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1. Introduction

Throughout this paper, all rings are associative with unity. R denotes an as-
sociative ring with unity, Mg is a unitary right R-module, Id (R) denotes the
set of all idempotent elements of R, N (R) denotes the set of all nilpotent ele-
ments of R, C(R) denotes the center of R, S;,(R) = {e€Id(R):eRe=¢e¢R}
denotes the set of all right semicentral idempotent elements of R, Sy(R) =
{e €Id(R) : e Re = R e} denotes the set of all left semicentral idempotent el-
ements of R, and rr(M) = {a € R: Ma = 0} denotes the right annihilator of
M in R.

A ring R is said to be abelian if Id (R) C C(R). A ring R is called reduced
if N(R) = 0. This concept of reduced rings was extended to modules [9] as
follows: a right R-module Mg is reduced if, for any m € M and any a € R,
ma = 0 implies mR N Ma = 0. Recall from [10], R is a right e-reduced ring,
where e € Id(R), if N(R)e = 0. A ring R is called symmetric [8] if whenever
a,b,c € R such that abc = 0, we have acb = 0. Recall from Refs. [8] and [11], a
right R-module My is called symmetric if whenever a,b € R and m € M such
that mab = 0 implies mba = 0. Following [10], a ring R is called e-symmetric,
for e € Id(R), if whenever a,b,c € R such that abc = 0, we have acbe = 0.

Introduce of these properties via idempotents, inspires us to extend the
notions of e-reduced and e-symmetric to modules as follows:

Definition 1.1 ([1]). A right R-module Mp, is called e-reduced, where e € 1d(R),
if whenever a € R and m € M such that ma = 0 implies mR N Mae = 0.

Definition 1.2 ([1]). A right R-module Mg is called e-symmetric, where e €
Id(R), if whenever a,b € R and m € M such that mab = 0 implies mbae = 0.
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A ring R is an e-reduced (e-symmetric) ring if and only if Rp is an e-reduced
(e-symmetric) module.

According to [3] a ring R is called semicommutative, if whenever a,b € R
satisfy ab = 0, then aRb = 0. A right R-module Mgy, is called semicommutative
[5], if whenever a € R and m € M satisfy ma = 0, then mRa = 0. Recall from
[7], a ring R is called e-semicommutative, for e € Id(R), if whenever a,b € R
such that ab = 0, we have aRbe = 0.

So it is natural to motivate us to extend the condition of e-semicommutativity
to Module Theory.

2. Modules with e-semicommutative condition

In this section, we extend the notion of e-semicommutative rings to modules as
follows:

Definition 2.1. A right R-module Mg is called e-semicommutative, where e €
Id(R), if whenever a € R and m € M such that ma = 0 implies mRae = 0.

Obviously, R is an e-semicommutative ring if and only if Ry is an e-semi-
commutative module.

Clearly, any semicommutative module is an e-semicommutative module,
for any e € Id(R), and every an e-reduced (e-symmetric) module is e-semi-
commutative. The following examples demonstrate rather strikingly that the
class of e-semicommutative modules is properly contains the class of semi-
commutative modules.

Example 2.1. Let S be a semicommutative ring and R = ( 0 S

5 S) . Consider

a I‘lght R_module MR = R[LE]R Assume that A == <(1) 8) ) B = (8 ?) and

C = <é }) € R. We see that (Az + A)B = 0 but (Az + A)CB # 0. Then,

11
0 0
can show that Mpg is E-semicommutative. Let f(z) = Y, Az’ € M, where

Mp is not semicommutative. Now for the idempotent £ = < > € R, we

A; = @ bi € R for every ¢ = 0,1,...,n, and B = Y %) ¢ R such that
0 ¢ 0 wv
a;w  a;u+ b

f(z)B=0. Then, 0 = A;B = 0 v

> for every ¢ = 0,1, ..., n. Hence,

0
f(z)CBE =" (A;,CBE) ' = 0. Therefore, Mg is E-semicommutative.

a;w =0, ¢;uv =0 and a;u + b;v = 0. For any element C' = <x Z) € R, we have
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S 0 0
Example 2.2. Let S be a semicommutative ringand R=[S S S| . Con-
0 0 S
1 00 00 O
sider Rp as aright R-module. Assumethatm= (0 1 1}],a=(0 0 -1],
0 00 0 0 1
1 00
b=|(1 0 0] € R. We see that ma = 0 but mba # 0. Then, Rp is not semi-
0 01
0 00
commutative. Now for the idempotent e = {0 1 0|, we can show that Rp
0 00
0 O
is e-semicommutative. Let m = y1 zl wl) = zo wy | € R such
0 V2
that ma = 0. Hence, z1x2 = 2120 = v1v2 = 21w = wivy = 0 and y1x2 + 21y2 =
xz 0 0 0 0 0
0. For any element r = |y 2z w | € R, we have mrae = [0 21220 0| =0,
0 0 w 0 0 0

since Sg is semicommutative. Therefore, Rg is e-semicommutative.

Proposition 2.1. The class of e-semicommutative modules is closed under sub-
modules, direct products and so direct sums.

Proof. The proof is immediate from the definitions and algebraic structures.
O

Proposition 2.2. Let R be a ring, e € Id(R) and Mg a right R-module.
Mp is e-semicommutative if and only if every cyclic submodule of Mg is e-
semicommutative.

Proof. Assume that every cyclic submodule of Mg is e-semicommutative. Let
a € R and m € M such that ma = 0 in M. Consider the cyclic submodule mR,
we have ma = 0 in mR. Since mR is e-semicommutative, we get mRae = 0.
Hence, My, is e-semicommutative. ]

Proposition 2.3. Let R be a ring, e € Id(R) and Mg a right R-module. Then,
the following two conditions are equivalent:

1) Mg is an e-semicommutative module.

2) NA =0 implies NRAe = 0 for any nonempty subset N in M and A in
R.

Proof. "(1) = (2)" Assume that Mp is e-semicommutative and N is a subset
of M and A is a subset of R such that NA = 0. Then, for any n € N and
a € A, we have na = 0. Thus, nRae = 0. Then, ZnEN,aGA nRae = 0. Hence,
NRAe =0.
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“(2) = (1)" Assume that a € R and m € M such that ma = 0. Then, My
is e-semicommutative follows directly if we set N = {m} and A = {a}. O

Proposition 2.4. Let R be a ring with every right ideal is two sided and e €
Id(R). Then, every right R-module is e-semicommutative.

Proof. Suppose that Mg is a right R-module. Let a € R and m € M such
that ma = 0. From our assumption, the right ideal ae R is two sided. Then,
we have Rae C ae R. So, we get m R ae C mae R = 0. Therefore, Mp is
e-semicommutative. 0

Proposition 2.5. Let R,S be rings, e € Id(R) and ¢ : R — S be a ring
homomorphism. If Mg is a right S-module, then M 1is a right R-module via
mr = mp(r) for allr € R and m € M. Then, we get:

(1) If Mg is a p(e)-semicommutative module, then Mg is an e-semicommu-
tative module.

(2) If ¢ is onto and Mg is an e-semicommutative module, then Mg is a
p(e)-semicommutative module.

Proof. (1) Suppose that Mg is a ¢(e)-semicommutative module. Let a € R and
m € M such that ma = 0. Then, my(a) = 0. Since Mg is ¢(e)-semicommutative,
we have msp(a)p(e) = 0 for all s € S. Hence, for any r € R, we have mrae =
mep(rae) = me(r)p(a)p(e) = 0. Therefore, My is an e-semicommutative mod-
ule.

(2) Suppose that ¢ is onto and Mp is an e-semicommutative module. Let
x € S and m € M such that mz = 0. Since ¢ is onto, there exists a € R such
that x = ¢(a). Then, 0 = mz = my(a) = ma. Since Mg is e-semicommutative,
implies mRae = 0. Hence, 0 = my(R)p(a)p(e) = mSzp(e). Thus Mg is a
©(e)-semicommutative module. O

Corollary 2.1. Let R be a ring, e € Id(R), Mg a right R-module and R =
R /rr(M) . Mg is an e-semicommutative module if and only if Mz is an e-
semicommutative module.

Proof. This is a consequence of Proposition 2.5, if we consider the canonical
epimorphism ¢ : R — R defined by ¢(r) =7 =r +rg(M), for all r € R. O

Proposition 2.6. Let R be a ring, e € C(R) and Mg a right R-module. Then,
Mpg is an e-semicommutative module if and only if M r. is a semicommutative
module.

Proof. © =" Assume that Mp is an e-semicommutative module. Let a €
Re C R and m € M such that ma = 0. Then, we get mRae = 0. Since
e € C(R), we have m R ea = 0. Hence, M. is a semicommutative module.

© «="Assume that Mp. is a semicommutative module. Let ¢ € R and
m € M such that ma = 0. Then, we get m R ea = 0. Since e € C(R), we have
m R ae = 0. Thus Mg is an e-semicommutative module. O
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Corollary 2.2. Let R be a ring, e € C(R) and Mg a right R-module. If M g,
and Mp(1_e) are semicommutative modules, then Mp is a semicommutative
module.

Proof. We can easily check that e € C(R) if and only if (1 —e) € C(R).
From Proposition 2.6, we conclude that Mpg is both e-semicommutative and
(1 — e)-semicommutative. Now let a € R and m € M such that ma = 0. Thus
mRae = 0 and mRa(1 —e) = 0, which implies that mRa = 0. Therefore, Mp, is
a semicommutative module. O

Proposition 2.7. Let R be a ring, e € Sp(R) and Mg a right R-module. Then,
Mg is an e-semicommutative module if and only if M re s a semicommutative
module.

Proof. © = Assume that Mg is an e-semicommutative module. Let ere €
e Re and m € M such that m (ere) = 0. Then, we get m R (ere) = 0. Since
e € Sy(R), we have 0 = m(Re)(ere) = m(e Re)(ere). Hence, Mc.g. is a
semicommutative module.

© «="Assume that M. g, is a semicommutative module. Let a € R and
m € M such that ma = 0. Then, we get mae = 0. Since e € Sy(R), we have
meae = 0. Hence, 0 = m (e Re) (eae) = m (R e) (eae) = mR (eae) = mRae.
Thus Mg is an e-semicommutative module. ]

Recall from [4], that a right R-module Mp is called principally quasi-Baer
(p.q.-Baer for short) if for any m € M, rr(mR) = gR, where g € Id(R).

Proposition 2.8. Let R be an abelian ring, e € Id(R) and Mpr a p.q.-Baer
right R-module. If Mg is e-semicommutative, then Mp is e-reduced.

Proof. Assume that Mg is e-semicommutative. Let ¢ € R and m € M such
that ma = 0. Then, we get mRae = 0. Let x € mR N Mae, so there exist r € R
and n € M such that x = mr and & = nae. Since ae € rg(mR) = gR, where
g € I1d(R), we get ae = gae. Thus z = ngae = naeg = xg = mrg = mgr = 0.
Hence, mR N Mae = 0. Therefore, Mg is an e-reduced module. O

3. Matrix extensions

This section is devoted to characterize right e-semicommutative 2-by-2 gener-
alized upper triangular matrix rings. Moreover, as a corollary we obtain that
a ring R is a right e-semicommutative ring if and only if 7, (R) is right E-
semicommutative for all positive integers n.

R

Theorem 3.1. LetT = <0

Ag,) where R and S are rings, and pMg an (R, S)-

bimodule. If T is a right <(6) I;) -semicommutative ring, where <(6) I;) e 1d(7),

then:
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(1) R is a right e-semicommutative ring;
(2) S is a right g-semicommutative ring;
(3) Mg is a right g-semicommutative S-module.

e

Proof of Theorem 3.1. Assume that T is a right <0

) -semicommutative

ring, where € Id(T). Then, by easy computations, we can check that

e
0
e€ld(R),g € 1d(S) and ek + kg = k.

(1) Assume that ab = 0, for a,b € R. Consider the following elements

a 0 b 0 a 0\ (b 0 . . . e k
(0 0),(0 0>€T.Wehave0—(0 0) (O O).SlnceTlsanght (0 g)_

semicommutative ring, we get for any 0 Z eT,

0= (¢ 0\ fz y\ (b 0\ [e k
~\0 0/\0 z)J\0 O0/\O ¢/’
Hence, axbe = 0 in R, for any x € R. Therefore, R is a right e-semicommutative

ring.
(2) Assume that a8 = 0, for «,8 € S. Consider the following elements

0 0 0 0 0 0\ /0 O . . .
<O a)’ (0 5) € T. We have 0 = (0 a> (0 ﬁ>' Since T is a right

<g f;) -semicommutative ring, we get for any (g Z) eT,

(G DE N6

Hence, azfBg = 0 in S, for any z € S. Therefore, S is a right g-semicommutative
ring.
(3) Let a € S and m € M such that ma = 0. Consider the following

0 0 0 m 0 m\ /0 O . .
elements (O a)’(O 0) € T. We have 0 = (0 0> <0 a).SmceTlsa

right (8 l;) -semicommutative ring, we get for any (g ‘Z

-GG DE D6

Hence, mzag = 0 in Mg, for any z € S. Therefore, Mg is a right g-semicommu-
tative S-module.

Jer,

R M

Theorem 3.2. Let T = (0 g

> , where R and S are rings, and rMg an

(R, S)-bimodule. If T is a left (8 ];> -semicommutative ring, where <8 ];> €
Id(T), then:
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(1) R is a left e-semicommutative ring,
(2) S is a left g-semicommutative ring, and
(8) rRM is a left e-semicommutative R-module.

Proof of Theorem 3.2. The proof is similar to the proof of Theorem 3.1.

Theorem 3.3. Let T = (R M) where R and S are rings, and rpMg an

0 S
(R, S)-bimodule. If R is a right e-semicommutative ring, where e € Id(R), then

. . 0 . . .
T is a right (8 0) -semicommutative ring.

Proof of Theorem 3.3. Assume that R is a right e-semicommutative ring,

a m qg n
where e € Id(R). Let <0 b> , <O p) € T such that

O_am g n\ _(ag an+mp
~\0 b/J\0 p/ \O bp ’

Hence, ag = 0in R. Since R is a right e-semicommutative ring, we have auge = 0,

t> € T, we have
0 v

GG D66

e 0 . . .
0 0) -semicommutative ring.

for any u € R. Thus, for any (u

Therefore, T is a right <

Corollary 3.1. Let T,,(R) be the n-by-n upper triangular matriz ring over a
ring R, where n > 1. Then, the following are equivalent:
(1) R is a right e-semicommutative ring, where e € Id(R).

(2) Tr(R) = <R R) is a right (e 0) -semicommutative ring.

0 R 0 0
e 0 .. 0
00 .. 0
(3) Th(R) is a right | . . . | -semicommutative ring for every posi-
0 0 0

tive integer n.

Proof. “(3) = (1) follows directly from the fact that 77 (R) = R.
(1) = (2)” is clear from Theorem 3.3.
113 ” ~U R M
(2) = (3) Note that Tp,+1(R) = <0 To(R)
matrix with R in every entry and 0 is the n-by-1 column zero matrix. So, this
implication is proved by using induction on n. O

> where M is the 1-by-n row
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4. Polynomial extensions

This section is intended to motivate our investigation of the behavior of right
e-semicommutative modules with respect to polynomial extensions.
Recall the following extensions of a right R-module Mp :

M [z] = {g@(:z:) = Zmlzﬂ tmy; € M}
=0

M [z] is a right R [z]-module and M [x] g, is called the usual polynomial exten-
sion of MRg.

Mz, z Y = {gp(:r) = Z mz' :m; € M}

i=—k

Mz, z~ 1] is a right R[z,z~!]-module and M[m,x_l]R[xyx_l] is called the usual
Laurent polynomial extension of Mg.

We mean by a regular element of a ring R, a nonzero element which is not
a zero divisor.

Theorem 4.1. Let R be a ring, A be a multiplicatively closed subset of R
consisting of central regular elements, 1 € A and e € Id(R). Then, Mg is e-
semicommutative if and only if (AflM) (A-1R) is (1*16) -semicommutative.

Proof of Theorem 4.1. Suppose that Mp is e-semicommutative. Let a € R,
m € M and u,w € A such that (w_lm) (u‘la) =0 in (A_IM) (A-1R) " Since
A is contained in the center of R, we have 0 = (w™tu™!) (ma) = (wu) ™! (ma),

and so ma = 0. Hence, for any r € R, we have mrae = 0. So, in (A_lM) (A-1R)

we have for any v € A, 0 = (wou) ' (mrae) = (w™tv w171 (mrae) . Thus
(w_lm) (v_lr) (u_la) (1_16) =0.

Hence, (A‘lM) (A-1R

It is clear that if (A_IM)
e-semicommutative.

) is (1 -1 e) -semicommutative.

(A-1R) is (1_16)—semicommutative, then Mp is

Corollary 4.1. Let R be a ring and e € Id(R). Then, M [x] g, is e-semicommu-

tative if and only if M|z, x_l]R[w,z_q is e-semicommutative.

Proof. Consider the multiplicatively closed set A = {1,3:, z2, 23, } which is
clearly a subset of R[] consisting of central regular elements. Since A™'R [z] =
R[z,x71] and A™'M [z] = M[z,27 ], the result follows directly from Theo-
rem 4.1. O
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