Strongly m-system and strongly primary ideals in posets

J. Catherine Grace John
Department of Mathematics
Karunya Institute of Technology and Sciences
Coimbatore-641114, Tamilnadu
India
catherinegracejohn@gamil.com
B. Elavarasan*
Department of Mathematics
Karunya Institute of Technology and Sciences
Coimbatore-641114, Tamilnadu
India
belavarasan@gmail.com

Abstract

In this paper, we study and establish some interesting results of strongly prime ideal and strongly m-system in posets. Also, we study the notion of strongly primary ideals in posets and show some properties of the set $\sqrt{I}=\left\{x: L(x)^{*} \cap I \neq \phi\right\}$ for ideal I of P.

Keywords: Posets, ideals, strongly prime ideal, strongly m-system, strongly primary ideal, minimal strongly prime ideal.

1. Introduction

Throughout this paper (P, \leq) denotes a poset with smallest element 0 . For basic terminology and notation for posets, we refer [8] and [9]. For $M \subseteq P$, let $L(M)=\{x \in P: x \leq m$, for all $m \in M\}$ denote the lower cone of M in P and $U(M)=\{x \in P: m \leq x$, for all $m \in M\}$ be the upper cone of M in P. Let $A, B \subseteq P$, we write $L(A, B)$ instead of $L(A \cup B)$ and dually for the upper cones. If $M=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is finite, then we use the notation $L\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ instead of $L\left(\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\right)$ (and dually). It is clear that for any subset A of P, we have $A \subseteq L(U(A))$ and $A \subseteq U(L(A))$. If $A \subseteq B$, then $L(B) \subseteq L(A)$ and $U(B) \subseteq U(A)$. Moreover, $L U L(A)=L(A)$ and $U L U(A)=U(A)$. Following [12], a non-empty subset I of P is called semi-ideal if $b \in I$ and $a \leq b$, then $a \in I$. A subset I of P is called ideal if $a, b \in I$ implies $L(U((a, b)) \subseteq I$ (see [8]). Following [7], for any subset X of $P,[X]$ is the smallest ideal of P containing X and $X^{*}=X \backslash\{0\}$. If $X=\{b\}$, then $L(b)$ is called the principle ideal of P generated by b. A proper semi-ideal (ideal) I of P is called prime if $L(a, b) \subseteq I$ implies that either $a \in I$ or $b \in I$ (see [9]). An ideal I of P is called semi-prime if $L(a, b) \subseteq I$ and $L(a, c) \subseteq I$ together imply $L(a, U(b, c))) \subseteq I$ (see [8]). Following
*. Corresponding author
[4], an ideal I of P is called strongly prime if $L\left(A^{*}, B^{*}\right) \subseteq I$ implies that either $A \subseteq I$ or $B \subseteq I$ for different proper ideals A, B of P. A non-empty subset M of P is called m-system if for any $x_{1}, x_{2} \in M$, there exists $t \in L\left(x_{1}, x_{2}\right)$ such that $t \in M$. Following [6], a non-empty subset M of P is called strongly m-system if $A \cap M \neq \phi$ and $B \cap M \neq \phi$ imply $L\left(A^{*}, B^{*}\right) \cap M \neq \phi$ for any different proper ideals A, B of P. It is clear that an ideal I of P is strongly prime if and only if $P \backslash I$ is a strongly m - system of P and every strongly m-system of P is m-system. Following [4], an ideal I of P is called strongly semi-prime if $L\left(A^{*}, B^{*}\right) \subseteq I$ and $L\left(A^{*}, C^{*}\right) \subseteq I$ together imply $L\left(A^{*}, U\left(B^{*}, C^{*}\right)\right) \subseteq I$ for any different proper ideals A, B and C of P. For any semi-ideal I of P and a subset A of P, we define $\langle A, I\rangle=\{z \in P: L(a, z) \subseteq I$, for all $a \in A\}=\bigcap_{a \in A}\langle a, I\rangle$ (see [4]). If $A=\{x\}$, then we write $\langle x, I\rangle$ instead of $\langle\{x\}, I\rangle$. For any ideal I of P, a strongly prime ideal Q of P is said to be a minimal strongly prime ideal of I if $I \subseteq Q$ and there is no strongly prime ideal R of P such that $I \subset R \subset Q$. The set of all strongly prime ideals of P is denoted by $S \operatorname{spec}(P)$ and the set of minimal strongly prime ideals of P is denoted by $\operatorname{Smin}(P)$. For any ideal I of P, $P(I)$ and $S P(I)$ denotes the intersection of all prime semi-ideals and strongly prime ideals of P containing I respectively. It is clear from Theorem 6 of [9] and Example 1.1 of $[6]$ that $P(I)=I$ and $S P(I) \neq I$ for any ideal I of P. Following [2], let I be a semi-ideal of P. Then, I is said to have $\left(^{*}\right)$ condition if whenever $L(A, B) \subseteq I$, we have $A \subseteq\langle B, I\rangle$ for any subsets A and B of P. From [8], a non empty subset F of a poset P is called semi-filter if $x \leq y$ and $x \in F$, then $y \in F$. It is clear that for any subset I of P, I is a semi-ideal of P if and only if $P \backslash I$ is a semi-filter of P. A subset F of P is called filter if for $x, y \in F$ implies $U(L(x, y)) \subseteq F$. A filter F is called prime, whenever $U(x, y) \subseteq F$ implies $x \in F$ or $y \in F$.

2. Minimal strongly prime ideals

Lemma 2.1. Let M be a strongly m-system of P. Then, the following statements hold:
(i) $P \backslash M$ satisfies the condition that $L\left(A^{*}, B^{*}\right) \subseteq P \backslash M$ implies $A \subseteq P \backslash M$ or $B \subseteq P \backslash M$ for any different proper ideals A, B of P.
(ii) If $P \backslash M$ is a semi-ideal of P, then M is a prime filter of P.
(iii) If $P \backslash M$ is an ideal of P, then $P \backslash M$ is a strongly prime ideal of P.

Proof. (i) Let A and B be different proper ideals of P such that $L\left(A^{*}, B^{*}\right) \subseteq$ $P \backslash M$. If $A \nsubseteq P \backslash M$ and $B \nsubseteq P \backslash M$, then $A \cap M \neq \phi$ and $B \cap M \neq \phi$ imply that $L\left(A^{*}, B^{*}\right) \cap M \neq \phi$, a contradiction.
(ii) Let $x, y \in M$. Then, $L(x) \cap M \neq \phi$ and $L(y) \cap M \neq \phi$, there exists $t \in L(x, y) \cap M$ with $U(L(x, y)) \subseteq U(t) \subseteq M$. So, M is a filter.

Let $U(a, b) \subseteq M$ for some $a, b \in P$. Then, $U(a) \cap M \neq \phi$ and $U(b) \cap$ $M \neq \phi$ which imply there exists $a_{1} \in U(a) \cap M$ and $b_{1} \in U(b) \cap M$ such that
$L\left(L\left(a_{1}\right)^{*}, L\left(b_{1}\right)^{*}\right) \cap M \neq \phi$, so $L\left(L(a)^{*}, L(b)^{*}\right) \cap M \neq \phi$. Thus, $L\left(L(a)^{*}, L(b)^{*}\right) \nsubseteq$ $P \backslash M$. By (i), we have $a \in M$ and $b \in M$. So, M is a prime filter.
(iii) It is trivial from (i).

The following example shows the condition " $P \backslash M$ is an ideal of P "is not superficial in Lemma 2.1 (iii).

Example 2.2. Consider $P=\{0,1,2,3\}$ and define a relation \leq on P as follows.

Then, (P, \leq) is a poset and $M=\{1,2\}$ is a strongly m-system of P, but $P \backslash M$ is not an ideal of P.

The below example shows that every prime filter of P need not to be strongly m-system of P in general.

Example 2.3. Consider $P=\{0, a, b, c, d, e\}$ and define a relation \leq on P as follows.

Then, (P, \leq) is a poset and $F=\{b, c, e\}$ is a prime filter of P, but not strongly m-system as $A=\{0, b\}$ and $B=\{0, a, b, c\}$ are the ideals of P with $A \cap F \neq \phi$ and $B \cap F \neq \phi$, but $L\left(A^{*}, B^{*}\right) \cap F=\phi$.

In the papers [10], [11] and [13], authors related the concept of minimal prime ideal over an ideal I and the maximal multiplicative system disjoint from I in rings, semigroups and lattices. Following the above papers, we have some interesting results in posets.

Theorem 2.4. Let I be an ideal of P. If $P \backslash I$ is a maximal strongly m-system of P, then I is a minimal strongly prime of P.

Proof. Let I be an ideal of P such that $P \backslash I$ is a maximal strongly m-system of P. Then, I is strongly prime ideal. If J is a strongly prime ideal of P such that $J \subset I$, then $P \backslash I \subset P \backslash J$, a contradiction to the maximality of $P \backslash I$.

Example 2.5. Let $n \in Z^{+} \backslash\{0,1\}$ and ρ be the "less than or equal "relation on set of integers. Then, $P_{n}=\{a: a$ is an integer and $a \rho n\}$ is a poset and $I_{n}=\{a: a \rho(n-1)\}$ is a minimal strongly prime ideal of P_{n}. Here $P_{n} \backslash I_{n}$ is not a maximal strongly m-system of P_{n} as $P_{n} \backslash I_{n}$ is contained in a strongly m system $P_{n} \backslash\{0\}$ of P_{n}.

The above example shows that the converse of Theorem 2.4 is not true in general, but we have the following.

Theorem 2.6. Let I be an ideal of P. If the complement of every strongly m-system of P is a semi-ideal of P and I is minimal strongly prime ideal, then $P \backslash I$ is a maximal strongly m-system of P.

Proof. Let I be a minimal strongly prime ideal of P. Then, $P \backslash I$ is a strongly m-system of P. If there exists a strongly m-system M of P such that $P \backslash I \subset M$. Then, $P \backslash M \subset I$. We now prove $P \backslash M$ is an ideal of P. Let $x, y \in P \backslash M$ and $L(U(x, y)) \nsubseteq P \backslash M$. Then, there exists $t \in L(U(x, y)) \cap M$ with $U(x, y) \subseteq$ $U(t) \subseteq M$ which implies that $U(x) \cap M \neq \phi$ and $U(y) \cap M \neq \phi$, there exists $t_{1} \in U(x) \cap M$ and $t_{2} \in U(y) \cap M$ such that $t_{1}, t_{2} \in M$. Since M is strongly m system, we have $L\left(L\left(t_{1}\right)^{*}, L\left(t_{2}\right)^{*}\right) \cap M \neq \phi$ which implies $L\left(L(x)^{*}, L(y)^{*}\right) \cap M \neq$ ϕ. Thus $L\left(L(x)^{*}, L(y)^{*}\right) \nsubseteq P \backslash M$. By Lemma 2.1(i), we have $x \in M$ and $y \in M$, a contradiction. So, $P \backslash M$ is an ideal of P. By Lemma 2.1(iii), we have $P \backslash M$ is a strongly prime ideal of P, a contradiction to the minimality of I.

As a consequence of above theorem, we have the following.
Corollary 2.7. Let M be a strongly m-system of P. If M is a semi-filter of P, then $P \backslash M$ is an ideal of P.

Theorem 2.8. Let $I \neq 0$ be an ideal of P satisfies (*) condition and M be a strongly m-system of P. If M is semi-filter, then the following are equivalent:
(i) M is a maximal strongly m-system of P with respect to $M \cap I=\phi$.
(ii) $P \backslash M$ is a minimal strongly prime ideal of P containing I.
(iii) For a strongly prime ideal $P \backslash M$ containing I, for each $x \in P \backslash M$, there exists $t \in U(x)$ and $y \in M$ such that $L\left(L(t)^{*}, L(y)^{*}\right) \subseteq I$.

Proof. (i) \Rightarrow (ii) It follows from Corollary 2.7 and Theorem 2.4, $P \backslash M$ is a minimal strongly prime ideal of P containing I.
(ii) \Rightarrow (iii) It is trivial from Theorem 2.2 of [3].
(iii) \Rightarrow (i) From (iii), we have M is a strongly m-system of P with $M \cap I=\phi$.

Suppose N is a strongly m-system of P such that $N \cap I=\phi$ and $M \subset N$. Then, there exists $a \in N \backslash M, y \in M$ and $t \in U(a)$ such that $L\left(L(t)^{*}, L(y)^{*}\right) \subseteq I$ which implies $L(y)^{*} \subseteq\left\langle L(t)^{*}, I\right\rangle \subseteq\left\langle L(a)^{*}, I\right\rangle$. So, $L\left(L(a)^{*}, L(y)^{*}\right) \subseteq I$. Since $y, a \in N$ and N is strongly m-system, we have $L\left(L(a)^{*}, L(y)^{*}\right) \cap N \neq \phi$ which implies $I \cap N \neq \phi$, a contradiction.

Theorem 2.9. Let I be an ideal of P and M be a strongly m-system of P such that $M \cap I=\phi$. Then, there exists a maximal strongly m-system N containing M with $N \cap I=\phi$.

Proof. It follows from Theorem 2.1 of [3].
Lemma 2.10. Let P be a poset and $r \in P$. If $P \backslash U(r)$ satisfies (*) condition, then $U(r)$ is a strongly m-system of P.

Proof. Let A and B be different proper ideals of P such that $A \cap U(r) \neq \phi$ and $B \cap U(r) \neq \phi$. Suppose $L\left(A^{*}, B^{*}\right) \cap U(r)=\phi$. Then, $L\left(A^{*}, B^{*}\right) \subseteq P \backslash U(r)$ and $B^{*} \subseteq\left\langle A^{*}, P \backslash U(r)\right\rangle=\bigcap_{a \in A^{*}}\langle a, P \backslash U(r)\rangle \subseteq\langle q, P \backslash U(r)\rangle \subseteq\langle r, P \backslash U(r)\rangle$ for some $q \in A \cap U(r)$. Since $U(r)$ is a m-system of P, then $P \backslash U(r)$ is a prime semi-ideal of P. By Theorem 20 of [8], we have $B^{*} \subseteq\langle r, P \backslash U(r)\rangle=P \backslash U(r)$, a contradiction.

For any subset X of P, we define $V^{\prime}(X)=\{Q \in \operatorname{Smin}(P): X \subseteq Q\}$ and $D^{\prime}(X)=\operatorname{Smin}(P) \backslash V^{\prime}(X)$.

Theorem 2.11. Let A be a non empty subset of P and $J \neq\{0\}$ be an ideal of P. If every semi-ideal of P satisfies ($*$) condition and every m-system of P is a semi-filter of P, then $\langle A, J\rangle=\bigcap\left\{Q: Q \in V^{\prime}(J) \cap D^{\prime}(A)\right\}$.

Proof. Let $x \in\langle A, J\rangle$. Then, $L(a, x) \subseteq J$, for all $a \in A$. For $Q \in V^{\prime}(J) \cap D^{\prime}(A)$, there exists $a_{1} \in A \backslash Q$ such that $L\left(L(x)^{*}, L\left(a_{1}\right)^{*}\right) \subseteq J \subseteq Q$ which implies $x \in Q$. Hence, $x \in \bigcap\left\{Q: Q \in V^{\prime}(J) \cap D^{\prime}(A)\right\}$.

Conversely, let $x \in \bigcap\left\{Q: Q \in V^{\prime}(J) \cap D^{\prime}(A)\right\}$ and $x \notin\langle A, J\rangle$. Then, $L(x, t) \nsubseteq J$ for some $t \in A$, so there exists $r \in L(x, t) \backslash J$ with $U(r) \cap J=\phi$. By Lemma 2.10, we have $U(r)$ is a strongly m-system such that $U(r) \cap J=\phi$. Then, by Theorem 2.9, there exists a maximal strongly m-system K of P containing $U(r)$ such that $K \cap J=\phi$ and, by Theorem 2.8, $P \backslash K \in V^{\prime}(J)$. Since $r \leq x$ and $r \in K$, we have $U(x) \subseteq U(r) \subseteq K$ which implies $x \notin \bigcap\left\{Q: Q \in V^{\prime}(J) \cap D^{\prime}(A)\right\}$, a contradiction.

Theorem 2.12. Let $J \neq\{0\}$ be an ideal of P. If every maximal m-system is a semi-filter of P and every semi-ideal satisfies (*) condition, then J is a strongly semi-prime ideal of P.

Proof. Let J be an ideal of P such that $L\left(A^{*}, B^{*}\right) \subseteq J$ and $L\left(A^{*}, C^{*}\right) \subseteq J$ for different proper ideals A, B, C of P. If $L\left(A^{*}, \cup\left(B^{*}, C^{*}\right)\right) \nsubseteq J$, then there exists $t \in L\left(A^{*}, U\left(B^{*}, C^{*}\right)\right) \backslash J$ with $U(t) \cap J=\phi$. By Lemma 2.10 and Theorem
2.9, there exists a maximal strongly m-system K of P containing $U(t)$ of P such that $K \cap J=\phi$. Then, by Theorem 2.8, $P \backslash K \in V^{\prime}(J)$ which implies $L\left(A^{*}, B^{*}\right) \subseteq P \backslash K$ and $L\left(A^{*}, C^{*}\right) \subseteq P \backslash K$. Since $P \backslash K$ is strongly prime ideal, we have $A \subseteq P \backslash K$ or $B, C \subseteq P \backslash K$ which imply $\left.L\left(L(a)^{*}, L(t)^{*}\right)\right) \subseteq P \backslash K$, for all $a \in A^{*}$ and $t \in L\left(U\left(B^{*}, C^{*}\right)\right.$. Since $t \in U(t) \subseteq K$ with $t \leq a$ and K is strongly m-system, we have $\left.L\left(L(a)^{*}, L(t)^{*}\right)\right) \cap K \neq \phi$, a contradiction.

Following [6], for an ideal I and a strongly prime ideal Q of $P, I_{Q}=\{x \in$ $P: L(x, y) \subseteq I$ for some $y \notin Q\}$.

Theorem 2.13. Let I be a strongly prime ideal of P and $J \neq\{0\}$ be an ideal of P with (*) condition. Then, the following statements are equivalent:
(i) $I \in V^{\prime}(J)$.
(ii) I contains precisely one of x or $\langle x, J\rangle$, for any $x \in P$.
(iii) $\langle x, J\rangle \backslash I \neq \phi$, for any $x \in I$.
(iv) $J_{I}=I$.

Proof. (i) \Rightarrow (ii) Assume on the contrary that $\langle x, J\rangle \subseteq I$ for $x \in I$. Since $I \in V^{\prime}(J)$, we have by Theorem 2.2 of [3], for each $x \notin P \backslash I$, there exists $t \in U(x)$ and $y \in P \backslash I$ such that $L\left(L(t)^{*}, L(y)^{*}\right) \subseteq J$ which implies $L(y) \subseteq$ $\left\langle L(t)^{*}, J\right\rangle \subseteq\left\langle L(x)^{*}, J\right\rangle \subseteq\langle x, J\rangle$. So, $y \in I$, a contradiction. If $x \notin I$, let $t \in\langle x, J\rangle$. Then, $L\left(L(t)^{*}, L(x)^{*}\right) \subseteq L(x, t) \subseteq J \subseteq I$. Since I is strongly prime ideal and $x \notin I$, we have $t \in I$.
(ii) \Rightarrow (iii) It is trivial.
(iii) \Rightarrow (iv) By the definition of J_{I}, we have $J_{I} \subseteq I$. Let $x \in I$. Then, $\langle x, J\rangle \nsubseteq$ I which implies there exists $t \in\langle x, J\rangle \backslash I$. Hence, $L(t, x) \subseteq J$ for some $t \notin I$. So, $x \in J_{I}$.
$($ iv $) \Rightarrow(\mathrm{i})$ It is follows from Theorem 2.10 of [6].
Theorem 2.14. Let $J \neq\{0\}$ be an ideal of P with (*) condition and $I \in V^{\prime}(J)$. Then, $\langle\langle x, J\rangle, J\rangle \subseteq I$.

Proof. Let $I \in V^{\prime}(J)$ and $x \in I$. Then, by Theorem 2.2 of [3], there exists $t \in U(x)$ and $y \in P \backslash I$ such that $L\left(L(t)^{*}, L(y)^{*}\right) \subseteq J$, so $y \in\left\langle L(t)^{*}, J\right\rangle \subseteq$ $\left\langle L(x)^{*}, J\right\rangle \subseteq\langle x, J\rangle$. Suppose $\langle\langle x, J\rangle, J\rangle \nsubseteq I$. Then, there exists $z \in\langle\langle x, J\rangle, J\rangle \backslash I$. Now, for $y, z \in P \backslash I$, we have $L\left(L(z)^{*}, L(y)^{*}\right) \cap P \backslash I \neq \phi$ which implies $L(z, y) \cap$ $P \backslash I \neq \phi$. Then, there exists $t \in L(y, z)$ and $t \in P \backslash I$. Since $z \in\langle\langle x, J\rangle, J\rangle$, we have $L(z, r) \subseteq J$, for all $r \in\langle x, J\rangle$ which imply $L(z, y) \subseteq J \subseteq I$, a contradiction.

Theorem 2.15. Let I be an ideal of P with (*) condition and $M=\{x:\langle x, I\rangle=$ $I\}$. Then, M is a strongly m-system of P.

Proof. Let A and B be different proper ideals of P such that $A \cap M \neq \phi$ and $B \cap M \neq \phi$. Then, there exists $x \in A$ and $y \in B$ such that $x, y \in M$. Suppose $L\left(A^{*}, B^{*}\right) \cap M=\phi$. Then, for all $t \in L\left(A^{*}, B^{*}\right)$ there exists $r \in P \backslash I$ and $L(r, t) \subseteq I$ which implies $t \in\langle r, I\rangle$. So, $L\left(A^{*}, B^{*}\right) \subseteq\langle r, I\rangle$ which implies $L\left(A^{*}, B^{*}, r\right) \subseteq I$. Since I satisfies $\left(^{*}\right)$ condition, we have $L\left(B^{*}, r\right) \subseteq\left\langle A^{*}, I\right\rangle \subseteq$ $\langle x, I\rangle=I$ which implies $r \in\left\langle B^{*}, I\right\rangle \subseteq\langle y, I\rangle=I$, a contradiction.

Lemma 2.16. Let I be an ideal of P. Then, $S P(I)=\{c \in P$: every strongly m-system in P which contains c has a non empty intersection with $I\}$.

Proof. Let $H=\{c \in P$: every strongly m-system in P which contains c has a non empty intersection with $I\}$ and $c \notin H$. Then, there is a strongly m-system M of P which contains c and $M \cap I=\phi$. By Theorem 2.1 of [3], there exists a strongly prime ideal Q of P with $I \subseteq Q$ and $Q \cap M=\phi$ which implies $c \notin \cap Q_{i}$. So, $\cap Q_{i} \subseteq H$.

Conversely, let $c \notin \cap Q_{i}$. Then, there is a strongly prime ideal Q_{i} of P for some i such that $c \notin Q_{i}$ which implies $c \in P \backslash Q_{i}$ and $P \backslash Q_{i}$ is a strongly m-system of P. Since $P \backslash Q_{i} \cap I=\phi$, we have $c \notin H$. Hence, $H \subseteq \cap Q_{i}$.

Theorem 2.17. Let A and B be ideals of P. Then, the following statements hold:
(i) $A \subseteq B$ implies $S P(A) \subseteq S P(B)$.
(ii) $S P\left(L\left(A^{*}, B^{*}\right)\right)=S P(A \cap B)=S P(A) \cap S P(B)$.

Proof. (i) It is trivial.
(ii) We have $L\left(A^{*}, B^{*}\right) \subseteq A \cap B \subseteq A$. Then, by (i), $S P\left(L\left(A^{*}, B^{*}\right)\right) \subseteq S P(A \cap$ $B) \subseteq S P(A)$ which imply $S P\left(L\left(A^{*}, B^{*}\right)\right) \subseteq S P(A \cap B) \subseteq S P(A) \cap S P(B)$. Let $x \in S P(A) \cap S P(B)$ and K be a strongly m-system containing x. Then, by Lemma 2.16, $K \cap A \neq \phi$ and $K \cap B \neq \phi$. Since K is strongly m-system, we have $L\left(A^{*}, B^{*}\right) \cap K \neq \phi$ which implies $x \in S P\left(L\left(A^{*}, B^{*}\right)\right)$.

3. Strongly primary ideals

Theory of primary ideals played an important role in commutative ring theory. Because every ideal can be written as the intersection of finitely many primary ideals. In [1], A. Anjaneyulu developed the theory of primary ideals in arbitrary semigroup. Primary ideals in semigroup. In this section we study the notion of primary in poset. Following [1], we define $\sqrt{I}=\left\{x: L(x)^{*} \cap I \neq \phi\right\}$ for ideal I of P. An ideal I of P is called primary if $L(a, b) \subseteq I$ implies $a \in I$ or $b \in \sqrt{I}$. An ideal I of P is called strongly primary if $L\left(A^{*}, B^{*}\right) \subseteq I$ implies $A \subseteq I$ or $B \subseteq \sqrt{I} \cup\{0\}$ for different proper ideals A, B of P. Every strongly primary ideal of P is a primary ideal of P, and every strongly prime ideal of P is a strongly primary ideal of P. But the converse need not be true in each case in general.

Example 3.1. Consider $P=\{0, a, b, c, d, e\}$ and define a relation \leq on P as follows.

Then, (P, \leq) is a poset and $I=\{0, a\}, A=\{0, b\}$ and $B=\{0, a, d\}$ are ideals of P. Here I is a strongly primary ideal of P, but not a strongly prime as $L\left(A^{*}, B^{*}\right) \subseteq I$ with $A \nsubseteq I$ and $B \nsubseteq I$.

Lemma 3.2. Let A and B be ideals of P. Then, the following statements hold:
(i) $A \subseteq \sqrt{A} \cup\{0\}$.
(ii) $\sqrt{\sqrt{A}}=\sqrt{A}$.
(iii) If $A \subseteq B$, then $\sqrt{A} \subseteq \sqrt{B}$.
(iv) $\sqrt{L\left(A^{*}, B^{*}\right)}=\sqrt{A \cap B}=\sqrt{A} \cap \sqrt{B}$.

The following theorem relates the strongly primary and strongly primness between I and \sqrt{I}.

Theorem 3.3. Let I be a strongly primary ideal of P and $\sqrt{I} \cup\{0\}$ be an ideal of P. Then, $\sqrt{I} \cup\{0\}$ is a strongly prime ideal of P.

Proof. Let A and B be different proper ideals of P such that $L\left(A^{*}, B^{*}\right) \subseteq$ $\sqrt{I} \cup\{0\}$ and $A \nsubseteq \sqrt{I} \cup\{0\}$. Then, for all $t \in L\left(A^{*}, B^{*}\right)$, we have $t \in \sqrt{I} \cup\{0\}$ which imply $L(t)^{*} \cap I \neq \phi$. There exists $s \in I$ and $s \in A^{*}, B^{*}$ which imply $L\left(A^{*}, B^{*}\right) \subseteq L(s) \subseteq I$. Since I is strongly primary ideal and $A \nsubseteq I$, we have $B \subseteq \sqrt{I} \cup\{0\}$.

The condition " $\sqrt{I} \cup\{0\}$ is an ideal of P "is not superficial in Theorem 3.3. In Example 2.3, if $I=\{0, b\}$, then $\sqrt{I} \cup\{0\}=\{0, b, c, e\}$ is not an ideal of P.

Definition 3.4. Let Q be a strongly prime ideal of P. A strongly primary ideal I of P is said to be Q - strongly primary if $\sqrt{I} \cup\{0\}=Q$.

Theorem 3.5. Let $I_{1}, I_{2}, \ldots, I_{n}$ be Q-strongly primary ideals of P. Then, $\bigcap_{i=1}^{n} I_{i}$ is a Q-strongly primary ideal of P.

Proof. Let $J=\bigcap_{i=1}^{n} I_{i}$. Then, $\sqrt{J} \cup\{0\} \subseteq \bigcap_{i=1}^{n} \sqrt{I_{i}} \cup\{0\}$ and $\bigcap_{i=1}^{n} \sqrt{I_{i}} \cup\{0\} \subseteq$ $\sqrt{J} \cup\{0\}$ as $J \subseteq I_{i} \subseteq \sqrt{I_{i}}$. Since $I_{i}^{\prime} s$ are Q-strongly primary ideals, we have $\sqrt{J} \cup\{0\}=\bigcap_{i=1}^{n} \sqrt{I_{i}} \cup\{0\}=Q$. We now prove that J is a strongly primary ideal of P. Let A and B be different proper ideals of P such that $L\left(A^{*}, B^{*}\right) \subseteq J$ and $A \nsubseteq J$. Then, there is an ideal I_{j} of P such that $A \nsubseteq I_{j}$. Since $L\left(A^{*}, B^{*}\right) \subseteq$ $J \subseteq I_{j}$ and I_{j} is strongly primary, we have $B \subseteq \sqrt{I_{j}} \cup\{0\}=Q=\sqrt{J} \cup\{0\}$.

Theorem 3.6. Let I be a strongly primary ideal of P. If I is a semi-prime ideal of P, then $\langle x, I\rangle$ is a strongly primary ideal of P for any $x \in P$.

Proof. Let A and B be different proper ideals of P such that $L\left(A^{*}, B^{*}\right) \subseteq\langle x, I\rangle$ for any $x \in P \backslash I$. Then, $L\left(A^{*}, B^{*}, L(x)^{*}\right) \subseteq I$. If $L\left(A^{*}, B^{*}\right) \subseteq I$, then $A \subseteq I \subseteq$ $\langle x, I\rangle$ or $B \subseteq \sqrt{I} \cup\{0\} \subseteq \sqrt{\langle x, I\rangle} \cup\{0\}$. If $L\left(A^{*}, B^{*}\right) \nsubseteq I$, then by Theorem 2.4 of [5], $L\left(A^{*}, L(x)^{*}\right) \subseteq I$ and $L\left(L(x)^{*}, B^{*}\right) \subseteq I$. Since I is primary and $x \notin I$, we have $A \subseteq\langle x, I\rangle \cup\{0\}$ and $B \subseteq\langle x, I\rangle \cup\{0\}$.

Lemma 3.7. Let I be an ideal of P and $I \subseteq Q$ for some strongly prime ideal Q of P. Then, $S P(I) \subseteq \sqrt{I} \cup\{0\}$.

Proof. Let $x \in S P(I)$. Then, $x \in \bigcap_{I \subseteq Q_{i}} Q_{i}$, where Q_{i} 's are strongly prime ideals of P which implies $L\left(Q_{i}\right) \cap I \neq \phi$ and $L(x) \cap I \neq \phi$, so $x \in \sqrt{I} \cup\{0\}$. Hence, $S P(I) \subseteq \sqrt{I} \cup\{0\}$.

Theorem 3.8. Let I be an ideal of P and $I \subseteq Q$ for some strongly prime ideal Q of P. Then, I is a strongly primary ideal of P.

Theorem 3.9. Let I be an ideal of P with (*) condition and Q be a strongly prime ideal of P. If $I_{Q} \subseteq \sqrt{I} \cup\{0\}$, then I is strongly primary.

Proof. Let $I_{Q} \subseteq \sqrt{I} \cup\{0\}$ and $L\left(A^{*}, B^{*}\right) \subseteq I$ with $A \nsubseteq I$ for different proper ideals A, B of P.
Case (i). If $I \subseteq Q$, then by Theorem 3.8, I is a strongly primary ideal of P.
Case (ii). Let $I \nsubseteq Q$. Then, there is $x \in I \backslash Q$. We now prove $B \subseteq \sqrt{I} \cup\{0\}$. Suppose not, $B \nsubseteq \sqrt{I} \cup\{0\}$. Since $I_{Q} \subseteq \sqrt{I} \cup\{0\}$, we have $B \nsubseteq I_{Q}$. Then, there exists $y \in B \backslash I_{Q}$ which implies $L(y, t) \nsubseteq I$, for all $t \notin Q$. In particular $L(x, y) \nsubseteq I$ which implies $B^{*} \nsubseteq\langle x, I\rangle=P$, a contradiction.

Acknowledgment

The authors would like to express their gratitude to the referees for their insightful comments and suggestions for improving the paper.

References

[1] A. Anjaneyulu, Primary ideals in semigroups, Semigroup Forum, 20 (1980), 129-144.
[2] J. Catherine Grace John, B. Elavarasan, Primeness of extension of semiideals in posets, Appl. Math. Sci., 164 (2014), 8227-8232.
[3] J. Catherine Grace John, B. Elavarasan, Strongly prime ideals and primal ideals in posets, Kyungpook Math. J., 56 (2016), 727-735.
[4] J. Catherine Grace John, B. Elavarasan, Strongly prime and strongly semiprime ideals in posets, Glob. J. Pure Appl. Math., 11 (2015), 2965-2970.
[5] J. Catherine Grace John, B. Elavarasan, weakly n-prime ideals of posets, Int. J. Pure Appl. Math., 86 (2013), 905-910.
[6] J. Catherine Grace John , B. Elavarasan, z^{J}-ideals and Strongly prime ideals in posets, Kyungpook Math. J., 57 (2017), 385-391.
[7] J. Paseka, Note on distributive posets, Math. Appl., 1 (2012), 197-206.
[8] V. S. Kharat, K. A. Mokbel, Primeness and semiprimeness in posets, Math. Bohem., 134 (2009), 19-30.
[9] R. Halaš, On extension of ideals in posets, Discrete Math., 308 (2008), 4972-4977.
[10] G .C. Rao, S. Ravi Kumar, Minimal prime ideals in almost distributive lattices, Int. J. Contemp. Math. Science, 4 (2009), 475-484.
[11] N. K. Thakare, S. K. Nimbhorkar, Space of minimal prime ideals of a ring without nilpotent elements, J. Pure Appl. Algebra, 27 (1983), 75-85.
[12] P. V. Venkatanarasimhan, Semi ideals in posets, Math. Ann., 185 (1970), 338-348.
[13] K. Venu Raju, J. Hanumanthachari, A note on maximal and minimal prime ideals belonging to an ideal in semigroups, Indian J. Pure Appl. Math., 11 (1980), 1566-1571.

Accepted: July 30, 2021

