e-semicommutative modules

Hanan Abd-Elmalk
Department of Mathematics
Faculty of Science
Ain Shams University
P.O. Box 11566, Abbasaya
Cairo
Egypt
hanan_abdelmalk@sci.asu.edu.eg

Abstract

Also, we investigate some extensions of rings and modules in terms of e-semicommutativity.

Keywords: reduced ring, symmetric ring, e-reduced ring, e-symmetric ring.

1. Introduction

Throughout this paper, all rings are associative with unity. R denotes an associative ring with unity, M_{R} is a unitary right R-module, $\operatorname{Id}(R)$ denotes the set of all idempotent elements of $R, \mathrm{~N}(R)$ denotes the set of all nilpotent elements of $R, \mathrm{C}(R)$ denotes the center of $R, \mathrm{~S}_{\mathrm{r}}(R)=\{e \in \operatorname{Id}(R): e R e=e R\}$ denotes the set of all right semicentral idempotent elements of $R, \mathrm{~S}_{\ell}(R)=$ $\{e \in \operatorname{Id}(R): e R e=R e\}$ denotes the set of all left semicentral idempotent elements of R, and $\mathrm{r}_{R}(M)=\{a \in R: M a=0\}$ denotes the right annihilator of M in R.

A ring R is said to be abelian if $\operatorname{Id}(R) \subseteq \mathrm{C}(R)$. A ring R is called reduced if $\mathrm{N}(R)=0$. This concept of reduced rings was extended to modules [9] as follows: a right R-module M_{R} is reduced if, for any $m \in M$ and any $a \in R$, $m a=0$ implies $m R \cap M a=0$. Recall from [10], R is a right e-reduced ring, where $e \in \operatorname{Id}(R)$, if $\mathrm{N}(R) e=0$. A ring R is called symmetric [8] if whenever $a, b, c \in R$ such that $a b c=0$, we have $a c b=0$. Recall from Refs. [8] and [11], a right R-module M_{R} is called symmetric if whenever $a, b \in R$ and $m \in M$ such that $m a b=0$ implies $m b a=0$. Following [10], a ring R is called e-symmetric, for $e \in \operatorname{Id}(R)$, if whenever $a, b, c \in R$ such that $a b c=0$, we have $a c b e=0$.

Introduce of these properties via idempotents, inspires us to extend the notions of e-reduced and e-symmetric to modules as follows:

Definition 1.1 ([1]). A right R-module M_{R} is called e-reduced, where e $\in \operatorname{Id}(R)$, if whenever $a \in R$ and $m \in M$ such that $m a=0$ implies $m R \cap M a e=0$.

Definition 1.2 ([1]). A right R-module M_{R} is called e-symmetric, where $e \in$ $\operatorname{Id}(R)$, if whenever $a, b \in R$ and $m \in M$ such that $m a b=0$ implies mbae $=0$.

A ring R is an e-reduced (e-symmetric) ring if and only if R_{R} is an e-reduced (e-symmetric) module.

According to [3] a ring R is called semicommutative, if whenever $a, b \in R$ satisfy $a b=0$, then $a R b=0$. A right R-module M_{R} is called semicommutative [5], if whenever $a \in R$ and $m \in M$ satisfy $m a=0$, then $m R a=0$. Recall from [7], a ring R is called e-semicommutative, for $e \in \operatorname{Id}(R)$, if whenever $a, b \in R$ such that $a b=0$, we have $a R b e=0$.

So it is natural to motivate us to extend the condition of e-semicommutativity to Module Theory.

2. Modules with e-semicommutative condition

In this section, we extend the notion of e-semicommutative rings to modules as follows:

Definition 2.1. A right R-module M_{R} is called e-semicommutative, where $e \in$ $\operatorname{Id}(R)$, if whenever $a \in R$ and $m \in M$ such that $m a=0$ implies $m R a e=0$.

Obviously, R is an e-semicommutative ring if and only if R_{R} is an e-semicommutative module.

Clearly, any semicommutative module is an e-semicommutative module, for any $e \in \operatorname{Id}(R)$, and every an e-reduced (e-symmetric) module is e-semicommutative. The following examples demonstrate rather strikingly that the class of e-semicommutative modules is properly contains the class of semicommutative modules.

Example 2.1. Let S be a semicommutative ring and $R=\left(\begin{array}{cc}S & S \\ 0 & S\end{array}\right)$. Consider a right R-module $M_{R}=R[x]_{R}$. Assume that $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), B=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ and $C=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \in R$. We see that $(A x+A) B=0$ but $(A x+A) C B \neq 0$. Then, M_{R} is not semicommutative. Now for the idempotent $E=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right) \in R$, we can show that M_{R} is E-semicommutative. Let $f(x)=\sum_{i=0}^{n} A_{i} x^{i} \in M$, where $A_{i}=\left(\begin{array}{cc}a_{i} & b_{i} \\ 0 & c_{i}\end{array}\right) \in R$ for every $i=0,1, \ldots, n$, and $B=\left(\begin{array}{cc}w & u \\ 0 & v\end{array}\right) \in R$ such that $f(x) B=0$. Then, $0=A_{i} B=\left(\begin{array}{cc}a_{i} w & a_{i} u+b_{i} v \\ 0 & c_{i} v\end{array}\right)$ for every $i=0,1, \ldots, n$. Hence, $a_{i} w=0, c_{i} v=0$ and $a_{i} u+b_{i} v=0$. For any element $C=\left(\begin{array}{cc}x & y \\ 0 & z\end{array}\right) \in R$, we have $f(x) C B E=\sum_{i=0}^{n}\left(A_{i} C B E\right) x^{i}=0$. Therefore, M_{R} is E-semicommutative.

Example 2.2. Let S be a semicommutative ring and $R=\left(\begin{array}{ccc}S & 0 & 0 \\ S & S & S \\ 0 & 0 & S\end{array}\right)$. Consider R_{R} as a right R-module. Assume that $m=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right), a=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 1\end{array}\right)$, $b=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right) \in R$. We see that $m a=0$ but $m b a \neq 0$. Then, R_{R} is not semicommutative. Now for the idempotent $e=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$, we can show that R_{R} is e-semicommutative. Let $m=\left(\begin{array}{ccc}x_{1} & 0 & 0 \\ y_{1} & z_{1} & w_{1} \\ 0 & 0 & v_{1}\end{array}\right), a=\left(\begin{array}{ccc}x_{2} & 0 & 0 \\ y_{2} & z_{2} & w_{2} \\ 0 & 0 & v_{2}\end{array}\right) \in R$ such that $m a=0$. Hence, $x_{1} x_{2}=z_{1} z_{2}=v_{1} v_{2}=z_{1} w_{2}=w_{1} v_{2}=0$ and $y_{1} x_{2}+z_{1} y_{2}=$ 0 . For any element $r=\left(\begin{array}{ccc}x & 0 & 0 \\ y & z & w \\ 0 & 0 & v\end{array}\right) \in R$, we have mrae $=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & z_{1} z z_{2} & 0 \\ 0 & 0 & 0\end{array}\right)=0$, since S_{S} is semicommutative. Therefore, R_{R} is e-semicommutative.

Proposition 2.1. The class of e-semicommutative modules is closed under submodules, direct products and so direct sums.

Proof. The proof is immediate from the definitions and algebraic structures.

Proposition 2.2. Let R be a ring, $e \in \operatorname{Id}(R)$ and M_{R} a right R-module. M_{R} is e-semicommutative if and only if every cyclic submodule of M_{R} is esemicommutative.

Proof. Assume that every cyclic submodule of M_{R} is e-semicommutative. Let $a \in R$ and $m \in M$ such that $m a=0$ in M. Consider the cyclic submodule $m R$, we have $m a=0$ in $m R$. Since $m R$ is e-semicommutative, we get $m R a e=0$. Hence, M_{R} is e-semicommutative.

Proposition 2.3. Let R be a ring, $e \in \operatorname{Id}(R)$ and M_{R} a right R-module. Then, the following two conditions are equivalent:

1) M_{R} is an e-semicommutative module.
2) $N A=0$ implies $N R A e=0$ for any nonempty subset N in M and A in R.

Proof. " 1 (1) $\Longrightarrow(2)$ " Assume that M_{R} is e-semicommutative and N is a subset of M and A is a subset of R such that $N A=0$. Then, for any $n \in N$ and $a \in A$, we have $n a=0$. Thus, $n R a e=0$. Then, $\sum_{n \in N, a \in A} n R a e=0$. Hence, $N R A e=0$.
" 2) $\Longrightarrow(1) "$ Assume that $a \in R$ and $m \in M$ such that $m a=0$. Then, M_{R} is e-semicommutative follows directly if we set $N=\{m\}$ and $A=\{a\}$.

Proposition 2.4. Let R be a ring with every right ideal is two sided and $e \in$ $\operatorname{Id}(R)$. Then, every right R-module is e-semicommutative.

Proof. Suppose that M_{R} is a right R-module. Let $a \in R$ and $m \in M$ such that $m a=0$. From our assumption, the right ideal ae R is two sided. Then, we have R ae \subseteq ae R. So, we get $m R$ ae \subseteq mae $R=0$. Therefore, M_{R} is e-semicommutative.

Proposition 2.5. Let R, S be rings, $e \in \operatorname{Id}(R)$ and $\varphi: R \rightarrow S$ be a ring homomorphism. If M_{S} is a right S-module, then M is a right R-module via $m r=m \varphi(r)$ for all $r \in R$ and $m \in M$. Then, we get:
(1) If M_{S} is a $\varphi(e)$-semicommutative module, then M_{R} is an e-semicommutative module.
(2) If φ is onto and M_{R} is an e-semicommutative module, then M_{S} is a $\varphi(e)$-semicommutative module.

Proof. (1) Suppose that M_{S} is a $\varphi(e)$-semicommutative module. Let $a \in R$ and $m \in M$ such that $m a=0$. Then, $m \varphi(a)=0$. Since M_{S} is $\varphi(e)$-semicommutative, we have $m s \varphi(a) \varphi(e)=0$ for all $s \in S$. Hence, for any $r \in R$, we have mrae $=$ $m \varphi(r a e)=m \varphi(r) \varphi(a) \varphi(e)=0$. Therefore, M_{R} is an e-semicommutative module.
(2) Suppose that φ is onto and M_{R} is an e-semicommutative module. Let $x \in S$ and $m \in M$ such that $m x=0$. Since φ is onto, there exists $a \in R$ such that $x=\varphi(a)$. Then, $0=m x=m \varphi(a)=m a$. Since M_{R} is e-semicommutative, implies m Rae $=0$. Hence, $0=m \varphi(R) \varphi(a) \varphi(e)=m S x \varphi(e)$. Thus M_{S} is a $\varphi(e)$-semicommutative module.

Corollary 2.1. Let R be a ring, $e \in \operatorname{Id}(R), M_{R}$ a right R-module and $\bar{R}=$ $R / \mathrm{r}_{R}(M) . M_{R}$ is an e-semicommutative module if and only if $M_{\bar{R}}$ is an \bar{e} semicommutative module.

Proof. This is a consequence of Proposition 2.5, if we consider the canonical epimorphism $\varphi: R \rightarrow \bar{R}$ defined by $\varphi(r)=\bar{r}=r+\mathrm{r}_{R}(M)$, for all $r \in R$.

Proposition 2.6. Let R be a ring, $e \in \mathrm{C}(R)$ and M_{R} a right R-module. Then, M_{R} is an e-semicommutative module if and only if $M_{R e}$ is a semicommutative module.

Proof. " $\Longrightarrow "$ Assume that M_{R} is an e-semicommutative module. Let $a \in$ $R e \subseteq R$ and $m \in M$ such that $m a=0$. Then, we get $m R a e=0$. Since $e \in \mathrm{C}(R)$, we have $m R e a=0$. Hence, $M_{R e}$ is a semicommutative module.
$" \Longleftarrow "$ Assume that $M_{R e}$ is a semicommutative module. Let $a \in R$ and $m \in M$ such that $m a=0$. Then, we get $m R e a=0$. Since $e \in \mathrm{C}(R)$, we have $m R a e=0$. Thus M_{R} is an e-semicommutative module.

Corollary 2.2. Let R be a ring, $e \in \mathrm{C}(R)$ and M_{R} a right R-module. If $M_{R e}$ and $M_{R(1-e)}$ are semicommutative modules, then M_{R} is a semicommutative module.

Proof. We can easily check that $e \in \mathrm{C}(R)$ if and only if $(1-e) \in \mathrm{C}(R)$. From Proposition 2.6, we conclude that M_{R} is both e-semicommutative and $(1-e)$-semicommutative. Now let $a \in R$ and $m \in M$ such that $m a=0$. Thus $m R a e=0$ and $m R a(1-e)=0$, which implies that $m R a=0$. Therefore, M_{R} is a semicommutative module.

Proposition 2.7. Let R be a ring, $e \in \mathrm{~S}_{\ell}(R)$ and M_{R} a right R-module. Then, M_{R} is an e-semicommutative module if and only if $M_{e} e$ is a semicommutative module.

Proof. " " Assume that M_{R} is an e-semicommutative module. Let ere \in $e R e$ and $m \in M$ such that $m($ ere $)=0$. Then, we get $m R($ ere $)=0$. Since $e \in \mathrm{~S}_{\ell}(R)$, we have $0=m(R e)($ ere $)=m(e R e)($ ere $)$. Hence, M_{e} Re is a semicommutative module.
$" \Longleftarrow "$ Assume that $M_{e R e}$ is a semicommutative module. Let $a \in R$ and $m \in M$ such that $m a=0$. Then, we get mae $=0$. Since $e \in S_{\ell}(R)$, we have meae $=0$. Hence, $0=m(e R e)(e a e)=m(R e)(e a e)=m R(e a e)=m R a e$. Thus M_{R} is an e-semicommutative module.

Recall from [4], that a right R-module M_{R} is called principally quasi-Baer (p.q.-Baer for short) if for any $m \in M, \mathrm{r}_{R}(m R)=g R$, where $g \in \operatorname{Id}(R)$.

Proposition 2.8. Let R be an abelian ring, $e \in \operatorname{Id}(R)$ and M_{R} a p.q.-Baer right R-module. If M_{R} is e-semicommutative, then M_{R} is e-reduced.

Proof. Assume that M_{R} is e-semicommutative. Let $a \in R$ and $m \in M$ such that $m a=0$. Then, we get $m R a e=0$. Let $x \in m R \cap M a e$, so there exist $r \in R$ and $n \in M$ such that $x=m r$ and $x=n a e$. Since $a e \in \mathrm{r}_{R}(m R)=g R$, where $g \in \operatorname{Id}(R)$, we get $a e=$ gae. Thus $x=n g a e=n a e g=x g=m r g=m g r=0$. Hence, $m R \cap M a e=0$. Therefore, M_{R} is an e-reduced module.

3. Matrix extensions

This section is devoted to characterize right e-semicommutative 2 -by- 2 generalized upper triangular matrix rings. Moreover, as a corollary we obtain that a ring R is a right e-semicommutative ring if and only if $T_{n}(R)$ is right E semicommutative for all positive integers n.
Theorem 3.1. Let $T=\left(\begin{array}{cc}R & M \\ 0 & S\end{array}\right)$ where R and S are rings, and ${ }_{R} M_{S}$ an (R, S) bimodule. If T is a right $\left(\begin{array}{cc}e & k \\ 0 & g\end{array}\right)$-semicommutative ring, where $\left(\begin{array}{ll}e & k \\ 0 & g\end{array}\right) \in \operatorname{Id}(T)$, then:
(1) R is a right e-semicommutative ring;
(2) S is a right g-semicommutative ring;
(3) M_{S} is a right g-semicommutative S-module.

Proof of Theorem 3.1. Assume that T is a right $\left(\begin{array}{ll}e & k \\ 0 & g\end{array}\right)$-semicommutative ring, where $\left(\begin{array}{ll}e & k \\ 0 & g\end{array}\right) \in \operatorname{Id}(T)$. Then, by easy computations, we can check that $e \in \operatorname{Id}(R), g \in \operatorname{Id}(S)$ and $e k+k g=k$.
(1) Assume that $a b=0$, for $a, b \in R$. Consider the following elements $\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}b & 0 \\ 0 & 0\end{array}\right) \in T$. We have $0=\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}b & 0 \\ 0 & 0\end{array}\right)$. Since T is a right $\left(\begin{array}{ll}e & k \\ 0 & g\end{array}\right)$ semicommutative ring, we get for any $\left(\begin{array}{ll}x & y \\ 0 & z\end{array}\right) \in T$,

$$
0=\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
x & y \\
0 & z
\end{array}\right)\left(\begin{array}{ll}
b & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
e & k \\
0 & g
\end{array}\right)
$$

Hence, axbe $=0$ in R, for any $x \in R$. Therefore, R is a right e-semicommutative ring.
(2) Assume that $\alpha \beta=0$, for $\alpha, \beta \in S$. Consider the following elements $\left(\begin{array}{ll}0 & 0 \\ 0 & \alpha\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & \beta\end{array}\right) \in T$. We have $0=\left(\begin{array}{ll}0 & 0 \\ 0 & \alpha\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 0 & \beta\end{array}\right)$. Since T is a right $\left(\begin{array}{ll}e & k \\ 0 & g\end{array}\right)$-semicommutative ring, we get for any $\left(\begin{array}{ll}x & y \\ 0 & z\end{array}\right) \in T$,

$$
0=\left(\begin{array}{ll}
0 & 0 \\
0 & \alpha
\end{array}\right)\left(\begin{array}{ll}
x & y \\
0 & z
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & \beta
\end{array}\right)\left(\begin{array}{ll}
e & k \\
0 & g
\end{array}\right)
$$

Hence, $\alpha z \beta g=0$ in S, for any $z \in S$. Therefore, S is a right g-semicommutative ring.
(3) Let $a \in S$ and $m \in M$ such that $m a=0$. Consider the following elements $\left(\begin{array}{ll}0 & 0 \\ 0 & a\end{array}\right),\left(\begin{array}{cc}0 & m \\ 0 & 0\end{array}\right) \in T$. We have $0=\left(\begin{array}{cc}0 & m \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 0 & a\end{array}\right)$. Since T is a right $\left(\begin{array}{ll}e & k \\ 0 & g\end{array}\right)$-semicommutative ring, we get for any $\left(\begin{array}{ll}x & y \\ 0 & z\end{array}\right) \in T$,

$$
0=\left(\begin{array}{cc}
0 & m \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
x & y \\
0 & z
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & a
\end{array}\right)\left(\begin{array}{ll}
e & k \\
0 & g
\end{array}\right)
$$

Hence, $m z a g=0$ in M_{S}, for any $z \in S$. Therefore, M_{S} is a right g-semicommutative S-module.
Theorem 3.2. Let $T=\left(\begin{array}{cc}R & M \\ 0 & S\end{array}\right)$, where R and S are rings, and ${ }_{R} M_{S}$ an (R, S)-bimodule. If T is a left $\left(\begin{array}{cc}e & k \\ 0 & g\end{array}\right)$-semicommutative ring, where $\left(\begin{array}{cc}e & k \\ 0 & g\end{array}\right) \in$ $\operatorname{Id}(T)$, then:
(1) R is a left e-semicommutative ring,
(2) S is a left g-semicommutative ring, and
(3) ${ }_{R} M$ is a left e-semicommutative R-module.

Proof of Theorem 3.2. The proof is similar to the proof of Theorem 3.1.
Theorem 3.3. Let $T=\left(\begin{array}{cc}R & M \\ 0 & S\end{array}\right)$ where R and S are rings, and ${ }_{R} M_{S}$ an (R, S)-bimodule. If R is a right e-semicommutative ring, where $e \in \operatorname{Id}(R)$, then T is a right $\left(\begin{array}{ll}e & 0 \\ 0 & 0\end{array}\right)$-semicommutative ring.

Proof of Theorem 3.3. Assume that R is a right e-semicommutative ring, where $e \in \operatorname{Id}(R)$. Let $\left(\begin{array}{cc}a & m \\ 0 & b\end{array}\right),\left(\begin{array}{cc}q & n \\ 0 & p\end{array}\right) \in T$ such that

$$
0=\left(\begin{array}{cc}
a & m \\
0 & b
\end{array}\right)\left(\begin{array}{cc}
q & n \\
0 & p
\end{array}\right)=\left(\begin{array}{cc}
a q & a n+m p \\
0 & b p
\end{array}\right) .
$$

Hence, $a q=0$ in R. Since R is a right e-semicommutative ring, we have auqe $=0$, for any $u \in R$. Thus, for any $\left(\begin{array}{cc}u & t \\ 0 & v\end{array}\right) \in T$, we have

$$
\left(\begin{array}{cc}
a & m \\
0 & b
\end{array}\right)\left(\begin{array}{cc}
u & t \\
0 & v
\end{array}\right)\left(\begin{array}{ll}
q & n \\
0 & p
\end{array}\right)\left(\begin{array}{ll}
e & 0 \\
0 & 0
\end{array}\right)=0 .
$$

Therefore, T is a right $\left(\begin{array}{ll}e & 0 \\ 0 & 0\end{array}\right)$-semicommutative ring.
Corollary 3.1. Let $T_{n}(R)$ be the n-by-n upper triangular matrix ring over a ring R, where $n \geq 1$. Then, the following are equivalent:
(1) R is a right e-semicommutative ring, where $e \in \operatorname{Id}(R)$.
(2) $T_{2}(R)=\left(\begin{array}{ll}R & R \\ 0 & R\end{array}\right)$ is a right $\left(\begin{array}{ll}e & 0 \\ 0 & 0\end{array}\right)$-semicommutative ring.
(3) $T_{n}(R)$ is a right $\left(\begin{array}{cccc}e & 0 & \ldots & 0 \\ 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 0\end{array}\right)$-semicommutative ring for every positive integer n.

Proof. " $(3) \Longrightarrow(1)$ " follows directly from the fact that $T_{1}(R) \cong R$.
" $(1) \Longrightarrow(2)$ " is clear from Theorem 3.3.
" $(2) \Longrightarrow(3)$ " Note that $T_{n+1}(R) \cong\left(\begin{array}{cc}R & M \\ 0 & T_{n}(R)\end{array}\right)$ where M is the 1-by- n row matrix with R in every entry and 0 is the n-by- 1 column zero matrix. So, this implication is proved by using induction on n.

4. Polynomial extensions

This section is intended to motivate our investigation of the behavior of right e-semicommutative modules with respect to polynomial extensions.

Recall the following extensions of a right R-module M_{R} :

$$
M[x]=\left\{\varphi(x)=\sum_{i=0}^{n} m_{i} x^{i}: m_{i} \in M\right\}
$$

$M[x]$ is a right $R[x]$-module and $M[x]_{R[x]}$ is called the usual polynomial extension of M_{R}.

$$
M\left[x, x^{-1}\right]=\left\{\varphi(x)=\sum_{i=-k}^{n} m_{i} x^{i}: m_{i} \in M\right\}
$$

$M\left[x, x^{-1}\right]$ is a right $R\left[x, x^{-1}\right]$-module and $M\left[x, x^{-1}\right]_{R\left[x, x^{-1}\right]}$ is called the usual Laurent polynomial extension of M_{R}.

We mean by a regular element of a ring R, a nonzero element which is not a zero divisor.

Theorem 4.1. Let R be a ring, Δ be a multiplicatively closed subset of R consisting of central regular elements, $1 \in \Delta$ and $e \in \operatorname{Id}(R)$. Then, M_{R} is esemicommutative if and only if $\left(\Delta^{-1} M\right)_{\left(\Delta^{-1} R\right)}$ is $\left(1^{-1} e\right)$-semicommutative.

Proof of Theorem 4.1. Suppose that M_{R} is e-semicommutative. Let $a \in R$, $m \in M$ and $u, w \in \Delta$ such that $\left(w^{-1} m\right)\left(u^{-1} a\right)=0$ in $\left(\Delta^{-1} M\right)_{\left(\Delta^{-1} R\right)}$. Since Δ is contained in the center of R, we have $0=\left(w^{-1} u^{-1}\right)(m a)=(w u)^{-1}(m a)$, and so $m a=0$. Hence, for any $r \in R$, we have $m r a e=0$. So, in $\left(\Delta^{-1} M\right)_{\left(\Delta^{-1} R\right)}$, we have for any $v \in \Delta, 0=(w v u)^{-1}($ mrae $)=\left(w^{-1} v^{-1} u^{-1} 1^{-1}\right)($ mrae $)$. Thus

$$
\left(w^{-1} m\right)\left(v^{-1} r\right)\left(u^{-1} a\right)\left(1^{-1} e\right)=0
$$

Hence, $\left(\Delta^{-1} M\right)_{\left(\Delta^{-1} R\right)}$ is $\left(1^{-1} e\right)$-semicommutative.
It is clear that if $\left(\Delta^{-1} M\right)_{\left(\Delta^{-1} R\right)}$ is $\left(1^{-1} e\right)$-semicommutative, then M_{R} is e-semicommutative.

Corollary 4.1. Let R be a ring and $e \in \operatorname{Id}(R)$. Then, $M[x]_{R[x]}$ is e-semicommutative if and only if $M\left[x, x^{-1}\right]_{R\left[x, x^{-1}\right]}$ is e-semicommutative.

Proof. Consider the multiplicatively closed set $\Delta=\left\{1, x, x^{2}, x^{3}, \ldots\right\}$ which is clearly a subset of $R[x]$ consisting of central regular elements. Since $\Delta^{-1} R[x]=$ $R\left[x, x^{-1}\right]$ and $\Delta^{-1} M[x]=M\left[x, x^{-1}\right]$, the result follows directly from Theorem 4.1.

References

[1] H. Abd-Elmalk, e-symmetric modules, to appear in Honam Mathematical Journal, 43 (2021), 199-207.
[2] D. Anderson, V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra, 26 (1998), 2265-2272.
[3] H. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc., 2 (1970), 363-368.
[4] G. Birkenmeier, J. Kim, J. Park, Principally quasi-Baer rings, Comm. Algebra, 29 (2001), 639-660.
[5] A. Buhphang, M. Rege, Semicommutative modules and Armendariz modules, Arab J. Math. Sci., 8 (2002), 53-65.
[6] N. Kim, Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra, 185 (2003), 207-223.
[7] H. Kose, B. Ungor, A. Harmanci, Semicommutativity of rings by the way of idempotents, Filomat, 33 (2019), 3497-3508.
[8] J. Lambek, On the representations of modules by sheaves of factor modules, Canad. Math. Bull., 14 (1971), 359-368.
[9] T. Lee, Y. Zhou, Reduced modules, Rings, Modules, Algebras and Abelian Groups, 365-377, Lecture Notes in Pure and Appl. Math. 236, Marcel Dekker, New York, 2004.
[10] F. Meng, J. Wei, e-symmetric rings, Comm. Contemp. Math., 20 (2018), 1750039.
[11] R. Rapheael, Some remarks on regular and strongly regular rings, Canad. Math. Bull., 17 (1974/75), 709-712.
[12] G. Renault, Anneaux reduits non commutatifs, J. Math. Pures Appl., 46 (1967), 203-214.

Accepted: February 25, 2021

