e-semicommutative modules

Hanan Abd-Elmalk

Department of Mathematics Faculty of Science Ain Shams University P.O. Box 11566, Abbasaya Cairo Egypt hanan_abdelmalk@sci.asu.edu.eg

Abstract. *e*-semicommutative modules and their related properties. Also, we investigate some extensions of rings and modules in terms of *e*-semicommutativity. **Keywords:** reduced ring, symmetric ring, e-reduced ring, e-symmetric ring.

1. Introduction

Throughout this paper, all rings are associative with unity. R denotes an associative ring with unity, M_R is a unitary right R-module, $\mathrm{Id}(R)$ denotes the set of all number elements of R, $\mathrm{C}(R)$ denotes the center of R, $\mathrm{S}_{\mathrm{r}}(R) = \{e \in \mathrm{Id}(R) : e \ R \ e = e \ R\}$ denotes the set of all right semicentral idempotent elements of R, $\mathrm{S}_{\ell}(R) = \{e \in \mathrm{Id}(R) : e \ R \ e = R \ e\}$ denotes the set of all left semicentral idempotent elements of R, and $\mathrm{r}_R(M) = \{a \in R : Ma = 0\}$ denotes the right annihilator of M in R.

A ring R is said to be abelian if $\operatorname{Id}(R) \subseteq \operatorname{C}(R)$. A ring R is called reduced if $\operatorname{N}(R) = 0$. This concept of reduced rings was extended to modules [9] as follows: a right R-module M_R is reduced if, for any $m \in M$ and any $a \in R$, ma = 0 implies $mR \cap Ma = 0$. Recall from [10], R is a right e-reduced ring, where $e \in \operatorname{Id}(R)$, if $\operatorname{N}(R) e = 0$. A ring R is called symmetric [8] if whenever $a, b, c \in R$ such that abc = 0, we have acb = 0. Recall from Refs. [8] and [11], a right R-module M_R is called symmetric if whenever $a, b \in R$ and $m \in M$ such that mab = 0 implies mba = 0. Following [10], a ring R is called e-symmetric, for $e \in \operatorname{Id}(R)$, if whenever $a, b, c \in R$ such that abc = 0, we have acbe = 0.

Introduce of these properties via idempotents, inspires us to extend the notions of *e*-reduced and *e*-symmetric to modules as follows:

Definition 1.1 ([1]). A right *R*-module M_R is called *e*-reduced, where $e \in Id(R)$, if whenever $a \in R$ and $m \in M$ such that ma = 0 implies $mR \cap Mae = 0$.

Definition 1.2 ([1]). A right *R*-module M_R is called e-symmetric, where $e \in Id(R)$, if whenever $a, b \in R$ and $m \in M$ such that mab = 0 implies mbae = 0.

A ring R is an e-reduced (e-symmetric) ring if and only if R_R is an e-reduced (e-symmetric) module.

According to [3] a ring R is called semicommutative, if whenever $a, b \in R$ satisfy ab = 0, then aRb = 0. A right R-module M_R is called semicommutative [5], if whenever $a \in R$ and $m \in M$ satisfy ma = 0, then mRa = 0. Recall from [7], a ring R is called *e*-semicommutative, for $e \in Id(R)$, if whenever $a, b \in R$ such that ab = 0, we have aRbe = 0.

So it is natural to motivate us to extend the condition of *e*-semicommutativity to Module Theory.

2. Modules with *e*-semicommutative condition

In this section, we extend the notion of *e*-semicommutative rings to modules as follows:

Definition 2.1. A right R-module M_R is called e-semicommutative, where $e \in Id(R)$, if whenever $a \in R$ and $m \in M$ such that ma = 0 implies mRae = 0.

Obviously, R is an *e*-semicommutative ring if and only if R_R is an *e*-semicommutative module.

Clearly, any semicommutative module is an *e*-semicommutative module, for any $e \in Id(R)$, and every an *e*-reduced (*e*-symmetric) module is *e*-semicommutative. The following examples demonstrate rather strikingly that the class of *e*-semicommutative modules is properly contains the class of semicommutative modules.

Example 2.1. Let *S* be a semicommutative ring and $R = \begin{pmatrix} S & S \\ 0 & S \end{pmatrix}$. Consider a right *R*-module $M_R = R[x]_R$. Assume that $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ and $C = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in R$. We see that (Ax + A)B = 0 but $(Ax + A)CB \neq 0$. Then, M_R is not semicommutative. Now for the idempotent $E = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \in R$, we can show that M_R is *E*-semicommutative. Let $f(x) = \sum_{i=0}^n A_i x^i \in M$, where $A_i = \begin{pmatrix} a_i & b_i \\ 0 & c_i \end{pmatrix} \in R$ for every i = 0, 1, ..., n, and $B = \begin{pmatrix} w & u \\ 0 & v \end{pmatrix} \in R$ such that f(x)B = 0. Then, $0 = A_iB = \begin{pmatrix} a_iw & a_iu + b_iv \\ 0 & c_iv \end{pmatrix}$ for every i = 0, 1, ..., n. Hence, $a_iw = 0, c_iv = 0$ and $a_iu + b_iv = 0$. For any element $C = \begin{pmatrix} x & y \\ 0 & z \end{pmatrix} \in R$, we have $f(x)CBE = \sum_{i=0}^n (A_iCBE) x^i = 0$. Therefore, M_R is *E*-semicommutative. **Example 2.2.** Let S be a semicommutative ring and $R = \begin{pmatrix} S & 0 & 0 \\ S & S & S \\ 0 & 0 & S \end{pmatrix}$. Consider R_R as a right R-module. Assume that $m = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, $a = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix}$,

$$b = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in R.$$
 We see that $ma = 0$ but $mba \neq 0$. Then, R_R is not semi-

commutative. Now for the idempotent $e = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, we can show that R_R

is e-semicommutative. Let
$$m = \begin{pmatrix} x_1 & 0 & 0 \\ y_1 & z_1 & w_1 \\ 0 & 0 & v_1 \end{pmatrix}$$
, $a = \begin{pmatrix} x_2 & 0 & 0 \\ y_2 & z_2 & w_2 \\ 0 & 0 & v_2 \end{pmatrix} \in R$ such that $ma = 0$. Hence, $x_1x_2 = z_1z_2 = v_1v_2 = z_1w_2 = w_1v_2 = 0$ and $y_1x_2 + z_1y_2 = 0$. For any element $r = \begin{pmatrix} x & 0 & 0 \\ y & z & w \\ 0 & 0 & v \end{pmatrix} \in R$, we have $mrae = \begin{pmatrix} 0 & 0 & 0 \\ 0 & z_1zz_2 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 0$, since S_S is semicommutative. Therefore, R_R is e-semicommutative.

Proposition 2.1. The class of e-semicommutative modules is closed under submodules, direct products and so direct sums.

Proof. The proof is immediate from the definitions and algebraic structures. \Box

Proposition 2.2. Let R be a ring, $e \in Id(R)$ and M_R a right R-module. M_R is e-semicommutative if and only if every cyclic submodule of M_R is e-semicommutative.

Proof. Assume that every cyclic submodule of M_R is *e*-semicommutative. Let $a \in R$ and $m \in M$ such that ma = 0 in M. Consider the cyclic submodule mR, we have ma = 0 in mR. Since mR is *e*-semicommutative, we get mRae = 0. Hence, M_R is *e*-semicommutative.

Proposition 2.3. Let R be a ring, $e \in Id(R)$ and M_R a right R-module. Then, the following two conditions are equivalent:

1) M_R is an e-semicommutative module.

2) NA = 0 implies NRAe = 0 for any nonempty subset N in M and A in R.

Proof. "(1) \Longrightarrow (2)" Assume that M_R is *e*-semicommutative and N is a subset of M and A is a subset of R such that NA = 0. Then, for any $n \in N$ and $a \in A$, we have na = 0. Thus, nRae = 0. Then, $\sum_{n \in N, a \in A} nRae = 0$. Hence, NRAe = 0.

"(2) \implies (1)" Assume that $a \in R$ and $m \in M$ such that ma = 0. Then, M_R is *e*-semicommutative follows directly if we set $N = \{m\}$ and $A = \{a\}$.

Proposition 2.4. Let R be a ring with every right ideal is two sided and $e \in Id(R)$. Then, every right R-module is e-semicommutative.

Proof. Suppose that M_R is a right *R*-module. Let $a \in R$ and $m \in M$ such that ma = 0. From our assumption, the right ideal ae R is two sided. Then, we have $R ae \subseteq ae R$. So, we get $m R ae \subseteq mae R = 0$. Therefore, M_R is *e*-semicommutative.

Proposition 2.5. Let R, S be rings, $e \in Id(R)$ and $\varphi : R \to S$ be a ring homomorphism. If M_S is a right S-module, then M is a right R-module via $mr = m\varphi(r)$ for all $r \in R$ and $m \in M$. Then, we get:

(1) If M_S is a $\varphi(e)$ -semicommutative module, then M_R is an e-semicommutative module.

(2) If φ is onto and M_R is an e-semicommutative module, then M_S is a $\varphi(e)$ -semicommutative module.

Proof. (1) Suppose that M_S is a $\varphi(e)$ -semicommutative module. Let $a \in R$ and $m \in M$ such that ma = 0. Then, $m\varphi(a) = 0$. Since M_S is $\varphi(e)$ -semicommutative, we have $ms\varphi(a)\varphi(e) = 0$ for all $s \in S$. Hence, for any $r \in R$, we have $mrae = m\varphi(rae) = m\varphi(r)\varphi(a)\varphi(e) = 0$. Therefore, M_R is an *e*-semicommutative module.

(2) Suppose that φ is onto and M_R is an e-semicommutative module. Let $x \in S$ and $m \in M$ such that mx = 0. Since φ is onto, there exists $a \in R$ such that $x = \varphi(a)$. Then, $0 = mx = m\varphi(a) = ma$. Since M_R is e-semicommutative, implies mRae = 0. Hence, $0 = m\varphi(R)\varphi(a)\varphi(e) = mSx\varphi(e)$. Thus M_S is a $\varphi(e)$ -semicommutative module.

Corollary 2.1. Let R be a ring, $e \in Id(R)$, M_R a right R-module and $\overline{R} = R/r_R(M)$. M_R is an e-semicommutative module if and only if $M_{\overline{R}}$ is an \overline{e} -semicommutative module.

Proof. This is a consequence of Proposition 2.5, if we consider the canonical epimorphism $\varphi: R \to \overline{R}$ defined by $\varphi(r) = \overline{r} = r + r_R(M)$, for all $r \in R$. \Box

Proposition 2.6. Let R be a ring, $e \in C(R)$ and M_R a right R-module. Then, M_R is an e-semicommutative module if and only if M_{Re} is a semicommutative module.

Proof. " \implies " Assume that M_R is an *e*-semicommutative module. Let $a \in R \ e \subseteq R$ and $m \in M$ such that ma = 0. Then, we get mRae = 0. Since $e \in C(R)$, we have $m \ R \ ea = 0$. Hence, M_{Re} is a semicommutative module.

" \Leftarrow " Assume that M_{Re} is a semicommutative module. Let $a \in R$ and $m \in M$ such that ma = 0. Then, we get m R ea = 0. Since $e \in C(R)$, we have m R ae = 0. Thus M_R is an *e*-semicommutative module.

Corollary 2.2. Let R be a ring, $e \in C(R)$ and M_R a right R-module. If M_{Re} and $M_{R(1-e)}$ are semicommutative modules, then M_R is a semicommutative module.

Proof. We can easily check that $e \in C(R)$ if and only if $(1 - e) \in C(R)$. From Proposition 2.6, we conclude that M_R is both *e*-semicommutative and (1 - e)-semicommutative. Now let $a \in R$ and $m \in M$ such that ma = 0. Thus mRae = 0 and mRa(1 - e) = 0, which implies that mRa = 0. Therefore, M_R is a semicommutative module.

Proposition 2.7. Let R be a ring, $e \in S_{\ell}(R)$ and M_R a right R-module. Then, M_R is an e-semicommutative module if and only if M_{eRe} is a semicommutative module.

Proof. " \Longrightarrow " Assume that M_R is an *e*-semicommutative module. Let $ere \in e \ R \ e \ and \ m \in M$ such that m(ere) = 0. Then, we get $m \ R(ere) = 0$. Since $e \in S_{\ell}(R)$, we have $0 = m \ (R \ e) \ (ere) = m \ (e \ R \ e) \ (ere)$. Hence, M_{eRe} is a semicommutative module.

" \Leftarrow " Assume that M_{eRe} is a semicommutative module. Let $a \in R$ and $m \in M$ such that ma = 0. Then, we get mae = 0. Since $e \in S_{\ell}(R)$, we have meae = 0. Hence, 0 = m(eRe)(eae) = m(Re)(eae) = mR(eae) = mRae. Thus M_R is an e-semicommutative module.

Recall from [4], that a right *R*-module M_R is called principally quasi-Baer (p.q.-Baer for short) if for any $m \in M$, $r_R(mR) = gR$, where $g \in Id(R)$.

Proposition 2.8. Let R be an abelian ring, $e \in Id(R)$ and M_R a p.q.-Baer right R-module. If M_R is e-semicommutative, then M_R is e-reduced.

Proof. Assume that M_R is e-semicommutative. Let $a \in R$ and $m \in M$ such that ma = 0. Then, we get mRae = 0. Let $x \in mR \cap Mae$, so there exist $r \in R$ and $n \in M$ such that x = mr and x = nae. Since $ae \in r_R(mR) = gR$, where $g \in Id(R)$, we get ae = gae. Thus x = ngae = naeg = xg = mrg = mgr = 0. Hence, $mR \cap Mae = 0$. Therefore, M_R is an e-reduced module.

3. Matrix extensions

This section is devoted to characterize right e-semicommutative 2-by-2 generalized upper triangular matrix rings. Moreover, as a corollary we obtain that a ring R is a right e-semicommutative ring if and only if $T_n(R)$ is right Esemicommutative for all positive integers n.

Theorem 3.1. Let
$$T = \begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$$
 where R and S are rings, and $_RM_S$ an (R, S) -
bimodule. If T is a right $\begin{pmatrix} e & k \\ 0 & g \end{pmatrix}$ -semicommutative ring, where $\begin{pmatrix} e & k \\ 0 & g \end{pmatrix} \in \mathrm{Id}(T)$, then:

- (1) R is a right e-semicommutative ring;
- (2) S is a right g-semicommutative ring;
- (3) M_S is a right g-semicommutative S-module.

Proof of Theorem 3.1. Assume that T is a right $\begin{pmatrix} e & k \\ 0 & g \end{pmatrix}$ -semicommutative ring, where $\begin{pmatrix} e & k \\ 0 & g \end{pmatrix} \in \mathrm{Id}(T)$. Then, by easy computations, we can check that $e \in \mathrm{Id}(R), g \in \mathrm{Id}(S)$ and ek + kg = k.

(1) Assume that ab = 0, for $a, b \in R$. Consider the following elements $\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} b & 0 \\ 0 & 0 \end{pmatrix} \in T$. We have $0 = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} b & 0 \\ 0 & 0 \end{pmatrix}$. Since T is a right $\begin{pmatrix} e & k \\ 0 & g \end{pmatrix}$ -semicommutative ring, we get for any $\begin{pmatrix} x & y \\ 0 & z \end{pmatrix} \in T$,

$$0 = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x & y \\ 0 & z \end{pmatrix} \begin{pmatrix} b & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} e & k \\ 0 & g \end{pmatrix}.$$

Hence, axbe = 0 in R, for any $x \in R$. Therefore, R is a right *e*-semicommutative ring.

(2) Assume that $\alpha\beta = 0$, for $\alpha, \beta \in S$. Consider the following elements $\begin{pmatrix} 0 & 0 \\ 0 & \alpha \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & \beta \end{pmatrix} \in T$. We have $0 = \begin{pmatrix} 0 & 0 \\ 0 & \alpha \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & \beta \end{pmatrix}$. Since T is a right $\begin{pmatrix} e & k \\ 0 & g \end{pmatrix}$ -semicommutative ring, we get for any $\begin{pmatrix} x & y \\ 0 & z \end{pmatrix} \in T$, $0 = \begin{pmatrix} 0 & 0 \\ 0 & \alpha \end{pmatrix} \begin{pmatrix} x & y \\ 0 & z \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & \beta \end{pmatrix} \begin{pmatrix} e & k \\ 0 & g \end{pmatrix}$.

Hence, $\alpha z \beta g = 0$ in S, for any $z \in S$. Therefore, S is a right g-semicommutative ring.

(3) Let $a \in S$ and $m \in M$ such that ma = 0. Consider the following elements $\begin{pmatrix} 0 & 0 \\ 0 & a \end{pmatrix}, \begin{pmatrix} 0 & m \\ 0 & 0 \end{pmatrix} \in T$. We have $0 = \begin{pmatrix} 0 & m \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & a \end{pmatrix}$. Since T is a right $\begin{pmatrix} e & k \\ 0 & g \end{pmatrix}$ -semicommutative ring, we get for any $\begin{pmatrix} x & y \\ 0 & z \end{pmatrix} \in T$, $0 = \begin{pmatrix} 0 & m \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x & y \\ 0 & z \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & a \end{pmatrix} \begin{pmatrix} e & k \\ 0 & g \end{pmatrix}$.

Hence, mzag = 0 in M_S , for any $z \in S$. Therefore, M_S is a right g-semicommutative S-module.

Theorem 3.2. Let $T = \begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$, where R and S are rings, and $_RM_S$ an (R, S)-bimodule. If T is a left $\begin{pmatrix} e & k \\ 0 & g \end{pmatrix}$ -semicommutative ring, where $\begin{pmatrix} e & k \\ 0 & g \end{pmatrix} \in \mathrm{Id}(T)$, then:

- (1) R is a left e-semicommutative ring,
- (2) S is a left g-semicommutative ring, and
- (3) $_{R}M$ is a left e-semicommutative R-module.

Proof of Theorem 3.2. The proof is similar to the proof of Theorem 3.1.

Theorem 3.3. Let $T = \begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$ where R and S are rings, and $_RM_S$ an (R, S)-bimodule. If R is a right e-semicommutative ring, where $e \in Id(R)$, then T is a right $\begin{pmatrix} e & 0 \\ 0 & 0 \end{pmatrix}$ -semicommutative ring.

Proof of Theorem 3.3. Assume that R is a right *e*-semicommutative ring, where $e \in Id(R)$. Let $\begin{pmatrix} a & m \\ 0 & b \end{pmatrix}, \begin{pmatrix} q & n \\ 0 & p \end{pmatrix} \in T$ such that

$$0 = \begin{pmatrix} a & m \\ 0 & b \end{pmatrix} \begin{pmatrix} q & n \\ 0 & p \end{pmatrix} = \begin{pmatrix} aq & an + mp \\ 0 & bp \end{pmatrix}.$$

Hence, aq = 0 in R. Since R is a right e-semicommutative ring, we have auqe = 0, for any $u \in R$. Thus, for any $\begin{pmatrix} u & t \\ 0 & v \end{pmatrix} \in T$, we have

$$\begin{pmatrix} a & m \\ 0 & b \end{pmatrix} \begin{pmatrix} u & t \\ 0 & v \end{pmatrix} \begin{pmatrix} q & n \\ 0 & p \end{pmatrix} \begin{pmatrix} e & 0 \\ 0 & 0 \end{pmatrix} = 0.$$

Therefore, T is a right $\begin{pmatrix} e & 0 \\ 0 & 0 \end{pmatrix}$ -semicommutative ring.

Corollary 3.1. Let $T_n(R)$ be the n-by-n upper triangular matrix ring over a ring R, where $n \ge 1$. Then, the following are equivalent: (1) R is a right e semicommutative ring, where $e \in Id(R)$

(1) *R* is a right e-semicommutative ring, where
$$e \in Id(R)$$
.
(2) $T_2(R) = \begin{pmatrix} R & R \\ 0 & R \end{pmatrix}$ is a right $\begin{pmatrix} e & 0 \\ 0 & 0 \end{pmatrix}$ -semicommutative ring.
(3) $T_n(R)$ is a right $\begin{pmatrix} e & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}$ -semicommutative ring for every posi-

tive integer n.

Proof. "(3) \implies (1)" follows directly from the fact that $T_1(R) \cong R$. "(1) \implies (2)" is clear from Theorem 3.3. "(2) \implies (3)" Note that $T_{n+1}(R) \cong \begin{pmatrix} R & M \\ 0 & T_n(R) \end{pmatrix}$ where M is the 1-by-n row matrix with R in every entry and 0 is the n-by-1 column zero matrix. So, this implication is proved by using induction on n.

4. Polynomial extensions

This section is intended to motivate our investigation of the behavior of right *e*-semicommutative modules with respect to polynomial extensions.

Recall the following extensions of a right R-module M_R :

$$M[x] = \left\{ \varphi(x) = \sum_{i=0}^{n} m_i x^i : m_i \in M \right\}.$$

M[x] is a right R[x]-module and $M[x]_{R[x]}$ is called the usual polynomial extension of M_R .

$$M[x, x^{-1}] = \left\{ \varphi(x) = \sum_{i=-k}^{n} m_i x^i : m_i \in M \right\}.$$

 $M[x, x^{-1}]$ is a right $R[x, x^{-1}]$ -module and $M[x, x^{-1}]_{R[x, x^{-1}]}$ is called the usual Laurent polynomial extension of M_R .

We mean by a regular element of a ring R, a nonzero element which is not a zero divisor.

Theorem 4.1. Let R be a ring, Δ be a multiplicatively closed subset of R consisting of central regular elements, $1 \in \Delta$ and $e \in Id(R)$. Then, M_R is esemicommutative if and only if $(\Delta^{-1}M)_{(\Delta^{-1}R)}$ is $(1^{-1}e)$ -semicommutative.

Proof of Theorem 4.1. Suppose that M_R is *e*-semicommutative. Let $a \in R$, $m \in M$ and $u, w \in \Delta$ such that $(w^{-1}m)(u^{-1}a) = 0$ in $(\Delta^{-1}M)_{(\Delta^{-1}R)}$. Since Δ is contained in the center of R, we have $0 = (w^{-1}u^{-1})(ma) = (wu)^{-1}(ma)$, and so ma = 0. Hence, for any $r \in R$, we have mrae = 0. So, in $(\Delta^{-1}M)_{(\Delta^{-1}R)}$, we have for any $v \in \Delta$, $0 = (wvu)^{-1}(mrae) = (w^{-1}v^{-1}u^{-1}1^{-1})(mrae)$. Thus

$$(w^{-1}m)(v^{-1}r)(u^{-1}a)(1^{-1}e) = 0.$$

Hence, $(\Delta^{-1}M)_{(\Delta^{-1}R)}$ is $(1^{-1}e)$ -semicommutative.

It is clear that if $(\Delta^{-1}M)_{(\Delta^{-1}R)}$ is $(1^{-1}e)$ -semicommutative, then M_R is *e*-semicommutative.

Corollary 4.1. Let R be a ring and $e \in Id(R)$. Then, $M[x]_{R[x]}$ is e-semicommutative if and only if $M[x, x^{-1}]_{R[x, x^{-1}]}$ is e-semicommutative.

Proof. Consider the multiplicatively closed set $\Delta = \{1, x, x^2, x^3, ...\}$ which is clearly a subset of R[x] consisting of central regular elements. Since $\Delta^{-1}R[x] = R[x, x^{-1}]$ and $\Delta^{-1}M[x] = M[x, x^{-1}]$, the result follows directly from Theorem 4.1.

References

- H. Abd-Elmalk, *e-symmetric modules*, to appear in Honam Mathematical Journal, 43 (2021), 199–207.
- [2] D. Anderson, V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra, 26 (1998), 2265-2272.
- [3] H. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc., 2 (1970), 363-368.
- [4] G. Birkenmeier, J. Kim, J. Park, Principally quasi-Baer rings, Comm. Algebra, 29 (2001), 639-660.
- [5] A. Buhphang, M. Rege, Semicommutative modules and Armendariz modules, Arab J. Math. Sci., 8 (2002), 53-65.
- [6] N. Kim, Y. Lee, *Extensions of reversible rings*, J. Pure Appl. Algebra, 185 (2003), 207-223.
- [7] H. Kose, B. Ungor, A. Harmanci, Semicommutativity of rings by the way of idempotents, Filomat, 33 (2019), 3497-3508.
- [8] J. Lambek, On the representations of modules by sheaves of factor modules, Canad. Math. Bull., 14 (1971), 359-368.
- [9] T. Lee, Y. Zhou, *Reduced modules*, Rings, Modules, Algebras and Abelian Groups, 365-377, Lecture Notes in Pure and Appl. Math. 236, Marcel Dekker, New York, 2004.
- [10] F. Meng, J. Wei, *e-symmetric rings*, Comm. Contemp. Math., 20 (2018), 1750039.
- [11] R. Rapheael, Some remarks on regular and strongly regular rings, Canad. Math. Bull., 17 (1974/75), 709-712.
- [12] G. Renault, Anneaux reduits non commutatifs, J. Math. Pures Appl., 46 (1967), 203-214.

Accepted: February 25, 2021