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Abstract. The damped Gauss-Newton methods have been successfully applied to
solve the nonlinear complementarity problem (NCP). This class of methods is usually
designed based on a monotone Armijo line search. In this paper, we propose a damped
Gauss-Newton method with a nonmonotone line search to solve the NCP. Without
requiring any problem assumptions, we prove that the proposed method is well de-
fined and it is globally convergent. Moreover, under the nonsingularity assumption, we
show that the proposed method is locally superlinearly/quadratically convergent. Some
numerical results are reported.
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1. Introduction

The nonlinear complementarity problem (NCP) is to find x ∈ Rn such that

(1) x ≥ 0, F (x) ≥ 0, xTF (x) = 0,

where F : Rn → Rn is a continuously differentiable function. The NCP has
been studied extensively due to its various applications in operations research,
economic equilibrium and engineering design.

There has been developed a number of numerical algorithms for solving the
NCP. Among them, the Newton-type algorithm is one kind of the most effec-
tive algorithms which is designed based on some equation reformulation of the
NCP. One class of well-known Newton-type algorithms is the smoothing Newton
methods (e.g., [2, 3, 5, 6, 11, 13]). This class of algorithms usually reformulates
the NCP as a smooth nonlinear equation and then solves it by Newton method.
It is worth pointing out that, in these smoothing Newton methods, to ensure
Newton step be feasible, one usually requires that the function F has Cartesian
P0-property, that is, for every x and y in Rn with x ̸= y, there is an index
i0 ∈ {1, ..., n} such that xi0 ̸= yi0 and (xi0 − yi0)(Fi0(x)− Fi0(y)) ≥ 0.

Another class of Newton-type algorithms is the damped Gauss-Newton meth-
ods (e.g, [4, 9, 10]). Different from smoothing Newton methods, the damped
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Gauss-Newton methods usually reformulate the NCP as a nonsmooth nonlin-
ear equation and then solve it. Since the Gauss-Newton equation is always
solvable, the damped Gauss-Newton method is well defined without requiring
that the function F has Cartesian P0-property. It is worth pointing out that,
in many damped Gauss-Newton methods (e.g., [8, 10]), the nonmonotone line
search technique has been used to improve numerical results when the methods
are implemented. However, the theoretical analyses are based on the methods
with some monotone line search. As is well known, the nonmonotone line search
technique can improve the likelihood of finding a global optimal solution and
convergence speed in cases where the involving function is highly nonconvex and
has a valley in a small neighbourhood of some point (e.g., [1, 14]). Encouraging
numerical results have been reported when smoothing Newton methods with
nonmonotone line search schemes were applied to solve NCPs (e.g., [2, 7, 11]).

In this paper, we propose a damped Gauss-Newton method to solve the NCP
which is designed based on a nonmonotone line search scheme. We prove that the
proposed method is well defined and it is globally convergent without requiring
any problem assumptions. Moreover, we show that the convergence rate of
the proposed method is local superlinear/quadratic under the nonsingularity
assumption. We also report some numerical results which indicate that our
method is very effective for solving NCPs even though these problems have no
Cartesian P0-property.

2. A nonmonotone damped Gauss-Newton method

2.1 The reformulation of the NCP

In this paper, we consider the following Fischer-Burmeister function:

(2) ϕ(a, b) :=
√
a2 + b2 − (a+ b), ∀(a, b) ∈ R2,

which satisfies

(3) ϕ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

By using ϕ, we can reformulate the NCP as the following nonsmooth equation:

(4) H(x) :=

 ϕ(x1, F1(x))
...

ϕ(xn, Fn(x))

 = 0.

Obviously, x is a solution of the NCP if and only if H(x) = 0.
Define the merit function ψ(x) : Rn → R as

(5) ψ(x) :=
1

2
∥H(x)∥2 = 1

2

n∑
i=1

(ϕ(xi, Fi(x)))
2.

The following lemma gives some useful properties which can be found in [4].
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Lemma 2.1. (a) H(x) defined in (4) is semismooth on Rn and it is strongly
semismooth on Rn if F ′(x) is Lipschitz continuous on Rn.

(b) For any x ∈ Rn and V ∈ ∂H(x), V can be represented as follows

V = diag(ai)∇F (x)T + diag(bi),

where diag(αi) denotes a diagonal matrix with the diagonal elements α1, ..., αn

and (ai + 1)2 + (bi + 1)2 ≤ 1, i = 1, ..., n.
(c) ψ(x) defined by (5) is continuously differentiable on Rn and its gradient

∇ψ(x) can be represented as ∇ψ(x) = V TH(x) for any V ∈ ∂H(x).

2.2 The algorithm

We now describe our nonmonotone damped Gauss-Newton method (NDGNM)
as follows.
Algorithm NDGNM
Step 1. Choose γ ∈ (0, 1/2), η ∈ (0, 1) and x0 ∈ Rn. Choose a sequence {µk}
such that µk > 0 for all k ≥ 0. Choose a sequence {τk} such that τk ∈ (τ, 1]
where τ > 0 is a constant. Set R0 := ψ(x0). Set k := 0.
Step 2. Choose Vk ∈ ∂H(xk) and compute∇ψ(xk) = V T

k H(xk). If∇ψ(xk) = 0,
then stop.
Step 3. Let dk be the solution of the following linear system

(6) (V T
k Vk + µkI)d = −∇ψ(xk).

Step 4. Find a step-size λk := ηmk , where mk is the smallest nonnegative
integer m satisfying

(7) ψ(xk + ηmdk) ≤ Rk + γηm∇ψ(xk)Tdk.

Step 5. Set xk+1 := xk + λkdk and

(8) Rk+1 := (1− τk)Rk + τkψ(x
k+1).

Set k := k + 1. Go to Step 2.

Theorem 2.1. Algorithm NDGNM is well defined and its generated sequence
{xk} satisfies ψ(xk) ≤ Rk for all k ≥ 0.

Proof. Suppose that ψ(xk) ≤ Rk holds for some k. If ∇ψ(xk) = 0, then
Algorithm NDGNM terminates. Now, we suppose that ∇ψ(xk) ̸= 0. Since
µk > 0, V T

k Vk + µkI is positive definite and the search direction dk in Step 3 is
well defined. Moreover, since ∇ψ(xk) ̸= 0, we have dk ̸= 0 and hence

(9) ∇ψ(xk)Tdk = −dTk (V T
k Vk + µkI)dk < 0.

Next we show that there exists at least a nonnegative integer m satisfying (7).
On the contrary, we suppose that for any nonnegative integer m,

(10) ψ(xk + ηmdk) > Rk + γηm∇ψ(xk)Tdk.
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Since ψ(xk) ≤ Rk, by (10), we have

ψ(xk + ηmdk)− ψ(xk)

ηm
> γ∇ψ(xk)Tdk.

Since ψ is continuously differentiable at xk, by letting m → ∞ in the above
inequality, we have ∇ψ(xk)Tdk ≥ γ∇ψ(xk)Tdk. This contradicts (9) and γ ∈
(0, 1/2). Hence, we can find a step-size λk in Step 4 and get the (k + 1)-th
iteration xk+1 = xk + λkdk. Moreover, from (7) and (9) we have

(11) ψ(xk+1) ≤ Rk + γλk∇ψ(xk)Tdk ≤ Rk.

Using this fact, we obtain from (8) that

ψ(xk+1) = (1− τk)ψ(x
k+1) + τkψ(x

k+1) ≤ (1− τk)Rk + τkψ(x
k+1) = Rk+1.

Hence, we can conclude that if ψ(xk) ≤ Rk, then xk+1 can be generated by
Algorithm NDGNM and it satisfies ψ(xk+1) ≤ Rk+1. Since ψ(x

0) = R0, by the
mathematical induction, we prove the theorem. The proof is completed.

3. Convergence analysis

In this section, we assume that Algorithm NDGNM does not terminate in finitely
many steps, i.e., ∇ψ(xk) ̸= 0 for all k ≥ 0. To establish the global convergence
of Algorithm NDGNM, we need the following result.

Lemma 3.1 ([12], Corollary 1). Let {xk} ⊂ Rn be a sequence converging to
x. Let {Vk} be a sequence such that Vk ∈ ∂H(xk) for all k ≥ 0. Then {Vk} is
bounded. Moreover, if {Vk} converges to V , then V ∈ ∂H(x).

Theorem 3.1 (Global convergence). Assume that x∗ is an accumulation point
of {xk} generated by Algorithm NDGNM. Then x∗ is a stationary point of the
merit function ψ(x) if any one of the following conditions holds:

(i) both {µk} and {dk} are bounded.

(ii) µ̃ < µk < µ̄ for some µ̄ > µ̃ > 0.

(iii) µk = α∥H(x)∥β for any α, β > 0.

Moreover, x∗ is a solution of the NCP if there exists a nonsingular element in
∂H(x∗).

Proof. By (11), we have ψ(xk+1) ≤ Rk for all k ≥ 0. Then, it follows from (8)
that for all k ≥ 0

(12) Rk+1 = (1− τk)Rk + τkψ(x
k+1) ≤ (1− τk)Rk + τkRk = Rk.
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Thus, there exists a constant R∗ ≥ 0 such that limk→∞Rk = R∗. By (8), we
have for all k ≥ 1

ψ(xk) = Rk−1 +
Rk −Rk−1

τk−1
.

Since τk ≥ τ > 0, we have limk→∞ ψ(xk) = R∗. Now, without loss of generality,
we assume that lim(K∋)k→∞ xk = x∗ where K is a subsequence of {0, 1, ...}.

First, we consider the condition (i). Since {Vk}k∈K is bounded by Lemma
3.1, and {µk}k∈K and {dk}k∈K are bounded by the condition (i), by passing to
the subsequence, we may assume that

lim
(K∋)k→∞

Vk = V ∗, lim
(K∋)k→∞

µk = µ∗, lim
(K∋)k→∞

dk = d∗.

Moreover, by Lemma 3.1 we have V ∗ ∈ ∂H(x∗). Thus, from Lemma 2.1 (c) it
follows that ∇ψ(x∗) = (V ∗)TH(x∗) and

(13) lim
(K∋)k→∞

∇ψ(xk) = lim
(K∋)k→∞

V T
k H(xk) = (V ∗)TH(x∗) = ∇ψ(x∗).

Now, we prove that ∇ψ(x∗)Td∗ = 0. We divide the proof into the following two
parts:

Part 1. λk ≥ c > 0 for all k ∈ K where c is a fixed constant. In this case, it
follows from (7) and (9) that for all k ∈ K,

(14) 0 ≤ −γc∇ψ(xk)Tdk ≤ −γλk∇ψ(xk)Tdk ≤ Rk − ψ(xk+1).

Since limk→∞Rk = limk→∞ ψ(xk) = R∗, by letting k → ∞ with k ∈ K in (14),
we have ∇ψ(x∗)Td∗ = 0.

Part 2. {λk}k∈K has a subsequence converging to zero. We may pass to the
subsequence and assume that lim(K∋)k→∞ λk = 0. From the line search (7), we
get that for all sufficiently large k ∈ K,

ψ(xk + η−1λkdk) > Rk + γη−1λk∇ψ(xk)Tdk.

Since ψ(xk) ≤ Rk for all k ≥ 0, it follows that

ψ(xk + η−1λkdk)− ψ(xk) ≥ γη−1λk∇ψ(xk)Tdk,

i.e.,

(15)
ψ(xk + η−1λkdk)− ψ(xk)

η−1λk
≥ γ∇ψ(xk)Tdk.

Since ψ is continuously differentiable at x∗, by letting k → ∞ with k ∈ K in
(15), we have

(16) ∇ψ(x∗)Td∗ ≥ γ∇ψ(x∗)Td∗.
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On the other hand, since ∇ψ(xk)Tdk < 0 for all k ≥ 0 by (9), we have

(17) ∇ψ(x∗)Td∗ ≤ 0.

Since γ ∈ (0, 1), we obtain from (16) and (17) that ∇ψ(x∗)Td∗ = 0.

By Part 1 and Part 2, we can conclude that ∇ψ(x∗)Td∗ = 0. Moreover, from
(6) we have

∇ψ(x∗)Td∗ + (d∗)T ((V ∗)TV ∗ + µ∗I)d∗ = 0,

which gives

(18) (d∗)T ((V ∗)TV ∗ + µ∗I)d∗ = 0.

If µ∗ > 0, then the matrix (V ∗)TV ∗ + µ∗I is positive definite. By (18), we have
d∗ = 0 which together with (6) gives ∇ψ(x∗) = −((V ∗)TV ∗ + µ∗I)d∗ = 0. If
µ∗ = 0, then by (18) we have V ∗d∗ = 0. Using (6) again, we have ∇ψ(x∗) =
−(V ∗)TV ∗d∗ = 0. This proves that x∗ is a stationary point of ψ.

Next, we consider the condition (ii). Since 0 < µ̃ < µk < µ̄, the matrices
{V T

k Vk + µkI} are uniformly positive definite for all k. It follows from (6) that

∥dk∥ = ∥(V T
k Vk + µkI)

−1∇ψ(xk)∥
≤ ∥(V T

k Vk + µkI)
−1∥∥∇ψ(xk)∥

≤ 1

µk
∥∇ψ(xk)∥

≤ 1

µ̃
∥∇ψ(xk)∥.

Since {∥∇ψ(xk)∥}k∈K is bounded, {dk}k∈K is bounded. So, by following from
(i), we obtain the desired result.

At last, we consider the condition (iii). For all k ≥ 0, since ∇ψ(xk) ̸= 0,
we have H(xk) ̸= 0 and hence µk = α∥H(x)∥β > 0. Suppose that ∇ψ(x∗) ̸= 0.
Then ∥H(x∗)∥ > 0. Since limk→∞ ψ(xk) = R∗, by (5) and the continuity of H,
we have

lim
k→∞

µk = lim
k→∞

α

(√
2ψ(xk)

)β

= α(
√
2R∗)β = α∥H(x∗)∥β > 0.

So, there exists µ̄ > µ̃ > 0 such that µ̃ < µk < µ̄. By (ii), x∗ must be a
stationary point of ψ(x). It is a contradiction. Thus, x∗ is a stationary point of
ψ(x).

The second part of the theorem follows from Lemma 2.1 (c).

We complete the proof.

In a similar way as those in [10, Theorem 7.2], we can obtain the local
superlinear/quadratic convergence of Algorithm NDGNM as follows.
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Theorem 3.2 (Local superlinear/quadratic convergence). Assume that x∗ is
an accumulation point of {xk} generated by Algorithm NDGNM. Let µk =
α∥H(x)∥β for some α, β > 0. If all V ∈ ∂H(x∗) are nonsingular, then the
whole sequence {xk} converges to x∗ superlinearly. Furthermore, if F ′ is Lips-
chitz continuous around x∗ and β ≥ 1, then the convergence rate is quadratic.

In Theorem 3.1 and Theorem 3.2, we assume that the sequence {xk} genera-
ted by Algorithm NDGNM has one accumulation point x∗ and all V ∈ ∂H(x∗)
are nonsingular. In the following, we show that this assumption is satisfied when
F in the NCP is a uniform P -function. For this purpose, we need the following
lemma.

Lemma 3.2 ([4], Lemma 4.1). Suppose that F is a uniform P -function, i.e.,
there exists a positive scalar c > 0 such that

max
1≤i≤n

(xi − yi)(Fi(x)− Fi(y)) ≥ c∥x− y∥2, ∀ x, y ∈ Rn.

Then, the following results hold:

(i) The NCP has a unique solution.

(ii) For any x ∈ Rn and any V ∈ ∂H(x), V is nonsingular.

(iii) The level set L(x0) := {x ∈ Rn : ψ(x) ≤ ψ(x0)} is bounded for any
x0 ∈ Rn.

Theorem 3.3. If F is a uniform P -function, then the sequence {xk} generated
by Algorithm NDGNM has at least one accumulation point x∗ and all V ∈
∂H(x∗) are nonsingular.

Proof. By Theorem 2.1 and (12), we have ψ(xk) ≤ Rk ≤ R0 = ψ(x0) for all
k ≥ 0. This together with Lemma 3.2 (iii) implies that {xk} is bounded and it
has at least one accumulation point x∗. The second result holds by Lemma 3.2
(ii).

By Theorems 3.1–3.3 and Lemma 3.2 (i), we can directly have the following
result

Theorem 3.4. If F is a uniform P -function, then the sequence {xk} gener-
ated by Algorithm NDGNM converges to the unique solution of the NCP locally
superlinearly/quadratically.

4. Numerical results

In this section, we report some numerical results of Algorithm NDGNM. All
experiments are carried on a PC with CPU of Inter(R) Core(TM)i7-7700 CPU
@ 3.60 GHz and RAM of 8.00GB. The codes are written in MATLAB and run
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in MATLAB R2018a environment. The parameters used in Algorithm NDGNM
are chosen as γ = 0.1, η = 0.8, τk = 2k+1

2k+1 .

We consider the following linear complementarity problem (LCP):

x ≥ 0, y ≥ 0, y =Mx+ q, xT y = 0,

in which M ∈ Rn×n and q ∈ Rn. By using the Fischer-Burmeister function ϕ,
we have a nonsmooth equation reformulation of the LCP:

H(x, y) :=


y −Mx− q
ϕ(x1, y1)

...
ϕ(xn, yn)

 = 0,

namely, (x, y) is a solution of the LCP if and only if H(x, y) = 0.

We apply Algorithm NDGNM to solve H(x, y) = 0 and use ∥H(xk, yk)∥ ≤
10−6 as the stopping criterion. In our experiments, we investigate the following
two LCPs:

(I) Let M be the block diagonal matrix with M1, ...,M4 as block diagonals,

i.e., M = diag(M1, ...,M4), in which Mi =
NT

i Ni

∥NT
i Ni∥

with Ni = rand(n4 ,
n
4 )

for i = 1, ..., 4. Take q = rand(n, 1). In this case, the function F (x) =
Mx+ q has the Cartesian P0-property.

(II) Let M = diag(M1, ...,M4), in which Mi = Ni
∥Ni∥ − eye(n/4) with Ni =

rand(n4 ,
n
4 ) for i = 1, ..., 4. Take q = rand(n, 1). In this case, the function

F (x) =Mx+ q may have no Cartesian P0-property.

In the experiments, we generate 10 problem instances for each size of n. We use
the following two starting points: (1) x0 = (1, 0, ..., 0)T , y0 = (1, 1, ..., 1)T ; (2)
x0 = (1, 0, ..., 0)T , y0 = Mx0 + q. Numerical results are listed in Table 1 where
SP denotes the starting point, aIT denotes the average value of the iteration
numbers, aCPU denotes the average value of the CPU time in seconds and aHK

denotes the average value of ∥H(xk, yk)∥ when Algorithm NDGNM terminates
among the 10 testing. From Table 1, we can see that Algorithm NDGNM is
very effective for solving LCPs even though these problems have no Cartesian
P0-property.



214 LI DONG

Table 1 Numerical results of Algorithm NDGNM

LCP SP n aIT aCPU aHK

(I) (1) 1000 4.9 1.83 2.1706e-07
1500 5.5 5.68 8.2870e-08
2000 5.5 14.50 2.6248e-07
2500 5.4 22.64 1.9886e-07
3000 6.2 53.75 2.2750e-07

(2) 1000 4.2 1.54 1.2565e-07
1500 4.5 4.67 2.2360e-07
2000 4.8 10.69 1.1695e-07
2500 4.2 18.02 1.2727e-07
3000 4.7 34.96 2.3348e-07

(II) (1) 1000 4.1 1.47 1.2654e-07
1500 4.0 9.07 2.3691e-07
2000 4.2 17.62 1.1274e-07
2500 4.2 30.95 3.7991e-07
3000 4.4 41.55 1.1590e-07

(2) 1000 3.2 1.13 1.1403e-07
1500 3.4 3.47 8.1548e-08
2000 3.6 8.18 2.1214e-08
2500 3.2 13.17 4.4488e-08
3000 3.5 24.83 1.4597e-07
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