∈ I. So,
x ∈ JI .

(iv)⇒(i) It is follows from Theorem 2.10 of [6].

Theorem 2.14. Let J ̸= {0} be an ideal of P with (∗) condition and I ∈ V
′
(J).

Then, ⟨⟨x, J⟩ , J⟩ ⊆ I.

Proof. Let I ∈ V
′
(J) and x ∈ I. Then, by Theorem 2.2 of [3], there ex-

ists t ∈ U(x) and y ∈ P\I such that L(L(t)∗, L(y)∗) ⊆ J , so y ∈ ⟨L(t)∗, J⟩ ⊆
⟨L(x)∗, J⟩ ⊆ ⟨x, J⟩. Suppose ⟨⟨x, J⟩ , J⟩ ⊈ I. Then, there exists z ∈ ⟨⟨x, J⟩ , J⟩ \I.
Now, for y, z ∈ P\I, we have L(L(z)∗, L(y)∗)∩P\I ̸= ϕ which implies L(z, y)∩
P\I ̸= ϕ. Then, there exists t ∈ L(y, z) and t ∈ P\I. Since z ∈ ⟨⟨x, J⟩ , J⟩ , we
have L(z, r) ⊆ J , for all r ∈ ⟨x, J⟩ which imply L(z, y) ⊆ J ⊆ I, a contradic-
tion.

Theorem 2.15. Let I be an ideal of P with (∗) condition and M = {x : ⟨x, I⟩ =
I}. Then, M is a strongly m-system of P .
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Proof. Let A and B be different proper ideals of P such that A ∩ M ̸= ϕ
and B ∩ M ̸= ϕ. Then, there exists x ∈ A and y ∈ B such that x, y ∈ M .
Suppose L(A∗, B∗) ∩M = ϕ. Then, for all t ∈ L(A∗, B∗) there exists r ∈ P\I
and L(r, t) ⊆ I which implies t ∈ ⟨r, I⟩ . So, L(A∗, B∗) ⊆ ⟨r, I⟩ which implies
L(A∗, B∗, r) ⊆ I. Since I satisfies (*) condition, we have L(B∗, r) ⊆ ⟨A∗, I⟩ ⊆
⟨x, I⟩ = I which implies r ∈ ⟨B∗, I⟩ ⊆ ⟨y, I⟩ = I, a contradiction.

Lemma 2.16. Let I be an ideal of P . Then, SP (I) = {c ∈ P : every strongly
m-system in P which contains c has a non empty intersection with I}.

Proof. Let H = {c ∈ P : every strongly m-system in P which contains c has a
non empty intersection with I} and c /∈ H. Then, there is a strongly m-system
M of P which contains c and M ∩ I = ϕ. By Theorem 2.1 of [3], there exists a
strongly prime ideal Q of P with I ⊆ Q and Q∩M = ϕ which implies c /∈ ∩Qi.
So, ∩Qi ⊆ H.

Conversely, let c /∈ ∩Qi. Then, there is a strongly prime ideal Qi of P
for some i such that c /∈ Qi which implies c ∈ P\Qi and P\Qi is a strongly
m-system of P . Since P\Qi ∩ I = ϕ, we have c /∈ H. Hence, H ⊆ ∩Qi.

Theorem 2.17. Let A and B be ideals of P . Then, the following statements
hold:

(i) A ⊆ B implies SP (A) ⊆ SP (B).

(ii) SP (L(A∗, B∗)) = SP (A ∩B) = SP (A) ∩ SP (B).

Proof. (i) It is trivial.

(ii) We have L(A∗, B∗) ⊆ A∩B ⊆ A. Then, by (i), SP (L(A∗, B∗)) ⊆ SP (A∩
B) ⊆ SP (A) which imply SP (L(A∗, B∗)) ⊆ SP (A∩B) ⊆ SP (A)∩SP (B). Let
x ∈ SP (A) ∩ SP (B) and K be a strongly m-system containing x. Then, by
Lemma 2.16, K ∩ A ̸= ϕ and K ∩ B ̸= ϕ. Since K is strongly m-system, we
have L(A∗, B∗) ∩K ̸= ϕ which implies x ∈ SP (L(A∗, B∗)).

3. Strongly primary ideals

Theory of primary ideals played an important role in commutative ring theory.
Because every ideal can be written as the intersection of finitely many primary
ideals. In [1], A. Anjaneyulu developed the theory of primary ideals in arbitrary
semigroup. Primary ideals in semigroup. In this section we study the notion of
primary in poset. Following [1], we define

√
I = {x : L(x)∗ ∩ I ̸= ϕ} for ideal I

of P . An ideal I of P is called primary if L(a, b) ⊆ I implies a ∈ I or b ∈
√
I.

An ideal I of P is called strongly primary if L(A∗, B∗) ⊆ I implies A ⊆ I or
B ⊆

√
I∪{0} for different proper ideals A,B of P . Every strongly primary ideal

of P is a primary ideal of P , and every strongly prime ideal of P is a strongly
primary ideal of P . But the converse need not be true in each case in general.
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Example 3.1. Consider P = {0, a, b, c, d, e} and define a relation ≤ on P as
follows.

b b

b b

b
0

a b

cd

Then, (P,≤) is a poset and I = {0, a}, A = {0, b} and B = {0, a, d} are ideals
of P . Here I is a strongly primary ideal of P , but not a strongly prime as
L(A∗, B∗) ⊆ I with A ⊈ I and B ⊈ I. □

Lemma 3.2. Let A and B be ideals of P . Then, the following statements hold:

(i) A ⊆
√
A ∪ {0}.

(ii)
√√

A =
√
A.

(iii) If A ⊆ B, then
√
A ⊆

√
B.

(iv)
√

L(A∗, B∗) =
√
A ∩B =

√
A ∩

√
B.

The following theorem relates the strongly primary and strongly primness
between I and

√
I.

Theorem 3.3. Let I be a strongly primary ideal of P and
√
I ∪{0} be an ideal

of P . Then,
√
I ∪ {0} is a strongly prime ideal of P .

Proof. Let A and B be different proper ideals of P such that L(A∗, B∗) ⊆√
I ∪ {0} and A ⊈

√
I ∪ {0}. Then, for all t ∈ L(A∗, B∗), we have t ∈

√
I ∪ {0}

which imply L(t)∗ ∩ I ̸= ϕ. There exists s ∈ I and s ∈ A∗, B∗ which imply
L(A∗, B∗) ⊆ L(s) ⊆ I. Since I is strongly primary ideal and A ⊈ I, we have
B ⊆

√
I ∪ {0}.

The condition “
√
I ∪ {0} is an ideal of P ”is not superficial in Theorem 3.3.

In Example 2.3, if I = {0, b}, then
√
I ∪ {0} = {0, b, c, e} is not an ideal of P .

Definition 3.4. Let Q be a strongly prime ideal of P . A strongly primary ideal
I of P is said to be Q- strongly primary if

√
I ∪ {0} = Q.

Theorem 3.5. Let I1, I2, ..., In be Q-strongly primary ideals of P . Then,
⋂n

i=1 Ii
is a Q-strongly primary ideal of P .
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Proof. Let J =
⋂n

i=1 Ii. Then,
√
J∪{0} ⊆

⋂n
i=1

√
Ii∪{0} and

⋂n
i=1

√
Ii∪{0} ⊆√

J ∪ {0} as J ⊆ Ii ⊆
√
Ii. Since I ′is are Q-strongly primary ideals, we have√

J ∪ {0} =
⋂n

i=1

√
Ii ∪ {0} = Q. We now prove that J is a strongly primary

ideal of P . Let A and B be different proper ideals of P such that L(A∗, B∗) ⊆ J
and A ⊈ J . Then, there is an ideal Ij of P such that A ⊈ Ij . Since L(A

∗, B∗) ⊆
J ⊆ Ij and Ij is strongly primary, we have B ⊆

√
Ij ∪{0} = Q =

√
J ∪{0}.

Theorem 3.6. Let I be a strongly primary ideal of P . If I is a semi-prime
ideal of P , then ⟨x, I⟩ is a strongly primary ideal of P for any x ∈ P .

Proof. Let A and B be different proper ideals of P such that L(A∗, B∗) ⊆ ⟨x, I⟩
for any x ∈ P\I. Then, L(A∗, B∗, L(x)∗) ⊆ I. If L(A∗, B∗) ⊆ I, then A ⊆ I ⊆
⟨x, I⟩ or B ⊆

√
I ∪{0} ⊆

√
⟨x, I⟩ ∪ {0}. If L(A∗, B∗) ⊈ I, then by Theorem 2.4

of [5], L(A∗, L(x)∗) ⊆ I and L(L(x)∗, B∗) ⊆ I. Since I is primary and x /∈ I,
we have A ⊆ ⟨x, I⟩ ∪ {0} and B ⊆ ⟨x, I⟩ ∪ {0}.

Lemma 3.7. Let I be an ideal of P and I ⊆ Q for some strongly prime ideal
Q of P . Then, SP (I) ⊆

√
I ∪ {0}.

Proof. Let x ∈ SP (I). Then, x ∈
⋂

I⊆Qi
Qi, where Qi’s are strongly prime

ideals of P which implies L(Qi) ∩ I ̸= ϕ and L(x) ∩ I ̸= ϕ, so x ∈
√
I ∪ {0}.

Hence, SP (I) ⊆
√
I ∪ {0}.

Theorem 3.8. Let I be an ideal of P and I ⊆ Q for some strongly prime ideal
Q of P . Then, I is a strongly primary ideal of P .

Theorem 3.9. Let I be an ideal of P with (∗) condition and Q be a strongly
prime ideal of P . If IQ ⊆

√
I ∪ {0}, then I is strongly primary.

Proof. Let IQ ⊆
√
I ∪ {0} and L(A∗, B∗) ⊆ I with A ⊈ I for different proper

ideals A,B of P .

Case (i). If I ⊆ Q, then by Theorem 3.8, I is a strongly primary ideal of P .

Case (ii). Let I ⊈ Q. Then, there is x ∈ I\Q. We now prove B ⊆
√
I ∪ {0}.

Suppose not, B ⊈
√
I ∪ {0}. Since IQ ⊆

√
I ∪ {0}, we have B ⊈ IQ. Then,

there exists y ∈ B\IQ which implies L(y, t) ⊈ I, for all t /∈ Q. In particular
L(x, y) ⊈ I which implies B∗ ⊈ ⟨x, I⟩ = P , a contradiction.
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